for

Coupling-isomerization-Claisen sequences – Mechanistic dichotomies in hetero domino reactions

Daniel M. D'Souza, Frank Rominger, and Thomas J. J. Müller*

SUPPORTING INFORMATION

Table of Contents:

I. Experimental section	S2
II. X-Ray structure data of 3a, 4b, 6b, and 7a	S16

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **I. Experimental section**

General Considerations. All reactions involving water-sensitive compounds were carried out in oven-dried Schlenk glassware under a nitrogen atmosphere. The solvents were dried according to standard procedures¹ and were distilled prior to use. Column chromatography: silica gel 60 M (mesh 230-400) Macherey-Nagel. Thin layer chromatography (TLC): silica gel layered aluminium foil (60 F₂₅₄ Merck, Darmstadt). Melting points (uncorrected): Reichert-Jung Thermovar and Büchi Melting Point B-540. (Hetero)aryl halides **1** and Acid chlorides **5** were purchased from ACROS or Merck and used without further purification. Trityl propargyl ethers **2** were prepared from propargyl alcohols obtained by literature procedures.² ¹H and ¹³C NMR spectra: Bruker ARX250, Bruker DRX 300 with CDCl₃ or as solvent. The assignments of quaternary C, CH, CH₂ and CH₃ were made on the basis of DEPT spectra. IR: Bruker Vector 22 FT-IR. UV/Vis: Hewlett Packard HP8452 A. MS: Jeol JMS-700 und Finnigan TSQ 700. Elemental analyses were carried out in the microanalitycal laboratory of the Department Chemie der Universität Heidelberg.

General procedure for the preparation of 1-(hetero)aryl propargyltriphenylmethylethers 2

To a solution of 1.0 equiv of the propargyl alcohol in dichlormethane were successively added 10 mol% of DMAP, 1.5 equiv of pyridine, and 1.1 equiv of triphenylmethylchloride at room temp. Then the reaction mixture was heated to reflux temperature for 1 d. After cooling to room temp water was carefully added. The aqueous layer was extracted three times with dichloromethane. The combined organic layers were washed three times with brine and then dried with magnesium sulphate. After evaporation of the solvent in vacuo the residue was chromatographed on silica gel (hexane/ethylacetate 5:1) and crystallized from pentane/diethylether at -18 °C to give the 1-(hetero)aryl propargyltriphenylmethylethers **2** in good yields as crystalline solids.

(1-Triphenylmethoxyprop-2-ynyl)-benzene (2a)

¹H NMR (300 MHz, CDCl₃): δ 2.29 (d, J = 2.2 Hz, 1H), 5.13 (d, J = 2.2 Hz, 1 H), 7.25-7.36 (m, 14 H), 7.56-7.57 (m, 3 H), 7.58-7.59 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 66.5 (CH), 74.4 (CH), 83.6 (C_{quat}), 88.9 (C_{quat}), 126.6 (CH), 127.1 (CH), 127.7 (CH), 129.1 (CH), 140.7 (C_{quat}),

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 144.1 (C_{quat}). EI MS (70 eV, *m/z* (%)): 374 (M⁺, 0.5), 244((C₆H₅)₃CH⁺, 84), 243 ((C₆H₅)₃C⁺, 100), 115 (M⁺-(C₆H₅)₃CO, 70). IR (KBr): $\tilde{v} = 3311 \text{ cm}^{-1}$ (m), 3289 (m), 3056 (w), 3032 (m), 1491 (s), 1448 (s), 1125 (m), 1040 (s), 1025 (s), 1003 (m), 993 (m), 773 (m), 745 (m), 709 (s), 696 (s), 657 (m), 646 (m). UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 260 nm (1700). Anal. calcd. for C₂₈H₂₂O (374.5): C 89.81, H 5.92. Found: C 89.51, H 5.92.

1-Methyl-4-(1-trityloxyprop-2-ynyl)benzene (2b)

¹H NMR (300 MHz, CDCl₃): δ 2.21 (d, J = 2.1 Hz, 1 H), 2.36 (s, 3 H), 5.08 (d, J = 2.1 Hz, 1 H), 7.12 (d, J = 8.3 Hz, 2 H), 7.24-7.32 (m, 11 H), 7.55-7.59 (m, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ 21.1 (CH₃), 66.3 (CH), 74.1 (CH), 83.7 (C_{quat}), 88.8 (C_{quat}), 126.6 (CH), 127.1 (CH), 127.7 (CH), 128.9 (CH), 129.1 (CH), 137.3 (C_{quat}), 137.8 (C_{quat}), 144.1 (C_{quat}). FAB MS (*m/z*): 411 (M⁺+Na). FD MS (*m/z*): 388 (M⁺). IR (KBr): $\tilde{v} = 3296$ cm⁻¹ (s), 3022 (w), 3058 (w), 3031 (w), 2920 (w), 2890 (w), 2111 (w), 1613 (w), 1593 (m), 1491 (s), 1448 (s), 1037 (s), 821 (m), 704 (s), 631 (s). UV/Vis (CH₂Cl₂): λ_{max} (ε) 262 nm (1200). Anal. calcd. for C₂₉H₂₄O (388.5): C 89.66, H 6.23. Found: C 88.56, H 6.26.

1-Methoxy-4-(1-triphenylmethoxyprop-2-ynyl)benzene (2c)

¹H NMR (300 MHz, CDCl₃): δ 2.25 (d, J = 2.2 Hz, 1 H), 3.81 (s, 3 H), 5.06 (d, J = 2.2 Hz, 1 H), 6.82 (d, J = 8.8 Hz, 2 H), 7.24-7.32 (m, 10 H), 7.54-7.57 (m, 7 H). ¹³C NMR (75 MHz, CDCl₃): δ 55.1 (CH₃), 65.9 (CH), 73.9 (CH), 83.6 (C_{quat}), 88.6 (C_{quat}), 113.5 (CH), 126.9 (CH), 127.5 (CH), 127.7 (CH), 128.9 (CH), 132.9 (C_{quat}), 144.0 (C_{quat}), 158.9 (C_{quat}). EI MS (70 eV, m/z(%)): 404 (M⁺, 4), 260 ((C₆H₅)₃COH⁺, 15), 259 ((C₆H₅)₃CO⁺, 75), 245 (100), 244 ((C₆H₅)₃CH⁺, 100), 243 ((C₆H₅)₃C⁺, 100). HRMS calcd. for C₂₉H₂₄O₂: 404.1776, Found: 404.1801. IR (KBr): \tilde{v} = 3275 cm⁻¹ (s), 3085 (w), 3060 (w), 2905 (w), 2867 (w), 2835 (w), 2111 (w), 1611 (s), 1510 (s), 1491 (m), 1463 (s), 1449 (m), 1246 (s), 1171 (m), 1154 (m), 1053 (s), 1028 (s), 830 (m), 703 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 (s). UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 270 nm (1700), 280 (1300). Anal. calcd. for C₂₉H₂₄O₂ (404.5): C 86.11, H 5.98. Found: C 85.86, H 5.99.

1-Chloro-4-(1-triphenylmethoxyprop-2-ynyl)benzene (2d)

¹H NMR (300 MHz, CDCl₃): δ 2.33 (d, J = 2.2 Hz, 1 H), 5.08 (d, J = 2.2 Hz, 1 H), 7.21 (s, 4 H), 7.23-7.31 (m, 9 H), 7.52-7.53 (m, 3 H), 7.54-7.55 (m, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 65.7 (CH), 74.6 (CH), 83.0 (C_{quat}), 88.9 (C_{quat}) 127.1 (CH), 127.6 (CH), 127.8 (CH), 128.1 (CH), 128.8 (CH), 133.1 (C_{quat}), 139.1 (C_{quat}), 143.7 (C_{quat}). EI MS (70 eV, m/z (%)): 409 (M⁺ (³⁷Cl), 0.7), 407 (M⁺ (³⁵Cl), 0.3), 244 ((C₆H₅)₃CH⁺, 71), 243 ((C₆H₅)₃C⁺, 80), 165 (M⁺-(C₆H₅)₃C, 31), 149 (M⁺-(C₆H₅)₃CO, 42). IR (KBr): $\tilde{v} = 3296$ cm⁻¹ (m), 3278 (m), 3082 (w), 3058 (w), 3033 (w), 2111 (w), 1593 (m), 1491 (s), 1448 (s), 1090 (s), 1014 (m), 703 (s). UV/Vis (CH₂Cl₂): λ_{max} (ε) 260 nm (5400), 286 (1700). Anal. calcd. for C₂₈H₂₁ClO (408.9): C 82.24, H 5.18, Cl 8.67. Found: C 82.02, H 5.17, Cl 8.53.

2-(1-Trityloxyprop-2-ynyl)thiophene (2e)

¹H NMR (300 MHz, CDCl₃): δ 2.28 (d, J = 2.2 Hz, 1 H), 5.37 (dd, J = 2.2 Hz, J = 0.7 Hz, 1 H), 6.82 (m, 1 H), 6.88 (dd, J = 5.5 Hz, J = 3.5 Hz, 1 H), 7.25-7.34 (m, 10 H), 7.57-7.61 (m, 6 H). ¹³C NMR (75 MHz, CDCl₃): δ 62.3 (CH), 74.4 (CH), 82.5 (C_{quat}), 89.0 (C_{quat}), 124.8 (CH), 125.4 (CH), 126.1 (CH), 127.2 (CH), 127.7 (CH), 129.1 (CH), 143.9 (C_{quat}), 143.9 (C_{quat}). FAB MS (*m/z*): 404 (M⁺+Na). FD MS (*m/z*): 380 (M⁺). IR (KBr): $\tilde{v} = 3309$ cm⁻¹ (s), 3288 (s), 3057 (s), 2216 (w), 1958 (m), 1593 (m), 1491 (s), 1448 (s), 1312 (m), 1279 (m), 1171 (m), 1155 (m), 1023 (s), 772 (s), 698 (s). UV/Vis (CH₂Cl₂): λ_{max} (ε) 238 nm (14500). Anal. calcd. for C₂₆H₂₀OS (380.5): C 82.07, H 5.30, S 8.43. Found: C 82.04, H 5.33, S 8.44.

General procedure for the coupling-iosmerization-Claisen sequences to give the products 3,

4, 6, or 7

Synthesis: To a deaerated mixture of 6 mL of butyronitrile and 6 mL of triethylamine in an oven dried screw cap vessel were added successively 1.50 mmol of the electron deficient halide 8 (1 or 5), 1.65 mmol of the 1-aryl propargyl trityl ethers 2, 53 mg (0.08 mmol) of PdCl₂(PPh₃)₂, and 14 mg (0.07 mmol) of CuI (For experimental details, see Table 1). The resulting mixture was stirred at room temperature for 1 h, and than heated at reflux temperature for 16-72 h. The reaction mixture was allowed to cool to room temperature, the solvents were removed in vacuo and the residue was chromatgraphed on silica gel (hexane/ethyl acetate, 2:1) and crystallized from pentane/diethylether to afford the products 3, 4, 6, or 7 as colorless crystals.

Entry	Electron deficient halide 8 (1 or 5)	Propargyl trityl ether 2	Yield
1 ^a	246 mg (1.50 mmol) of 1a	618 mg (1.65 mmol) of 2a	593 mg (87 %) of 3a
2^{a}	303 mg (1.50 mmol) of 1b	618 mg (1.65 mmol) of 2a	683 mg (91 %) of 3b
3 ^b	408 mg (1.50 mmol) of 1c	618 mg (1.65 mmol) of 2a	757 mg (97 %) of 3c
4^{b}	408 mg (1.50 mmol) of 1c	675 mg (1.65 mmol) of 2b	580 mg (76 %) of 3d
5 ^b	408 mg (1.50 mmol) of 1c	641 mg (1.65 mmol) of 2c	796 mg (99 %) of 3e
6 ^b	408 mg (1.50 mmol) of 1c	675 mg (1.65 mmol) of 2d	836 mg (99 %) of 3f
$7^{\rm c}$	393 mg (1.50 mmol) of 1d	628 mg (1.65 mmol) of 2e	710 mg (92 %) of 3g
$8^{\rm c}$	344 mg (1.50 mmol) of 1e	628 mg (1.65 mmol) of 2e	590 mg (82 %) of 3h
9^{b}	344 mg (1.50 mmol) of 1e	641 mg (1.65 mmol) of 2c	364 mg (50 %) of 4a
10^{b}	344 mg (1.50 mmol) of 1e	675 mg (1.65 mmol) of 2d	580 mg (76 %) of 4b
11 ^b	211 mg (1.50 mmol) of 5a	618 mg (1.65 mmol) of 2a	638 mg (89 %) of 6a
12^{a}	220 mg (1.50 mmol) of 5b	618 mg (1.65 mmol) of 2a	443 mg (61 %) of 6b
13 ^a	220 mg (1.50 mmol) of 5b	628 mg (1.65 mmol) of 2e	650 mg (88 %) of 6c
14^{c}	256 mg (1.50 mmol) of 5c	618 mg (1.65 mmol) of 2a	549 mg (72 %) of 7a
15°	256 mg (1.50 mmol) of 5c	675 mg (1.65 mmol) of 2d	537 mg (66 %) of 7b
^a Reaction	for 16 h ^b Reaction for 72 h	^c Reaction for 2/1 h	- · · ·

Table 1. Experimental details of CI-Claisen sequences

Reaction for 16 h. Reaction for 72 h. Reaction for 24 h.

(6-Benzhydrylidene-8-thiazol-2-yl-tricyclo[3.2.1.0^{2,7}]oct-3-en-1-yl)-phenyl methanone (3a)

¹H NMR (500 MHz, CDCl₃): δ 2.17 (s, 6 H, acetone), 2.93 (dd, J = 1.4, 7.6 Hz, 1 H), 3.24 (m, J = 7.6 Hz, 1 H), 3.87 (m, ${}^{3}J$ = 5.1 Hz, J = 1.4, 2.3 Hz, 1 H), 4.43 (d, ${}^{3}J$ = 5.1 Hz, 1 H, CH), 5.79 (dt, J = 2.3, 7.0 Hz, 1 H), 6.25 (ddd, J = 1.4, 5.6, 8.0 Hz, 1 H), 7.07 (d, J = 3.3 Hz, 1 H), 7.23–7.36 (m, 11 H), 7.41 (m, 1 H), 7.47 (m, 1 H), 7.53 (d, J = 3.3 Hz, 1 H), 7.71 (m, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ 27.6 (CH), 30.9 (CH₃, acetone), 34.0 (CH), 44.7 (C_{quat}), 44.9 (CH), 45.7 (CH), 118.5 (CH), 125.1 (CH), 126.8 (CH), 127.1 (CH), 127.3 (CH), 127.6 (CH), 128.1 (CH), 128.2 (CH), 128.4 (CH), 129.7 (CH), 129.8 (CH), 131.9 (CH), 136.4 (C_{quat}), 136.6 (C_{quat}), 138.5 (C_{quat}), 141.6 (C_{quat}), 141.6 (C_{quat}), 141.8 (CH), 168.3 (C_{quat}), 199.6 (C_{quat}), 206.9 (C_{quat}, acetone). EI MS (70 eV), m/z (%): 457 (M⁺, 100), 352 (M⁺ – COC₆H₅, 81). HRMS calcd for C₃₁H₂₃NOS: 457.1500, found: 457.1515. Anal. calcd. for C₃₁H₂₃NOS × C₃H₆O (515.7): C 79.19, H 5.67, N 2.72, S 6.22; found: C 79.93, H 5.61, N 2.81, S 6.06.

[6-Benzhydrylidene-8-(4-nitro-phenyl)-tricyclo[3.2.1.0^{2,7}]oct-3-en-1-yl]-phenyl methanone (3b)

¹H NMR (500 MHz, CDCl₃): δ 2.17 (s, 6 H, acetone), 2.94 (dd, J = 1.1, 7.6 Hz, 1 H), 3.24 (m, 1 H), 3.64 (m, 1 H), 4.15 (d, J = 5.0 Hz, 1 H), 5.59 (m, 1 H), 6.25 (m, 1 H), 7.19 (d, J = 8.6 Hz, 2 H), 7.25–7.29 (m, 5 H), 7.32–7.35 (m, 3 H), 7.37 (d, J = 7.5 Hz, 2 H), 7.39–7.42 (m, 2 H), 7.49 (m, 1 H), 7.70 (m, 2 H), 7.98 (d, J = 8.7 Hz, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ 27.5 (CH), 30.9 (CH₃, acetone), 33.2 (CH), 43.3 (C_{quat}), 45.9 (CH), 46.8 (CH), 123.0 (CH), 125.2 (CH), 126.1 (CH), 127.2 (CH), 127.4 (CH), 127.5 (CH), 128.2 (CH), 128.3 (CH), 128.5 (CH), 129.1 (CH), 129.7 (CH), 129.8 (CH), 132.3 (CH), 136.3 (C_{quat}), 137.0 (C_{quat}), 138.2 (C_{quat}), 141.6 (C_{quat}), 146.2 (C_{quat}), 146.5 (C_{quat}), 199.9 (C_{quat}), 206.8 (C_{quat}, acetone). EI MS

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 (70 eV), *m/z* (%): 495 (M⁺, 69), 418 (M⁺ – C₆H₅, 31), 390 (19), 360 (21), 359 (27), 358 (16), 328 (25), 265 (20), 254 (49), 243 (40), 167 (18), 164 (71), 105 (COC₆H₅, 100), 77 (C₆H₅, 25). HRMS calcd. for C₃₄H₂₅NO₃: 495.1834, found: 495.1847. Anal. calcd. for C₃₄H₂₅NO₃ × C₃H₆O (553.7): C 80.27, H 5.64, N 2.53; found: C 80.36, H 5.44, N 2.70.

[6-Benzhydrylidene-8-(4-trifluoromethyl-phenyl)-tricyclo[3.2.1.0^{2,7}]oct-3-en-1-yl]-phenyl methanone (3c)

¹H NMR (500 MHz, CDCl₃): δ 2.92 (dd, J = 0.9, 7.6 Hz, 1 H), 3.24 (m, 1 H), 3.64 (dd, J = 5.5, 6.4 Hz, 1 H), 4.15 (d, J = 5.2 Hz, 1 H), 5.61 (m, 1 H), 6.25 (m, 1 H), 7.16 (d, J = 7.9 Hz, 2 H), 7.28–7.30 (m, 5 H), 7.34 (d, J = 7.3 Hz, 2 H), 7.37–7.43 (m, 7 H), 7.48–7.51 (m, 1 H), 7.74 (d, J = 7.6 Hz, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ 27.3 (CH), 33.2 (CH), 43.2 (C_{quat}), 45.8 (CH), 46.8 (CH), 124.1 (q, ¹ J_{C-F} = 272.2 Hz, C_{quat}), 124.7 (q, ³ J_{C-F} = 3.8 Hz, CH), 125.1 (CH), 126.3 (CH), 127.1 (CH), 127.3 (CH), 127.6 (CH), 128.1 (CH), 128.3 (CH), 128.5 (q, ² J_{C-F} = 33.0 Hz, C_{quat}), 128.5 (CH), 128.6 (CH), 129.8 (CH), 129.8 (CH), 132.2 (CH), 136.0 (C_{quat}), 137.6 (C_{quat}), 138.3 (C_{quat}), 141.7 (C_{quat}), 142.4 (q, ⁵ J_{C-F} = 1.3 Hz, C_{quat}), 200.2 (C_{quat}). EI MS (70 eV), *m*/*z* (%): 518 (M⁺, 100), 441 (M⁺ – C₆H₅, 36), 413 (M⁺ – COC₆H₅, 45). HRMS calcd. for C₃₅H₂₅F₃O: 518.1858, found: 518.1838. Anal. calcd. for C₃₅H₂₅F₃O (518.6): C 81.07, H 4.86; found: C 80.68, H 5.11.

[6-Benzhydrylidene-8-(4-trifluoromethyl-phenyl)-tricyclo[3.2.1.0^{2,7}]oct-3-en-1-yl]-(4methoxy-phenyl) methanone (3d)

¹H NMR (300 MHz, CDCl₃): δ 2.84 (dd, J = 1.3, 7.6 Hz, 1 H), 3.14 (m, 1 H), 3.64 (m, 1 H), 3.85 (s, 3 H), 4.15 (d, J = 4.8 Hz, 1 H), 5.59 (m, 1 H), 6.25 (ddd, J = 1.3, 5.5, 6.9 Hz, 1 H), 6.92 (d, J = 9.0 Hz, 2 H), 7.18 (d, J= 8.2 Hz, 2 H), 7.28–7.40 (m, 12 H), 7.84 (d, J = 9.0 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 26.7 (CH), 32.0 (CH), 42.6 (C_{quat}), 45.7 (CH), 47.3 (CH), 55.2 (CH₃), 113.7 (CH), 124.2 (q, ¹J_{C-F} = 271.3 Hz, C_{quat}), 124.7 (q, ³J_{C-F} = 3.8 Hz, CH), 125.3 (CH), 126.0 (CH), 127.1 (CH), 127.3 (CH), 128.1 (CH), 128.3 (CH), 128.5 (q, ²J_{C-F} = 32.3 Hz, C_{quat}), 128.7 (CH), 129.8 (CH), 130.4 (CH), 130.6 (C_{quat}), 135.8 (C_{quat}), 137.9 (C_{quat}), 141.8 (C_{quat}), 141.9 (C_{quat}), 142.5 (q, ⁵J_{C-F} = 1.3 Hz, C_{quat}), 163.1 (C_{quat}), 197.8 (C_{quat}). EI MS (70 eV), m/z (%): 548 (M⁺, 32), 165 (OCC₆H₄OCH₃⁺, 100). Anal. calcd. for C₃₆H₂₇F₃O₂ (548.6): C 78.82, H 4.96; found: C 78.63, H 5.01.

[6-Benzhydrylidene-8-(4-trifluoromethyl-phenyl)-tricyclo[3.2.1.0^{2,7}]oct-3-en-1-yl]-*p*-tolyl methanone (3e)

¹H NMR (300 MHz, CDCl₃): δ 2.39 (s, 3 H), 2.89 (dd, J = 1.3, 7.6 Hz, 1 H), 3.21 (m, 1 H), 3.66 (m, 1 H), 4.17 (d, J = 4.9 Hz, 1 H), 5.61 (dq, J = 1.3, 2.3 Hz, 1 H), 6.26 (dq, J = 1.3, 2.4 Hz, 1 H), 7.18 (d, J = 8.1 Hz, 2 H), 7.24 (d, J = 7.9 Hz, 2 H), 7.29–7.41 (m, 12 H), 7.71 (d, J = 8.1 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 21.6 (CH₃), 27.0 (CH), 32.7 (CH), 42.9 (C_{quat}), 45.8 (CH), 47.1 (CH), 124.1 (q, ¹J_{C-F} = 271.9 Hz, C_{quat}), 124.7 (q, ³J_{C-F} = 3.7 Hz, CH), 125.1 (CH), 126.1 (CH), 127.1 (CH), 127.3 (CH), 127.9 (CH), 128.1 (CH), 128.2 (CH), 128.4 (q, 12.5 + 10.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 ${}^{2}J_{C-F} = 32.0 \text{ Hz}, \text{ C}_{quat}$, 128.6 (CH), 129.2 (CH), 129.8 (CH), 135.8 (C_{quat}), 137.7 (C_{quat}), 141.7 (C_{quat}), 141.8 (C_{quat}), 142.4 (q, ${}^{5}J_{C-F} = 1.4 \text{ Hz}, \text{ C}_{quat}$), 143.2 (C_{quat}), 199.4³ (C_{quat}). EI MS (70 eV), *m/z* (%): 532 (M⁺, 100), 455 (M⁺ - C₆H₅, 24), 413 (M⁺ - COC₆H₄CH₃, 14). HRMS calcd. for C₃₆H₂₇F₃O: 532.2014, found: 532.2007. Anal. calcd. for C₃₆H₂₇F₃O (532.6): C 81.19, H 5.11; found: C 81.16, H 5.12.

[6-Benzhydrylidene-8-(4-trifluoromethyl-phenyl)-tricyclo[3.2.1.0^{2,7}]oct-3-en-1-yl]-(4-

chloro-phenyl) methanone (3f)

¹H NMR (300 MHz, CDCl₃): δ 2.88 (dd, J = 1.0, 7.6 Hz, 1 H), 3.22 (m, 1 H), 3.64 (m, 1 H), 4.07 (d, J = 4.8 Hz, 1 H), 5.60 (m, 1 H), 6.24 (m, 1 H), 7.14 (d, J = 7.8 Hz, 2 H), 7.26–7.40 (m, 14 H), 7.68 (d, J = 8.6 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 27.3 (CH), 33.2 (CH), 43.2 (C_{quat}), 45.8 (CH), 46.9 (CH), 124.1 (q, ${}^{1}J_{C-F}$ = 271.9 Hz, C_{quat}), 124.8 (CH), 124.8 (q, ${}^{3}J_{C-F}$ = 3.8 Hz, CH), 125.0 (CH), 126.3 (CH), 127.2 (CH), 127.4 (CH), 128.2 (CH), 128.3 (CH), 128.6 (CH), 128.7 (q, ${}^{2}J_{C-F}$ = 32.4 Hz, C_{quat}), 128.8 (CH), 129.1 (CH), 129.7 (CH), 136.2 (C_{quat}), 136.5 (C_{quat}), 137.3 (C_{quat}), 138.6 (C_{quat}), 141.6 (C_{quat}), 142.1 (q, ${}^{5}J_{C-F}$ = 1.5 Hz, C_{quat}), 198.9 (C_{quat}). EI MS (70 eV), m/z (%): 554 (37 Cl-M⁺, 25), 552 (35 Cl-M⁺, 45), 413 (M⁺ – COC₆H₄Cl, 38). HRMS calcd. for C₃₅H₂₄ 35 ClF₃O: 552.1468, found: 552.1505. Anal. calcd. for C₃₅H₂₄ClF₃O (553.0): C 76.02, H 4.37, Cl 6.41; found: C 75.93, H 4.50, Cl 6.37.

Methyl 4-[8-Benzhydrylidene-7-(thiophene-2-carbonyl)-tricyclo[3.2.1.0^{2,7}]oct-3-en-6-yl]benzoate (3g)

¹H NMR (300 MHz, CDCl₃): δ 2.95 (dd, J = 1.4, 7.7 Hz, 1 H), 3.37 (m, 1 H), 3.65 (m, 1 H), 3.86 (s, 3 H), 4.30 (d, J = 4.8 Hz, 1 H), 5.59 (m, 1 H), 6.23 (m, 1 H), 7.19 (s, 1 H), 7.02 (dd, J = 4.0, 4.9 Hz, 1 H), 7.21–7.37 (m, 11 H), 7.54 (dd, J = 0.9, 4.9 Hz, 1 H), 7.62 (dd, J = 0.9, 3.9 Hz, 1 H), 7.86 (d, J = 8.3 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 30.2 (CH), 34.9 (CH), 43.3 (Cquat), 46.3 (CH), 46.3 (CH), 51.9 (CH₃), 124.7 (CH), 126.5 (CH), 127.0 (CH), 127.2 (CH), 127.9 (CH), 128.1 (CH), 128.3 (Cquat), 128.5 (CH), 129.2 (CH), 129.8 (CH), 129.9 (CH), 132.0 (CH), 133.1 (CH), 135.7 (Cquat), 137.2 (Cquat), 141.6 (Cquat), 141.8 (Cquat), 143.5 (Cquat), 143.8 (Cquat), 166.9 (Cquat), 190.5 (Cquat). EI MS (70 eV), m/z (%): 514 (M⁺, 100), 403 (M⁺ – COC₄H₃S, 37), 379 (M⁺ – C₆H₄CO₂CH₃, 10). HRMS calcd. for C₃₄H₂₆O₃S: 514.1603, found: 514.1583. Anal. calcd. for C₃₄H₂₆O₃S (514.7): C 79.35, H 5.09, S 6.23; found: C 79.00, H 5.06, S 6.32.

4-[8-Benzhydrylidene-7-(thiophene-2-carbonyl)-tricyclo[3.2.1.0^{2,7}]oct-3-en-6-yl] benzonitrile (3h)

¹H NMR (300 MHz, CDCl₃): δ 2.98 (dd, J = 7.7 Hz, J = 1.5 Hz, 1 H), 3.33 (m, 1 H), 3.60 (m, 1 H), 4.25 (d, J = 5.0 Hz, 1 H), 5.58 (ddd, J = 6.9 Hz, J = 5.7 Hz, J = 2.2 Hz, 1 H), 6.22 (ddd, J = 7.9 Hz, J = 5.5 Hz, J = 1.3 Hz, 1 H), 7.06 (dd, J = 4.9 Hz, J = 3.9 Hz, 1 H), 7.21-7.24 (m, 6 H), 7.28-7.37 (m, 6 H), 7.47 (d, J = 8.3 Hz, 2 H), 7.57 (dd, J = 5.0 Hz, J = 1.0 Hz, 1 H), 7.62 (dd, J = 3.9 Hz, J = 1.0 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ 30.0 (CH), 34.2 (CH), 43.3

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 (C_{quat.}), 46.1 (CH), 46.5 (CH), 110.2 (C_{quat.}), 118.9 (C_{quat.}), 124.8 (CH), 126.4 (CH), 127.1 (CH), 127.3 (CH), 128.0 (CH), 128.2 (CH), 128.2 (CH), 129.2 (CH), 129.7 (CH), 129.9 (CH), 131.7 (CH), 131.9 (CH), 133.3 (CH), 136.1 (C_{quat.}), 136.7 (C_{quat.}), 141.7 (C_{quat.}), 143.2 (C_{quat.}), 144.1 (C_{quat.}), 190.2 (C_{quat.}).⁴ EI MS (70 eV), *m/z* (%): 481 (M⁺, 100), 404 (M⁺-C₆H₅, 17), 370 (M⁺-COC₄H₃S, 35), 365 (32), 314 (M⁺-CH(C₆H₅)₂, 30), 354 (41). HRMS calcd. for C₃₃H₂₃NOS: 481.1500, found: 481.1494.

4-[(E)-2-(2-Benzhydryl-phenyl)-3-oxo-3-p-tolyl-propenyl] benzonitrile (4a)

¹H NMR (300 MHz, CDCl₃): δ 2.44 (s, 3 H), 5.53 (s, 1 H), 6.80 (d, J = 8.2 Hz, 2 H), 6.90 (d, J = 7.2 Hz, 2 H), 6.96 (d, J = 7.2 Hz, 2 H), 7.08–7.18 (m, 7 H), 7.24 (m, 2 H), 7.27 (m, 4 H), 7.33 (dq, J = 1.5, 7.5 Hz, 2 H), 7.71 (d, J = 8.2 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 21.6 (CH₃), 53.8 (CH), 111.9 (C_{quat}), 118.4 (C_{quat}), 127.0 (CH), 128.1 (CH), 128.3 (CH),128.6 (CH), 129.1 (CH), 129.3 (CH), 129.7 (CH), 129.9 (CH), 130.3 (CH), 130.8 (CH), 131.6 (CH), 134.9 (C_{quat}), 136.0 (C_{quat}), 139.0 (C_{quat}), 140.1 (CH), 142.6 (C_{quat}), 142.9 (C_{quat}), 143.2 (C_{quat}), 143.6 (C_{quat}), 196.0 (C_{quat}). EI MS (70 eV), m/z (%): 489 (M⁺, 59), 370 (M⁺ – OCC₆H₄CH₃, 11), 322 (M⁺ – CH(C₆H₅)₂, 19), 119 (OCC₆H₄CH₃⁺, 100). HRMS calcd. for C₃₆H₂₇NO: 489.2093, found: 489.2062. Anal. calcd. for C₃₆H₂₇NO (489.6): C 88.31, H 5.56, N 2.86, found: C 88.00, H 5.62, N 2.90.

4-[(E)-2-(2-Benzhydryl-phenyl)-3-(4-chloro-phenyl)-3-oxo-propenyl] benzonitrile (4b)

¹H NMR (300 MHz, CDCl₃): δ 5.46 (s, 1 H), 6.83–6.92 (m, 6 H), 7.07–7.19 (m, 8 H), 7.27–7.28 (m, 3 H), 7.31 (m, 1 H), 7.34 (dd, J= 1.6, 7.5 Hz, 1 H), 7.39 (d, J= 8.8 Hz, 2 H), 7.64 (d, J= 8.8 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 53.9 (CH), 112.2 (C_{quat}), 118.3 (C_{quat}), 127.2 (CH), 128.1 (CH), 128.3 (CH), 128.6 (CH), 128.9 (CH), 129.2 (CH), 129.5 (CH), 130.4 (CH), 130.8 (CH), 130.9 (CH), 131.0 (CH), 131.7 (CH), 135.5 (C_{quat}), 135.8 (C_{quat}), 138.7 (C_{quat}), 138.7 (C_{quat}), 140.5 (C_{quat}), 142.5 (C_{quat}), 195.0 (C_{quat}). EI MS (70 eV), m/z (%): 509 (³⁵Cl-M⁺, 100), 370 (M⁺ – C(O)C₆H₄Cl, 29). HRMS calcd. for C₃₅H₂₄³⁵ClNO: 509.1546, found: 509.1558. Anal. calcd. for C₃₅H₂₄ClNO (510.0): C 82.42, H 4.74, N 2.75, Cl 6.95, found: C 82.20, H 4.83, N 2.81,Cl 6.65.

1-Phenyl-2-(1,1,3-triphenyl-1*H*-isochromen-4-yl) ethanone (6a)

¹H NMR (300 MHz, CDCl₃): δ 1.86 (m, 4 H, THF), 3.76 (m, 4 H, THF), 4.09 (s, 2 H), 6.63 (dd, J = 0.9, 7.7 Hz, 1 H), 7.11 (dd, J = 1.1, 7.5 Hz, 1 H), 7.16 (m, 1 H), 7.20 (m, 1 H), 7.23–7.29 (m, 11 H), 7.31 (m, 1 H), 7.33–7.35 (m, 3 H), 7.45–7.51 (m, 3 H), 7.76 (m, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 25.6 (CH₂, THF), 39.3 (CH₂), 67.9 (CH₂, THF), 86.8 (C_{quat}), 107.5 (C_{quat}), 122.0 (CH), 126.2 (CH), 127.3 (CH), 127.4 (CH), 127.7 (CH), 128.1 (CH), 128.1 (CH), 128.2 (C_{quat}), 128.3 (CH), 129.0 (CH), 129.1 (CH), 129.3 (CH), 132.3 (CH), 132.9 (CH), 133.2 (C_{quat}), 135.0 (C_{quat}), 136.2 (C_{quat}), 144.2 (C_{quat}), 151.4 (C_{quat}), 198.2 (C_{quat}). EI MS (70 eV), m/z (%): 478 (M⁺, 35), 373 (M⁺ – C(O)C₆H₅, 28), 359 (M⁺ – CH₂COC₆H₅, 20), 358 (57), 105

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 ($OCC_6H_5^+$, 100). HRMS calcd. for $C_{35}H_{26}O_2$: 478.1933, found: 478.1926. Anal. calcd. for

 $C_{35}H_{26}O_2 \times C_4H_8O$ (550.7): C 85.06, H 6.22; found: C 85.11, H 6.14.

1-Thiophen-2-yl-2-(1,1,3-triphenyl-1*H*-isochromen-4-yl) ethanone (6b)

¹H NMR (300 MHz, CDCl₃): δ 2.18 (s, 3 H, 0.5 acetone), 4.02 (s, 2 H), 6.60 (d, J = 7.9 Hz, 1 H), 6.83 (dd, J = 3.9, 4.9 Hz, 1 H), 7.13 (m, 1 H), 7.20–7.23 (m, 5 H), 7.26–7.29 (m, 10 H), 7.34–7.36 (m, 2 H), 7.47–7.52 (m, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 30.9 (CH₃, acetone), 40.2 (CH₂), 86.8 (C_{quat}), 107.5 (C_{quat}), 122.1 (CH), 126.4 (CH), 127.3 (CH), 127.5 (CH), 127.8 (CH), 128.1 (CH), 128.2 (CH), 128.2 (CH), 129.0 (CH), 129.1 (CH), 129.4 (CH), 132.0 (CH), 132.2 (C_{quat}), 133.1 (C_{quat}), 133.3 (CH), 134.9 (C_{quat}), 143.1 (C_{quat}), 144.1 (C_{quat}), 151.6 (C_{quat}), 191.1 (C_{quat}). EI MS (70 eV), m/z (%): 484 (M⁺, 49), 373 (M⁺ – OCC₄H₃S,) 359 (M⁺ – CH₂COC₄H₃S, 27), 358 (86), 105 (COC₆H₅⁺, 100). HRMS calcd. for C₃₃H₂₄O₂S: 484.1497, found: 484.1526. Anal. calcd. for C₃₃H₂₄O₂S × 0.5 acetone (519.5): C 80.46, H 5.36; found: C 80.15, H 4.95.

2-(1,1-Diphenyl-3-thiophen-2-yl-1*H*-isochromen-4-yl)-1-thiophen-2-yl ethanone (6c)

¹H NMR (300 MHz, CDCl₃): δ 4.23 (s, 2 H), 6.61 (d, J = 7.4 Hz, 1 H), 6.93 (dd, J = 4.0, 4.8 Hz, 1 H), 7.00 (dd, J = 3.8, 4.9 Hz, 1 H), 7.13 (dt, J = 1.0, 7.4 Hz, 1 H), 7.21–7.32 (m, 13 H), 7.37 (dd, J = 0.8, 5.1 Hz, 1 H), 7.44 (dd, J = 0.7, 3.7 Hz, 1 H), 7.55 (dd, J = 0.7, 4.8 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ 40.2 (CH₂), 87.0 (C_{quat}), 107.7 (C_{quat}), 122.6 (CH), 126.4 (CH), 127.1 (CH), 127.2 (CH), 127.5 (CH), 127.7 (CH), 127.8 (CH), 128.1 (CH), 128.3 (CH), 128.3 (CH), 128.8 (CH), 132.1 (CH), 132.5 (C_{quat}) 133.8 (CH), 137.8 (C_{quat}), 143.2 (C_{quat}), 134.9 (C_{quat}), 145.5 (C_{quat}), 190.5⁵ (C_{quat}). EI MS (70 eV), m/z (%): 490 (M⁺, 48), 379 (M⁺ – OCC4H₃S, 25), 365 (M⁺ – CH₂COC₄H₃S, 27), 364 (97). HRMS calcd. for C₃₁H₂₂O₂S₂: 490.1061, found: 491.1068. Anal. calcd. for C₃₁H₂₂O₂S₂ (490.7): C 75.89, H 4.52, S 13.07; found: C 76.05, H 4.92, S 12.41.

[2-(4-Methoxy-benzoyl)-3,3-diphenyl-indan-1-yl]-phenyl methanone (7a)

¹H NMR (500 MHz, CDCl₃): δ 3.79 (s, 3 H), 5.90 (d, J = 9.4 Hz, 1 H), 5.96 (d, J = 9.4 Hz, 1 H), 6.71 (m, 3 H), 6.75 (m, 2 H), 6.98 (d, J = 7.7 Hz, 1 H), 7.14–7.24 (m, 5 H), 7.29 (d, J = 7.1 Hz, 1 H), 7.34 (m, 2 H), 7.52–7.57 (m, 4 H), 7.64 (tt, J = 1.4, 7.4 Hz, 1 H), 7.69 (d, J = 9.0 Hz, 2 H), 8.17 (m, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ 52.8 (CH), 55.3 (CH₃), 63.2 (CH), 65.3 (C_{quat}), 113.4 (CH), 123.7 (CH), 126.7 (CH), 126.9 (CH), 127.1 (CH), 127.4 (CH), 127.5 (CH), 128.0 (CH), 128.1 (CH), 128.8 (CH), 129.3 (CH), 129.3 (CH), 130.0 (CH), 131.1 (CH), 131.3 (C_{quat}), 133.6 (CH), 137.7 (C_{quat}), 140.2 (C_{quat}), 140.9 (C_{quat}), 146.0 (C_{quat}), 149.3 (C_{quat}), 163.2 (C_{quat}), 198.0 (C_{quat}), 199.7 (C_{quat}). EI MS (70 eV), m/z (%): 508 (M⁺, 76), 373 (M⁺ – COC₆H₄OCH₃), 265 (M⁺ – C₆H₄CH(C₆H₅)₂, 25). HRMS calcd. for C₃₆H₂₈O₃: 508.2038, found: 508.2025. Anal. calcd. for C₃₆H₂₈O (508.6): C 85.01, H 5.55; found: C 85.24, H 5.50.

(4-Chloro-phenyl)-[2-(4-methoxy-benzoyl)-3,3-diphenyl-indan-1-yl] methanone (7b)

¹H NMR (300 MHz, CDCl₃): δ 3.79 (s, 3 H), 5.82 (d, J = 9.7 Hz, 1 H), 5.90 (d, J = 9.7 Hz, 1 H), 6.68–6.74 (m, 5 H), 6.94 (m, 1 H), 7.14–7.22 (m, 5 H), 7.27–7.36 (m, 3 H), 7.49–7.54 (m, 4 H), 7.66 (d, J = 8.8 Hz, 2 H), 8.10 (d, J = 8.6 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ 52.7 (CH), 55.4 (CH₃), 63.6 (CH), 65.4 (C_{quat}), 113.4 (CH), 123.5 (CH), 126.8 (CH), 127.0 (CH), 127.3 (CH), 127.5 (CH), 127.6 (CH), 128.2 (CH), 128.2 (CH), 129.2 (CH), 129.3 (CH), 130.0 (CH), 130.7 (CH), 131.1 (CH), 131.2 (C_{quat}), 136.0 (C_{quat}), 140.0 (C_{quat}), 140.2 (C_{quat}), 140.7 (C_{quat}), 145.9 (C_{quat}), 149.3 (C_{quat}), 163.3 (C_{quat}), 197.9 (C_{quat}), 198.7 (C_{quat}). FAB MS (m/z): 543 (M⁺). EI MS (70 eV), m/z (%): 544 (³⁷Cl-M⁺, 32), 542 (³⁵Cl-M⁺, 78), 409 (³⁷Cl-M⁺ – CHCOC₆H₄OCH₃, 22), 407 (³⁵Cl-M⁺ – OCC₆H₄OCH₃, 63), 394 (³⁷Cl-M⁺ – CH₂COC₆H₄OCH₃, 35), 392 (³⁵Cl-M⁺ – CH₂COC₆H₄OCH₃ 90). HRMS calcd. for C₃₆H₂₇³⁵ClO₃: 542.1649, found: 542.1668. Anal. calcd. for C₃₆H₂₇ClO₃ (543.1): C 79.62, H 5.01, Cl 6.53; found: C 79.24, H 5.10, Cl 6.35. Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **II. X-Ray structure data of 3a, 4b, 6b, and 7a**

Table 4: Crystal data and structure refinement for **3a**.

Identification code	dds10 (3a)
Empirical formula	$C_{34}H_{29}NO_2S$
Formula weight	515.64
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	PĪ
Z	2
Unit cell dimensions	$a = 10.7645(4) \text{ Å}$ $\alpha = 78.687(1) \text{ deg}$
	b = 10.8448(3) Å β = 69.861(1) deg
	$c = 13.3319(5) \text{ Å}$ $\gamma = 68.875(1) \text{ deg}$
Volume	1358.37(8) Å ³
Density (calculated)	1.26 g/cm ³
Absorption coefficient	0.15 mm⁻¹
Crystal shape	polyhedron
Crystal size	.25 x .13 x .10 mm ³
Theta range for data collection	1.6 to 25.7 deg.
Index ranges	-13≤h≤13, -13≤k≤13, -16≤l≤16
Reflections collected	12447
Independent reflections	5133 (R(int) = 0.0416)
Observed reflections	3360 (I >2σ(I))
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	5133 / 0 / 369
Goodness-of-fit on F ²	1.01
Final R indices (I>2o(I))	R1 = 0.045, wR2 = 0.096
Largest diff. peak and hole	0.17 and -0.32 eÅ ⁻³

Table 5: Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for dds10 (**3a**). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	Z	U _{eq}
S1	0.7689(1)	0.4046(1)	0.4238(1)	0.0451(2)
C1	0.8060(2)	0.5511(2)	0.4021(2)	0.0254(4)
N1	0.8274(2)	0.5806(2)	0.4835(1)	0.0360(4)
C2	0.8142(2)	0.4848(2)	0.5672(2)	0.0411(6)
C3	0.7837(2)	0.3828(2)	0.5497(2)	0.0383(5)
C4	0.8106(2)	0.6404(2)	0.3007(2)	0.0250(4)
H4	0.8842(17)	0.6732(16)	0.2868(13)	0.013(4)
C5	0.8287(2)	0.5811(2)	0.1999(2)	0.0246(4)
C6	0.9591(2)	0.4746(2)	0.1491(2)	0.0280(5)
O6	0.9544(2)	0.3806(1)	0.1154(1)	0.0438(4)
C7	0.6874(2)	0.9438(2)	0.1498(2)	0.0241(4)
C11	1.0962(2)	0.4877(2)	0.1403(2)	0.0286(5)
C12	1.1181(2)	0.6095(2)	0.1186(2)	0.0374(5)
C13	1.2472(3)	0.6182(3)	0.1067(2)	0.0523(7)
C14	1.3550(3)	0.5045(3)	0.1194(2)	0.0567(7)
C15	1.3343(2)	0.3828(3)	0.1413(2)	0.0524(7)
C16	1.2064(2)	0.3733(2)	0.1501(2)	0.0393(6)
C21	0.7603(2)	0.6978(2)	0.1291(2)	0.0270(5)
H21	0.7980(19)	0.7017(18)	0.0542(16)	0.032(6)
C22	0.7043(2)	0.8170(2)	0.1895(2)	0.0239(4)

C23 0.6759(2) 0.7629(2) 0.3067(2) 0.0252	2(5) 5) 2(5)
C23 0.6759(2) 0.7629(2) 0.3067(2) 0.0252	2(5) 5) 2(5)
	5) (5)
H23 0.6679(18) 0.8215(18) 0.3522(15) 0.025(2(5)
C24 0.5522(2) 0.7147(2) 0.3361(2) 0.0292	
H24 0.473(2) 0.7455(18) 0.3958(16) 0.032(6)
C25 0.5634(2) 0.6269(2) 0.2743(2) 0.0297	(5)
H25 0.492(2) 0.5909(18) 0.2827(15) 0.029(5)
C26 0.6927(2) 0.5901(2) 0.1834(2) 0.0277	(5)
H26 0.7034(18) 0.5274(18) 0.1333(14) 0.028(5)
C31 0.7225(2) 0.9816(2) 0.0322(2) 0.0274	(5)
C32 0.8544(2) 0.9330(2) -0.0378(2) 0.0452	(6)
C33 0.8804(3) 0.9688(2) -0.1471(2) 0.0601	(8)
C34 0.7759(3) 1.0538(2) -0.1872(2) 0.0561	(7)
C35 0.6441(3) 1.1041(2) -0.1187(2) 0.0474	(6)
C36 0.6180(2) 1.0694(2) -0.0102(2) 0.0352	(5)
C41 0.6329(2) 1.0555(2) 0.2188(2) 0.0253	(4)
C42 0.5166(2) 1.0692(2) 0.3097(2) 0.0324	(5)
C43 0.4715(2) 1.1728(2) 0.3734(2) 0.0397	(6)
C44 0.5416(2) 1.2642(2) 0.3484(2) 0.0404	(6)
C45 0.6555(2) 1.2538(2) 0.2579(2) 0.0387	(6)
C46 0.6994(2) 1.1514(2) 0.1937(2) 0.0317	(5)
C50 0.1582(2) 0.0380(2) 0.4818(2) 0.0408	(6)
O50 0.2050(2) -0.0739(2) 0.4544(2) 0.0756	(6)
C51 0.1291(3) 0.0648(3) 0.5938(2) 0.0710	(8)
C52 0.1245(3) 0.1548(2) 0.4047(2) 0.0538	(7)

Table 6: Hydrogen coordinates and isotropic displacement parameters (\AA^2) for dds10 (**3a**).

Atom	x	у	z	U_{eq}
H2	0.8258	0.4905	0.6335	0.049
H3	0.7722	0.3094	0.5999	0.046
H4	0.8842(17)	0.6732(16)	0.2868(13)	0.013(4)
H12	1.0435	0.6879	0.1119`́	0.045
H13	1.2621	0.7020	0.0897	0.063
H14	1.4433	0.5106	0.1131	0.068
H15	1.4083	0.3050	0.1504	0.063
H16	1.1934	0.2888	0.1628	0.047
H21	0.7980(19)	0.7017(18)	0.0542(16)	0.032(6)
H23	0.6679(18)	0.8215(18)	0.3522(15)	0.025(5)
H24	0.473(2)	0.7455(18)	0.3958(16)	0.032(6)
H25	0.492(2)	0.5909(18)	0.2827(15)	0.029(5)
H26	0.7034(18)	0.5274(18)	0.1333(14)	0.028(5)
H32	0.9281	0.8746	-0.0110	0.054
H33	0.9715	0.9340	-0.1945	0.072
H34	0.7944	1.0781	-0.2620	0.067
H35	0.5711	1.1626	-0.1462	0.057
H36	0.5270	1.1059	0.0367	0.042
H42	0.4677	1.0065	0.3282	0.039
H43	0.3919	1.1810	0.4348	0.048
H44	0.5117	1.3340	0.3931	0.048
H45	0.7036	1.3171	0.2399	0.046
H46	0.7768	1.1462	0.1309	0.038
H51A	0.0289	0.0848	0.6308	0.107
H51B	0.1581	0.1407	0.5939	0.107
H51C	0.1811	-0.0135	0.6308	0.107
H52A	0.1910	0.1362	0.3333	0.081
H52B	0.1307	0.2321	0.4280	0.081
H52C	0.0297	0.1732	0.4019	0.081

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2006 Table 7: Anisotropic displacement parameters (Å²) for dds10 (**3a**). The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} . U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	0.0709(5)	0.0318(3)	0.0459(4)	0.0083(3)	-0.0308(3)	-0.0248(3)
C1	0.0240(11)	0.0230(10)	0.0269(11)	-0.0046(9)	-0.0059(9)	-0.0049(8)
N1	0.0479(12)	0.0344(10)	0.0275(10)	-0.0012(8)	-0.0136(8)	-0.0136(9)
C2	0.0513(15)	0.0425(14)	0.0267(12)	0.0002(10)	-0.0146(11)	-0.0104(11)
C3	0.0366(13)	0.0354(13)	0.0332(13)	0.0086(10)	-0.0092(10)	-0.0072(10)
C4	0.0265(12)	0.0232(11)	0.0250(11)	-0.0033(8)	-0.0055(9)	-0.0090(9)
C5	0.0277(11)	0.0220(10)	0.0235(10)	-0.0032(8)	-0.0062(9)	-0.0077(9)
C6	0.0357(12)	0.0208(11)	0.0241(11)	-0.0016(9)	-0.0059(9)	-0.0079(9)
O6	0.0438(10)	0.0314(9)	0.0560(10)	-0.0197(8)	-0.0072(8)	-0.0108(7)
C7	0.0216(11)	0.0242(11)	0.0246(11)	-0.0020(8)	-0.0052(8)	-0.0065(8)
C11	0.0312(12)	0.0301(12)	0.0204(11)	-0.0054(9)	-0.0042(9)	-0.0067(9)
C12	0.0362(14)	0.0351(13)	0.0388(13)	-0.0042(10)	-0.0074(10)	-0.0120(10)
C13	0.0494(17)	0.0627(18)	0.0485(16)	-0.0089(13)	-0.0023(12)	-0.0316(15)
C14	0.0342(15)	0.090(2)	0.0496(16)	-0.0254(15)	-0.0053(12)	-0.0213(15)
C15	0.0342(15)	0.0673(19)	0.0485(16)	-0.0201(13)	-0.0165(12)	0.0041(13)
C16	0.0439(15)	0.0352(13)	0.0335(13)	-0.0076(10)	-0.0144(11)	-0.0014(11)
C21	0.0340(12)	0.0240(11)	0.0221(12)	-0.0029(9)	-0.0082(9)	-0.0079(9)
C22	0.0224(11)	0.0252(11)	0.0225(10)	-0.0039(8)	-0.0047(8)	-0.0068(8)
C23	0.0317(12)	0.0198(10)	0.0217(11)	-0.0046(9)	-0.0067(9)	-0.0050(9)
C24	0.0276(12)	0.0268(12)	0.0256(12)	0.0027(9)	-0.0057(10)	-0.0045(9)
C25	0.0271(12)	0.0285(12)	0.0342(12)	0.0023(10)	-0.0112(10)	-0.0101(10)
C26	0.0330(12)	0.0238(11)	0.0295(12)	-0.0040(9)	-0.0110(10)	-0.0101(9)
C31	0.0361(13)	0.0218(11)	0.0258(11)	-0.0018(9)	-0.0082(9)	-0.0119(9)
C32	0.0495(15)	0.0387(14)	0.0310(13)	0.0021(10)	-0.0045(11)	-0.0049(11)
C33	0.0703(19)	0.0490(16)	0.0321(14)	0.0009(12)	0.0060(13)	-0.0083(14)
C34	0.101(2)	0.0439(15)	0.0257(13)	0.0065(11)	-0.0195(15)	-0.0307(16)
C35	0.0717(19)	0.0401(14)	0.0476(16)	0.0129(12)	-0.0381(14)	-0.0270(13)
C36	0.0406(13)	0.0331(12)	0.0368(13)	0.0037(10)	-0.0152(10)	-0.0174(10)
C41	0.0299(12)	0.0211(10)	0.0247(11)	-0.0012(8)	-0.0109(9)	-0.0057(9)
C42	0.0343(13)	0.0243(11)	0.0348(12)	-0.0036(9)	-0.0058(10)	-0.0088(9)
C43	0.0396(14)	0.0352(13)	0.0360(13)	-0.0098(10)	-0.0024(10)	-0.0071(11)
C44	0.0548(16)	0.0263(12)	0.0402(14)	-0.0109(10)	-0.0168(12)	-0.0063(11)
C45	0.0517(15)	0.0251(12)	0.0465(15)	-0.0013(10)	-0.0212(12)	-0.0150(10)
C46	0.0370(13)	0.0280(12)	0.0317(12)	0.0014(9)	-0.0118(10)	-0.0125(10)
C50	0.0368(14)	0.0476(15)	0.0391(14)	-0.0039(12)	-0.0078(11)	-0.0177(12)
O50	0.1151(17)	0.0445(12)	0.0579(12)	-0.0025(10)	-0.0281(11)	-0.0138(11)
C51	0.085(2)	0.099(2)	0.0427(16)	-0.0050(16)	-0.0209(15)	-0.0438(19)
C52	0.0643(17)	0.0458(15)	0.0498(16)	-0.0032(12)	-0.0188(13)	-0.0147(13)

Tabelle 8: Bond lengths (Å) and angles (deg) for dds10 (3a).

S1-C3	1.703(2)
S1-C1	1.7208(19)
C1-N1	1.302(2)
C1-C4	1.497(3)
N1-C2	1.374(3)
C2-C3	1.343(3)
C4-C5	1.525(3)
C4-C23	1.565(3)
C5-C6	1.500(3)
C5-C26	1.520(3)
C5-C21	1.540(3)
C6-O6	1.215(2)
C6-C11	1.496(3)

C7-C22	1.343(2)
C7-C41	1.487(3)
C7-C31	1.491(3)
C11-C12	1.382(3)
C11-C16	1.395(3)
C12-C13	1.379(3)
C13-C14 C14-C15	1.385(4)
C15-C16	1.381(3)
C21-C26	1.528(3)
C22-C23	1.523(3)
C23-C24	1.504(3)
C24-C25	1.326(3)
C25-C26	1.480(3)
C31-C32	1.380(3)
C31-C36	1.395(3)
C32-C33	1.389(3)
C34-C35	1.375(4)
C41-C46	1.377(3) 1.393(3)
C41-C42	1.397(3)
C42-C43	1.385(3)
C43-C44	1.377(3)
C44-C45	1.381(3)
C45-C46	1.380(3)
C50-C51	1.482(3)
C3-S1-C1	89.80(10)
N1-C1-C4	121.73(17)
N1-C1-S1	114.02(15)
C4-C1-S1	124.23(14)
C1-N1-C2	110.50(17)
C3-C2-N1	115.9(2)
C2-C3-S1	109.80(16)
C1-C4-C5	117.71(16)
C1-C4-C23	114 31(16)
C5-C4-C23	102.05(15)
C6-C5-C4	122.12(16)
C26-C5-C4	114.42(16)
C6-C5-C21	119.78(16)
C26-C5-C21	59.90(12)
C4-C5-C21	105.69(15)
O6-C6-C11	120.71(18)
O6-C6-C5	121.37(18)
C11-C6-C5	117.92(17)
C22-C7-C41	123 02(17)
C22-C7-C31	121.58(17)
C12-C11-C16	119.2(2)
C12-C11-C6	118.93(18)
C13-C12-C11	120.6(2)
C12-C13-C14	119.8(2)
C15-C14-C13	120.1(2)
C14-C15-C16	120.2(2)
C15-C16-C11	120.0(2)
C22-C21-C26	114.15(17)
C22-C21-C5	106.66(16)
C26-C21-C5	59.41(12)
C7-C22-C21	127.85(17)

	-1
C7-C22-C23	127.67(17)
C21-C22-C23	104.42(16)
C24-C23-C22	107.87(16)
C24-C23-C4	108.95(16)
C22-C23-C4	100.71(15)
C25-C24-C23	115.36(19)
C24-C25-C26	117.14(19)
C25-C26-C5	117.87(17)
C25-C26-C21	117.23(17)
C5-C26-C21	60.69(12)
C32-C31-C36	117.95(19)
C32-C31-C7	123.00(18)
C36-C31-C7	119.05(18)
C31-C32-C33	120.6(2)
C34-C33-C32	120.5(2)
C33-C34-C35	119.8(2)
C36-C35-C34	119.9(2)
C35-C36-C31	121.2(2)
C46-C41-C42	117.51(18)
C46-C41-C7	119.73(17)
C42-C41-C7	122.76(17)
C43-C42-C41	120.87(19)
C44-C43-C42	120.4(2)
C43-C44-C45	119.7(2)
C46-C45-C44	120.0(2)
C45-C46-C41	121.6(2)
O50-C50-C51	121.7(2)
O50-C50-C52	121.4(2)
C51-C50-C52	116.9(2)

 Table 9:
 Crystal data and structure refinement for dds25.

Identification code	dds25 (4b)		
Empirical formula	C ₃₅ H ₂₄ CINO		
Formula weight	510.00		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	P1		
Z	2		
Unit cell dimensions	a = 9.1420(3) Å	α=	71.900(1) deg.
	b = 11.3244(4) Å	β=	89.355(1) deq.
	c = 14.2565(5) Å	$\gamma =$	77.085(1) dea.
Volume	1364.72(8) Å ³	•	
Density (calculated)	1.24 g/cm^3		
Absorption coefficient	0.17 mm^{-1}		
Crystal shape	polyhedron		
Crystal size	0.32 x 0.22 x 0.14 mn	n ³	
Theta range for data collection	1.9 to 27.5 deg.		
Index ranges	-11≤h≤11, -14≤k≤14,	-18≤	l≤18
Reflections collected	14158		
Independent reflections	6191 (R(int) = 0.0405)	
Observed reflections	3612 (I >2σ(I))		
Absorption correction	Semi-empirical from e	quiv	alents
Max. and min. transmission	0.98 and 0.95	•	
Refinement method	Full-matrix least-squa	res c	on F ²
Data/restraints/parameters	6191 / 0 / 343		
Goodness-of-fit on F ²	1.01		
Final R indices (I>2σ(I))	R1 = 0.049, wR2 = 0.	107	
Largest diff. peak and hole	0.18 and -0.45 eÅ ⁻³		

Tabelle 10: Atomic coordinates and equivalent isotropic displacement parameters (Å²) for dds25 (**4b**). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	Z	U _{eq}
CI1	0.6738(1)	0.7682(1)	0.0613(1)	0.0770(2)
C1	0.7005(2)	1.1151(2)	0.3009(1)	0.0354(4)
O1	0.6372(2)	1.0949(1)	0.3783(1)	0.0462(4)
C2	0.7729(2)	1.2264(2)	0.2675(1)	0.0322(4)
C3	0.8994(2)	1.2157(2)	0.2190(1)	0.0363(4)
C4	0.8633(2)	1.2386(2)	0.4619(1)	0.0316(4)
C11	0.7038(2)	1.0291(2)	0.2394(1)	0.0357(4)
C12	0.6861(2)	1.0762(2)	0.1373(2)	0.0496(5)
C13	0.6754(3)	0.9961(2)	0.0825(2)	0.0567(6)
C14	0.6876(2)	0.8685(2)	0.1302(2)	0.0477(5)
C15	0.7066(2)	0.8191(2)	0.2316(2)	0.0470(5)
C16	0.7129(2)	0.8998(2)	0.2858(2)	0.0410(5)
C21	0.7016(2)	1.3380(2)	0.3011(1)	0.0306(4)
C22	0.7394(2)	1.3431(2)	0.3940(1)	0.0313(4)
C23	0.6647(2)	1.4475(2)	0.4222(1)	0.0377(5)
C24	0.5550(2)	1.5442(2)	0.3599(2)	0.0418(5)
C25	0.5178(2)	1.5381(2)	0.2686(2)	0.0419(5)
C26	0.5897(2)	1.4353(2)	0.2396(1)	0.0384(5)
C31	0.8309(2)	1.2090(2)	0.5710(1)	0.0363(5)
C32	0.9096(2)	1.2418(2)	0.6374(2)	0.0506(6)
C33	0.8775(3)	1.2099(3)	0.7372(2)	0.0690(7)
C34	0.7670(3)	1.1452(2)	0.7699(2)	0.0698(8)
C35	0.6870(3)	1.1123(2)	0.7048(2)	0.0606(7)
C36	0.7182(2)	1.1442(2)	0.6057(2)	0.0467(5)
C41	1.0194(2)	1.2632(2)	0.4405(1)	0.0309(4)
C42	1.1403(2)	1.1601(2)	0.4509(1)	0.0391(5)
C43	1.2845(2)	1.1766(2)	0.4342(2)	0.0456(5)
C44	1.3110(2)	1.2975(2)	0.4061(1)	0.0438(5)
C45	1.1925(2)	1.4010(2)	0.3939(2)	0.0476(5)
C46	1.0479(2)	1.3845(2)	0.4111(1)	0.0420(5)
C51	0.9950(2)	1.3076(2)	0.1832(1)	0.0345(4)
C52	0.9401(2)	1.4397(2)	0.1539(2)	0.0441(5)
C53	1.0331(2)	1.5207(2)	0.1147(2)	0.0465(5)
C54	1.1841(2)	1.4716(2)	0.1051(1)	0.0408(5)
C55	1.2412(2)	1.3411(2)	0.1356(2)	0.0473(5)
C56	1.1463(2)	1.2609(2)	0.1/32(2)	0.0442(5)
C57	1.2789(2)	1.55/1(2)	0.0589(2)	0.0508(6)
N57	1.3529(2)	1.6246(2)	0.0212(2)	0.0763(7)

Tabelle 11: Hydrogen coordinates and isotropic displacement parameters (Å 2) for dds25 (**4b**).

Atom	х	у	Z	U_{eq}
H3	0.9322	1.1372	0.2056	0.044
H4	0.8625	1.1592	0.4453	0.038
H12	0.6811	1.1641	0.1045	0.060
H13	0.6599	1.0293	0.0125	0.068
H15	0.7151	0.7305	0.2638	0.056
H16	0.7236	0.8666	0.3559	0.049
H23	0.6896	1.4522	0.4853	0.045
H24	0.5056	1.6146	0.3802	0.050

Suppleme	ntary Materia	al (ESI) for	Chemical Co	mmunications
This journ	al is (c) The	Royal Socie	ety of Chemis	stry 2006
HŽ5	0.4429	1.6045	0.2256	0.050
H26	0.5625	1.4308	0.1768	0.046
H32	0.9862	1.2865	0.6152	0.061
H33	0.9323	1.2330	0.7823	0.083
H34	0.7457	1.1231	0.8377	0.084
H35	0.6104	1.0677	0.7276	0.073
H36	0.6622	1.1216	0.5609	0.056
H42	1.1234	1.0763	0.4700	0.047
H43	1.3656	1.1045	0.4421	0.055
H44	1.4102	1.3091	0.3952	0.053
H45	1.2100	1.4847	0.3736	0.057
H46	0.9672	1.4569	0.4027	0.050
H52	0.8374	1.4742	0.1610	0.053
H53	0.9940	1.6105	0.0942	0.056
H55	1.3447	1.3069	0.1307	0.057
H56	1.1856	1.1712	0.1928	0.053

Tabelle 12: Anisotropic displacement parameters (Å²) for dds25 (**4b**). The anisotropic displacement factor exponent takes the form: -2 pi² (h² a² U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂))

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
CI1	0.1038(6)	0.0590(4)	0.0779(5)	-0.0394(3)	-0.0092(4)	-0.0124(4)
C1	0.0309(10)	0.0313(10)	0.0414(11)	-0.0088(9)	0.0014(9)	-0.0054(8)
01	0.0503(9)	0.0417(8)	0.0496(9)	-0.0143(7)	0.0174(7)	-0.0173(7)
C2	0.0338(11)	0.0292(10)	0.0332(10)	-0.0089(8)	0.0025(8)	-0.0084(8)
C3	0.0412(12)	0.0309(10)	0.0388(11)	-0.0129(9)	0.0064(9)	-0.0098(9)
C4	0.0324(10)	0.0255(9)	0.0361(10)	-0.0093(8)	0.0023(8)	-0.0058(8)
C11	0.0329(11)	0.0313(10)	0.0425(12)	-0.0100(9)	0.0016(8)	-0.0093(8)
C12	0.0680(15)	0.0335(11)	0.0455(13)	-0.0067(10)	-0.0017(11)	-0.0160(10)
C13	0.0815(17)	0.0500(14)	0.0395(12)	-0.0115(11)	-0.0019(11)	-0.0203(12)
C14	0.0510(13)	0.0433(12)	0.0554(14)	-0.0240(11)	0.0015(10)	-0.0125(10)
C15	0.0520(13)	0.0328(11)	0.0559(14)	-0.0121(10)	0.0019(10)	-0.0116(10)
C16	0.0423(12)	0.0362(11)	0.0424(11)	-0.0077(9)	0.0015(9)	-0.0115(9)
C21	0.0277(10)	0.0274(9)	0.0361(10)	-0.0068(8)	0.0055(8)	-0.0095(8)
C22	0.0276(10)	0.0274(9)	0.0373(11)	-0.0074(8)	0.0049(8)	-0.0072(8)
C23	0.0399(11)	0.0317(10)	0.0399(11)	-0.0105(9)	0.0060(9)	-0.0064(9)
C24	0.0416(12)	0.0265(10)	0.0519(13)	-0.0098(9)	0.0117(10)	-0.0007(9)
C25	0.0333(11)	0.0336(11)	0.0465(13)	-0.0005(9)	0.0020(9)	-0.0003(9)
C26	0.0366(11)	0.0368(11)	0.0371(11)	-0.0058(9)	0.0004(9)	-0.0074(9)
C31	0.0334(11)	0.0283(10)	0.0387(11)	-0.0047(8)	0.0041(9)	0.0016(8)
C32	0.0486(13)	0.0594(14)	0.0400(12)	-0.0130(11)	0.0051(10)	-0.0087(11)
C33	0.0713(18)	0.0896(19)	0.0398(14)	-0.0201(13)	0.0020(13)	-0.0060(16)
C34	0.0692(18)	0.0739(18)	0.0423(14)	-0.0003(13)	0.0174(13)	0.0053(15)
C35	0.0524(15)	0.0467(13)	0.0614(16)	0.0037(12)	0.0223(13)	0.0013(11)
C36	0.0427(12)	0.0365(11)	0.0533(13)	-0.0071(10)	0.0109(10)	-0.0044(10)
C41	0.0334(10)	0.0319(10)	0.0267(9)	-0.0084(8)	0.0019(8)	-0.0076(8)
C42	0.0357(11)	0.0322(10)	0.0437(12)	-0.0043(9)	0.0077(9)	-0.0077(9)
C43	0.0335(12)	0.0439(12)	0.0492(12)	-0.0047(10)	0.0082(9)	-0.0032(9)
C44	0.0336(11)	0.0547(13)	0.0425(12)	-0.0103(10)	0.0074(9)	-0.0164(10)
C45	0.0479(13)	0.0402(12)	0.0580(14)	-0.0135(10)	0.0030(11)	-0.0201(10)
C46	0.0373(12)	0.0348(11)	0.0539(13)	-0.0147(10)	0.0022(10)	-0.0075(9)
C51	0.0413(12)	0.0351(10)	0.0308(10)	-0.0127(8)	0.0087(8)	-0.0134(9)
C52	0.0429(12)	0.0388(11)	0.0488(12)	-0.0099(10)	0.0105(10)	-0.0120(10)
C53	0.0549(14)	0.0346(11)	0.0462(12)	-0.0049(9)	0.0049(10)	-0.0142(10)
C54	0.0446(13)	0.0473(12)	0.0306(10)	-0.0056(9)	0.0000(9)	-0.0201(10)
C55	0.0384(12)	0.0489(13)	0.0530(13)	-0.0117(11)	0.0070(10)	-0.0136(10)
C56	0.0435(13)	0.0371(11)	0.0520(13)	-0.0134(10)	0.0101(10)	-0.0107(10)
C57	0.0485(14)	0.0537(14)	0.0414(12)	0.0040(10)	-0.0109(10)	-0.0206(11)

Tabelle 13: Bond lengths (Å) and angles (deg) for dds25 (4b).

CI1-C14	1.742(2)
C1-O1	1.223(2)
C1-C11 C1 C2	1.495(3)
C1-C2 C2-C3	1.499(2)
C2-C21	1 499(2)
C3-C51	1 474(2)
C4-C41	1.524(2)
C4-C31	1.527(2)
C4-C22	1.528(2)
C11-C12	1.382(3)
C11-C16	1.391(3)
C12-C13	1.387(3)
C13-C14 C14 C15	1.372(3)
C14-C15 C15-C16	1.379(3)
C21-C22	1.395(2)
C21-C26	1.395(2)
C22-C23	1.398(2)
C23-C24	1.385(3)
C24-C25	1.375(3)
C25-C26	1.383(3)
C31-C32	1.380(3)
C31-C36	1.395(3)
C32-C33	1.400(3)
C34-C35	1.372(4) 1.374(4)
C35-C36	1.389(3)
C41-C42	1.387(2)
C41-C46	1.389(2)
C42-C43	1.381(3)
C43-C44	1.378(3)
C44-C45	1.374(3)
C45-C46	1.385(3)
C51-C52	1.309(3)
C52-C53	1.333(3)
C53-C54	1.391(3)
C54-C55	1.380(3)
C54-C57	1.446(3)
C55-C56	1.380(3)
C57-N57	1.139(3)
01-C1-C11	119.63(16)
01-01-02	119.97(16)
C3-C2-C1	120.39(10)
C3-C2-C21	125.61(16)
C1-C2-C21	114.86(15)
C2-C3-C51	129.70(17)
C41-C4-C31	113.43(15)
C41-C4-C22	112.54(14)
C31-C4-C22	112.82(14)
C12 - C11 - C16 C12 - C11 - C16	118.80(18)
C16-C11-C1	119.30(17)
C11-C12-C13	120.52(19)
C14-C13-C12	119.4(2)
C13-C14-C15	121.2Š(19)
C13-C14-Cl1	119.31(17)
C15-C14-Cl1	119.42(16)
C14-C15-C16	119.10(19)
010-010-011	120.94(19) 110.57(16)
022-021-020	119.07(10) 121 46(15)
022-021-02	121.40(10)

Supplementary Materi	al (ESI) for Chemical Communications
This journal is (c) The	Roval Society of Chemistry 2006
C26-C21-C2	118 89(16)
C21-C22-C23	118 62(16)
C21-C22-C23	120 44(15)
C23-C22-C4	120.91(16)
C24-C23-C22	121 18(18)
C_{25} C_{24} C_{23}	119 87(17)
C24-C25-C26	119.82(18)
C25-C26-C21	120 92(18)
C32-C31-C36	118 37(19)
C32-C31-C4	122 99(18)
C36-C31-C4	118 63(18)
C31-C32-C33	120.7(2)
C34-C33-C32	120.0(2)
C33-C34-C35	120.2(2)
C34-C35-C36	120.0(2)
C35-C36-C31	120.8(2)
C42-C41-C46	117.69(17)
C42-C41-C4	119.03(16)
C46-C41-C4	123.28(16)
C43-C42-C41	121.49(18)
C44-C43-C42	120.05(19)
C45-C44-C43	119.40(18)
C44-C45-C46	120.55(19)
C45-C46-C41	120.81(18)
C56-C51-C52	117.90(17)
C56-C51-C3	118.55(16)
C52-C51-C3	123.46(17)
C53-C52-C51	120.73(19)
C52-C53-C54	120.24(19)
C55-C54-C53	119.86(18)
C55-C54-C57	120.27(19)
C53-C54-C57	119.81(19)
C54-C55-C56	119.34(19)
C55-C56-C51	121.91(18)
N57-C57-C54	179.1(2)

Table 14: Crystal data and structure refinement for dds21 (4b).

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	dds21 (4b) C ₃₄ H ₂₅ Cl ₃ O ₂ S 603.95 200(2) K 0.71073 Å Triclinic P&^-&B1 2
Unit cell dimensions	$a = 8.9794(3) A$ $\alpha = 87.793(1) deg.$
	b = 11.1/54(4) A β = 74.637(1) deg.
	$c = 14.8724(6) A$ $\gamma = 88.191(1) deg.$
Volume	1437.67(9) A ³
Density (calculated)	1.39 g/cm ³
Absorption coefficient	0.42 mm ⁻¹
Crystal shape	polyhedron
Crystal size	$0.30 \times 0.22 \times 0.08 \text{ mm}^3$
Theta range for data collection	1.4 to 27.5 deg.
Index ranges	-11≤h≤11, -14≤k≤14, -19≤l≤19
Reflections collected	15088
Independent reflections	6549 (R(int) = 0.0349)
Observed reflections	4397 (I >2σ(I))
Absorption correction	Semi-empirical from equivalents

Supplementary Material (ESI) for Chemical Communications				
This journal is (c) The Royal Society of Chemistry 2006				
Max. and min. transmission	0.97 and 0.88			
Refinement method	Full-matrix least-squares on F ²			
Data/restraints/parameters	6549 / 71 / 417			
Goodness-of-fit on F ²	1.01			
Final R indices (I> $2\sigma(I)$)	R1 = 0.043, wR2 = 0.104			
Largest diff. peak and hole	0.33 and -0.44 eÅ ⁻³			

Tabelle 15: Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for dds21 (**4b**). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.)

Atom	х	у	z	U _{eq}
C1	-0.4637(2)	0.9081(2)	0.1968(1)	0.0229(4)
02	-0.4446(1)	0.8643(1)	0.2867(1)	0.0247(3)
C3	-0.3073(2)	0.8056(2)	0.2862(1)	0.0235(4)
C4	-0.2260(2)	0.7462(2)	0.2105(1)	0.0249(4)
C5	-0.0646(2)	0.6964(2)	0.2024(1)	0.0280(4)
O6	-0.1593(2)	0.4972(1)	0.2416(1)	0.0407(4)
C6	-0.0497(2)	0.5639(2)	0.2254(1)	0.0281(4)
C7	0.1044(2)	0.5187(2)	0.2277(1)	0.0281(4)
S1	0.1308(1)	0.3693(1)	0.2492(1)	0.0380(3)
C8	0.2414(9)	0.5766(6)	0.2151(8)	0.0387(16)
C9	0.3660(2)	0.5013(2)	0.2241(2)	0.0449(6)
C10	0.3184(3)	0.3874(2)	0.2427(2)	0.0466(6)
C11	-0.6327(2)	0.9490(2)	0.2171(1)	0.0235(4)
C12	-0.6794(2)	1.0351(2)	0.1593(1)	0.0299(4)
C13	-0.8342(2)	1.0681(2)	0.1746(1)	0.0345(5)
C14	-0.9434(2)	1.0177(2)	0.2485(2)	0.0369(5)
C15	-0.8977(2)	0.9344(2)	0.3079(1)	0.0346(5)
C16	-0.7434(2)	0.8989(2)	0.2913(1)	0.0277(4)
C21	-0.3558(2)	1.0143(2)	0.1627(1)	0.0238(4)
C22	-0.3693(2)	1.1129(2)	0.2194(1)	0.0300(4)
C23	-0.2777(2)	1.2118(2)	0.1900(2)	0.0370(5)
C24	-0.1717(2)	1.2145(2)	0.1029(2)	0.0407(5)
C25	-0.1573(2)	1.1174(2)	0.0466(2)	0.0389(5)
C26	-0.2491(2)	1.0180(2)	0.0762(1)	0.0299(4)
C31	-0.4266(2)	0.8047(2)	0.1299(1)	0.0248(4)
C32	-0.5065(2)	0.7857(2)	0.0640(1)	0.0297(4)
C33	-0.4602(2)	0.6946(2)	0.0007(1)	0.0375(5)
C34	-0.3336(3)	0.6227(2)	0.0036(1)	0.0393(5)
C35	-0.2536(2)	0.6402(2)	0.0698(1)	0.0345(5)
C36	-0.2993(2)	0.7305(2)	0.1350(1)	0.0261(4)
C41	-0.2747(2)	0.8144(2)	0.3781(1)	0.0254(4)
C42	-0.3176(2)	0.9179(2)	0.4290(1)	0.0307(4)
C43	-0.2906(2)	0.9277(2)	0.5156(1)	0.0373(5)
C44	-0.2197(3)	0.8346(2)	0.5533(1)	0.0411(5)
C45	-0.1789(3)	0.7304(2)	0.5049(2)	0.0407(5)
C46	-0.2073(2)	0.7196(2)	0.4184(1)	0.0325(4)
C51	0.7457(3)	0.3490(2)	0.4398(2)	0.0386(8)
CI1	0.5529(2)	0.3472(3)	0.4350(2)	0.0906(7)
CI2	0.8264(2)	0.2043(1)	0.4270(1)	0.0620(4)
CI3	0.7617(2)	0.4072(2)	0.5440(2)	0.0833(6)
C51B	0.633(2)	0.3079(12)	0.4839(9)	0.085(6)
CI1B	0.5832(10)	0.4068(8)	0.4071(5)	0.075(2)
CI2B	0.682(3)	0.3909(9)	0.5682(8)	0.192(7)
CI3B	0.8004(17)	0.2268(13)	0.4277(10)	0.149(5)
S1B	0.2544(14)	0.6037(10)	0.2118(16)	0.040(2)
C8B	0.151(2)	0.4011(16)	0.248(3)	0.073(10)

Atom	х	у	Z	U _{eq}
H5A	-0.0189	0.7416	0.2441	0.034
H5B	-0.0019	0.7122	0.1377	0.034
H8	0.2514	0.6602	0.2014	0.046
H9	0.4682	0.5269	0.2181	0.054
H10	0.3854	0.3230	0.2514	0.056
H12	-0.6047	1.0714	0.1090	0.036
H13	-0.8650	1.1257	0.1340	0.041
H14	-1.0494	1.0400	0.2587	0.044
H15	-0.9721	0.9015	0.3600	0.041
H16	-0.7134	0.8399	0.3311	0.033
H22	-0.4421	1.1122	0.2788	0.036
H23	-0.2874	1.2780	0.2295	0.044
H24	-0.1097	1.2826	0.0824	0.049
H25	-0.0842	1.1183	-0.0127	0.047
H26	-0.2385	0.9519	0.0365	0.036
H32	-0.5936	0.8352	0.0621	0.036
H33	-0.5154	0.6820	-0.0443	0.045
H34	-0.3012	0.5610	-0.0400	0.047
H35	-0.1666	0.5902	0.0710	0.041
H42	-0.3661	0.9827	0.4037	0.037
H43	-0.3210	0.9988	0.5493	0.045
H44	-0.1992	0.8422	0.6123	0.049
H45	-0.1311	0.6658	0.5310	0.049
H46	-0.1807	0.6469	0.3862	0.039
H51	0.8046	0.4009	0.3869	0.046
H51B	0.5462	0.2530	0.5128	0.103
H8B	0.0821	0.3364	0.2637	0.087

Tabelle 16: Hydrogen coordinates and isotropic displacement parameters (\AA^2) for dds21 (**4b**).

Tabelle 17:Anisotropic displacement parameters (Å²) for dds21 (**4b**). The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂))

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0252(9)	0.0255(9)	0.0191(9)	0.0001(7)	-0.0082(7)	0.0027(7)
02	0.0243(6)	0.0295(7)	0.0201(6)	0.0003(5)	-0.0064(5)	0.0050(5)
C3	0.0232(9)	0.0208(9)	0.0261(9)	0.0040(7)	-0.0067(7)	0.0004(7)
C4	0.0277(9)	0.0222(9)	0.0238(9)	0.0014(7)	-0.0059(8)	0.0028(7)
C5	0.0261(9)	0.0242(9)	0.0320(10)	0.0009(8)	-0.0051(8)	0.0023(8)
O6	0.0333(8)	0.0309(8)	0.0569(10)	0.0066(7)	-0.0111(7)	-0.0041(6)
C6	0.0302(10)	0.0262(10)	0.0260(10)	-0.0004(8)	-0.0043(8)	0.0030(8)
C7	0.0316(10)	0.0266(10)	0.0242(9)	-0.0002(8)	-0.0049(8)	0.0047(8)
S1	0.0404(4)	0.0264(4)	0.0423(5)	0.0065(3)	-0.0046(4)	0.0105(3)
C8	0.048(3)	0.027(3)	0.041(2)	-0.004(3)	-0.011(2)	0.006(2)
C9	0.0325(11)	0.0621(16)	0.0412(13)	-0.0059(11)	-0.0118(10)	0.0063(11)
C10	0.0441(13)	0.0541(14)	0.0383(12)	0.0035(11)	-0.0088(10)	0.0246(11)
C11	0.0239(9)	0.0241(9)	0.0237(9)	-0.0053(7)	-0.0083(7)	0.0011(7)
C12	0.0293(10)	0.0314(10)	0.0292(10)	-0.0004(8)	-0.0088(8)	0.0029(8)
C13	0.0351(11)	0.0353(11)	0.0381(11)	-0.0068(9)	-0.0193(9)	0.0107(9)
C14	0.0242(10)	0.0435(12)	0.0461(12)	-0.0157(10)	-0.0137(9)	0.0064(9)
C15	0.0245(10)	0.0412(12)	0.0358(11)	-0.0078(9)	-0.0029(8)	-0.0048(9)
C16	0.0288(10)	0.0280(10)	0.0280(10)	-0.0027(8)	-0.0099(8)	-0.0027(8)
C21	0.0220(9)	0.0254(9)	0.0252(9)	0.0015(7)	-0.0092(7)	0.0034(7)

Supplementary Material (ESI) for Chemical Communications						
This journal is (c) The Royal Society of Chemistry 2006						
CŽ2	0.0290(10)	0.0310(10)	0.0315(10)	-0.0006(8)	-0.0108(8)	0.0026(8)
C23	0.0411(12)	0.0292(11)	0.0458(13)	-0.0012(9)	-0.0201(10)	-0.0015(9)
C24	0.0355(11)	0.0328(11)	0.0560(14)	0.0122(10)	-0.0172(11)	-0.0079(9)
C25	0.0295(11)	0.0426(13)	0.0404(12)	0.0092(10)	-0.0029(9)	-0.0038(9)
C26	0.0277(10)	0.0326(10)	0.0283(10)	0.0020(8)	-0.0060(8)	0.0017(8)
C31	0.0292(10)	0.0242(9)	0.0193(9)	0.0009(7)	-0.0035(7)	-0.0010(7)
C32	0.0327(10)	0.0319(10)	0.0254(10)	-0.0005(8)	-0.0095(8)	0.0002(8)
C33	0.0481(13)	0.0406(12)	0.0276(10)	-0.0066(9)	-0.0159(9)	-0.0015(10)
C34	0.0545(14)	0.0354(11)	0.0265(10)	-0.0107(9)	-0.0072(10)	0.0045(10)
C35	0.0420(12)	0.0314(11)	0.0279(10)	-0.0045(8)	-0.0059(9)	0.0088(9)
C36	0.0283(10)	0.0256(9)	0.0224(9)	0.0008(7)	-0.0035(8)	0.0012(8)
C41	0.0236(9)	0.0302(10)	0.0219(9)	0.0027(7)	-0.0057(7)	-0.0017(8)
C42	0.0324(10)	0.0322(10)	0.0291(10)	-0.0007(8)	-0.0116(8)	0.0033(8)
C43	0.0459(12)	0.0377(12)	0.0302(11)	-0.0047(9)	-0.0130(9)	-0.0004(10)
C44	0.0541(14)	0.0453(13)	0.0291(11)	0.0021(10)	-0.0203(10)	-0.0048(11)
C45	0.0509(13)	0.0405(12)	0.0353(11)	0.0089(10)	-0.0210(10)	0.0019(10)
C46	0.0371(11)	0.0307(10)	0.0300(10)	0.0017(8)	-0.0103(9)	0.0029(9)
C51	0.0406(16)	0.0343(15)	0.0365(15)	0.0063(12)	-0.0029(13)	-0.0073(12)
CI1	0.0411(6)	0.1320(18)	0.0935(12)	-0.0303(12)	-0.0049(7)	-0.0029(8)
CI2	0.0826(8)	0.0407(6)	0.0643(8)	-0.0130(5)	-0.0207(6)	0.0014(6)
CI3	0.1326(13)	0.0527(8)	0.0798(11)	-0.0256(8)	-0.0534(8)	0.0146(7)
C51B	0.142(16)	0.069(11)	0.063(11)	-0.001(7)	-0.059(11)	0.005(11)
CI1B	0.066(4)	0.094(5)	0.067(3)	-0.020(3)	-0.017(3)	0.005(3)
CI2B	0.46(2)	0.084(5)	0.071(5)	0.002(4)	-0.148(10)	-0.009(9)
CI3B	0.150(8)	0.166(10)	0.140(8)	-0.019(6)	-0.062(6)	0.060(6)
S1B	0.035(3)	0.025(4)	0.062(5)	-0.006(3)	-0.013(3)	0.005(2)
C8B	0.071(10)	0.044(10)	0.12(3)	0.022(15)	-0.049(16)	-0.031(8)

Tabelle 18: (Bond lengths (Å) and angles (deg) for dds21 $(\mbox{4b}).$

C1-O2	1.457(2)
C1-C31	1.525(2)
C1-C11	1.525(2)
C1-C21	1.539(3)
O2-C3	1.377(2)
C3-C4	1.353(2)
C3-C41	1.479(2)
C4-C36	1.462(3)
C4-C5	1.512(2)
C5-C6	1.517(3)
O6-C6	1.220(2)
C6-C7	1.466(3)
C7-C8	1.373(7)
C7-C8B	1.414(16)
C7-S1B	1.633(11)
C7-S1	1.709(2)
S1-C10	1.680(3)
C8-C9	1.411(8)
C9-C10	1.350(3)
C9-S1B	1.536(12)
C10-C8B	1.484(17)
C11-C16	1.387(3)
C11-C12	1.394(3)
C12-C13	1.387(3)
C13-C14	1.380(3)
C14-C15	1.385(3)
C15-C16	1.390(3)
C21-C26	1.387(3)
C21-C22	1.396(3)
C22-C23	1.385(3)
C23-C24	1.389(3)

C24-C25	1.378(3)
C25-C26	1.391(3)
C31-C32	1.385(3)
C31-C36	1.407(2)
C32-C33	1.391(3)
C33-C34	1.380(3)
C34-C35	1.387(3)
C35-C36	1.402(3)
C41-C42	1.395(3)
C41-C46	1.396(3)
C42-C43	1.381(3)
C43-C44	1.380(3)
C44-C45	1.381(3)
C45-C46	1.388(3)
C51-Cl3	1.745(3)
C51-Cl2	1.746(3)
C51-CI1	1.752(3)
C51B-CI1B	1.694(12)
C51B-CI2B	1.741(12)
C51B-CI3B	1.756(13)
02-01-031	107.99(13)
02-01-011	104.59(13)
	112.20(14)
02 - 01 - 021	100.40(13)
	112.29(14)
	110.90(14)
C_{4}	121 11(16)
C4-C3-C41	128.88(16)
02-03-041	109 94(14)
C3-C4-C36	117 87(16)
C3-C4-C5	122 21(16)
C36-C4-C5	119.91(15)
C4-C5-C6	116.78(15)
O6-C6-C7	120.93(17)
O6-C6-C5	122.43(17)
C7-C6-C5	116.63(16)
C8-C7-C8B	100.0(9)
C8-C7-C6	131.1(3)
C8B-C7-C6	128.9(7)
C8-C7-S1B	7.5(7)
C8B-C7-S1B	107.4(7)
C6-C7-S1B	123.6(4)
C8-C7-S1	109.8(3)
C8B-C7-S1	10.1(9)
C6-C7-S1	119.07(14)
S1B-C7-S1	117.3(4)
C10-S1-C7	91.78(11)
07-08-09	114.2(5)
C10-C9-C8	109.9(3)
	121.0(3)
C0 C10 C9P	101 7(7)
	101.7(7) 114.20(16)
C8B_C10_S1	12 8(7)
C16-C11-C12	118 73(17)
C16-C11-C1	120 95(16)
C12-C11-C1	120 29(16)
C13-C12-C11	120.55(18)
C14-C13-C12	120.25(18)
C13-C14-C15	119.69(18)
C14-C15-C16	120.14(19)
C11-C16-C15	120.60(18)
C26-C21-C22	118.37(17)

Supplamentary Mater	ial (ESI) for Chamical Communications
This is the second seco	Payal Saciety of Chamistry 2006
This journal is (c) The	ADD FA(16)
	122.34(10)
	119.04(10)
023-022-021	120.78(19)
022-023-024	120.2(2)
025-024-023	119.44(19)
024-025-026	120.4(2)
021-026-025	120.81(19)
032-031-036	120.43(17)
C32-C31-C1	123.30(16)
C36-C31-C1	116.20(15)
C31-C32-C33	120.52(18)
C34-C33-C32	119.70(18)
C33-C34-C35	120.29(18)
C34-C35-C36	120.98(18)
C35-C36-C31	118.05(17)
C35-C36-C4	122.83(16)
C31-C36-C4	119.03(16)
C42-C41-C46	117.99(17)
C42-C41-C3	119.90(16)
C46-C41-C3	122.05(17)
C43-C42-C41	121.06(18)
C44-C43-C42	120.30(19)
C43-C44-C45	119.64(19)
C44-C45-C46	120.28(19)
C45-C46-C41	120.68(18)
Cl3-C51-Cl2	110.07(17)
Cl3-C51-Cl1	111.57(17)
CI2-C51-CI1	109.9(2)
CI1B-C51B-CI2B	107.1(8)
CI1B-C51B-CI3B	109.8(11)
CI2B-C51B-CI3B	106.5(10)
C9-S1B-C7	95.0(6)
C7-C8B-C10	114.2(12)

 Table 18: Crystal data and structure refinement for dds22 (7a).

Identification code Empirical formula Formula weight	dds22 (7a) C ₃₆ H ₂₈ O ₃ 508.58	
Temperature Wavelength	200(2) K 0 71073 Å	
Crystal system	monoclinic	
Space group	P2 ₁ /c	
Z	4	
Unit cell dimensions	a = 8.905(4) Å	α = 90 deg.
	b = 30.80(1) Å	$\beta = 99.91(1) \text{ deg.}$
	c = 10.012(5) Å	$\gamma = 90 \text{ deg.}$
Volume	2705(2) Å ³	
Density (calculated)	1.25 g/cm ³	
Absorption coefficient	0.08 mm⁻¹	
Crystal shape	irregular	2
Crystal size	0.24 x 0.14 x 0.10 m	m°
Theta range for data collection	2.5 to 20.8 deg.	
Index ranges	-8≤h≤8, -30≤k≤30, -9)≤l≤9
Reflections collected	14007	- `
Independent reflections	2777 (R(int) = 0.1048)	8)
Observed reflections	1933 (I >2σ(I))	
Absorption correction	Semi-empirical from	equivalents
Max, and min, transmission	0.99 and 0.98	

Supplementary Material (ESI) for Chemical Communications				
This journal is (c) The Royal Society of Chemistry 2006				
Refinement method	Full-matrix least-squares on F ²			
Data/restraints/parameters	2777 / 0 / 464			
Goodness-of-fit on F ²	0.91			
Final R indices (I> $2\sigma(I)$)	R1 = 0.047, wR2 = 0.108			
Largest diff. peak and hole	0.17 and -0.17 eÅ ⁻³			

Tabelle 19:Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for dds22 (**7a**). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.)

Atom	x	у	Z	U _{eq}
O1	1.1064(3)	0.6007(1)	1.2654(2)	0.0484(6)
02	1.1361(3)	0.6481(1)	0.9595(2)	0.0484(7)
O3	1.1984(3)	0.4903(1)	0.5771(2)	0.0652(8)
C1	1.0570(4)	0.6377(1)	1.2467(3)	0.0363(8)
C2	0.9295(4)	0.6466(1)	1.1280(3)	0.0354(8)
C3	0.9184(4)	0.6127(1)	1.0149(3)	0.0356(8)
C4	1.0540(4)	0.6159(1)	0.9406(3)	0.0381(8)
C5	0.7480(4)	0.6173(1)	0.9350(3)	0.0374(8)
C11	0.7705(4)	0.6445(1)	1.1629(3)	0.0379(8)
C12	0.7219(4)	0.6571(1)	1.2815(4)	0.0456(10)
C13	0.5696(5)	0.6508(1)	1.2917(4)	0.0562(11)
C14	0.4691(5)	0.6332(1)	1.1865(4)	0.0584(11)
C15	0.5177(4)	0.6208(1)	1.0674(4)	0.0515(10)
C16	0.6691(4)	0.6270(1)	1.0565(3)	0.0381(8)
C21	1.1163(4)	0.6733(1)	1.3391(3)	0.0405(9)
C22	1.2175(5)	0.6633(2)	1.4569(4)	0.0647(11)
C23	1.2786(6)	0.6958(2)	1.5454(5)	0.0865(15)
C24	1.2395(6)	0.7385(2)	1.5166(5)	0.0799(14)
C25	1.1394(6)	0.7485(2)	1.4017(5)	0.0821(14)
C26	1.0797(5)	0.7162(1)	1.3137(4)	0.0617(11)
C31	0.7343(4)	0.6569(1)	0.8408(3)	0.0407(9)
C32	0.6356(5)	0.6912(1)	0.8541(4)	0.0529(10)
C33	0.6256(6)	0.7273(1)	0.7699(5)	0.0707(12)
C34	0.7123(6)	0.7295(2)	0.6690(5)	0.0760(15)
C35	0.8102(6)	0.6962(2)	0.6526(4)	0.0639(12)
C36	0.8206(5)	0.6598(1)	0.7361(3)	0.0504(10)
C41	0.6881(4)	0.5750(1)	0.8650(3)	0.0407(9)
C42	0.6459(4)	0.5708(1)	0.7257(4)	0.0466(10)
C43	0.6043(5)	0.5307(1)	0.6674(5)	0.0621(11)
C44	0.5979(5)	0.4949(2)	0.7466(5)	0.0663(13)
C45	0.6339(4)	0.4985(1)	0.8855(5)	0.0580(11)
C46	0.6767(4)	0.5383(1)	0.9431(4)	0.0486(10)
C51	1.0881(4)	0.5808(1)	0.8499(3)	0.0383(8)
C52	1.0287(4)	0.5392(1)	0.8486(3)	0.0417(9)
C53	1.0631(4)	0.5078(1)	0.7606(3)	0.0441(9)
054	1.1596(4)	0.51/8(1)	0.6713(3)	0.0477(10)
055	1.2218(5)	0.5591(1)	0.6720(4)	0.0570(11)
056	1.1887(4)	0.5899(1)	0.7601(3)	0.0479(10)
057	1.1481(8)	0.4462(1)	0.5802(6)	0.0734(14)

Tabelle 20:Hydrogen coordinates and isotropic displacement parameters $({\rm \AA}^2)$ for dds22 (7a).

Atom	x	У	Z	U _{eq}

Supplemen	ntary Material	(ESI) for C	hemical Co	mmunications			
This journa	This journal is (c) The Royal Society of Chemistry 2006						
HŽ	0.947(3)	0.6760(9)	1.092(3)	0.032(8)			
H3	0.922(3)	0.5843(9)	1.058(3)	0.034(8)			
H12	0.793(4)	0.6674(9)	1.358(3)	0.040(9)			
H13	0.544(4)	0.6577(9)	1.376(3)	0.049(10)			
H14	0.365(5)	0.6269(11)	1.197(3)	0.073(12)			
H15	0.444(4)	0.6091(9)	0.984(3)	0.053(10)			
H22	1.249(5)	0.6316(14)	1.467(4)	0.094(14)			
H23	1.340(5)	0.6884(14)	1.628(5)	0.101(16)			
H24	1.274(5)	0.7606(14)	1.581(4)	0.101(15)			
H25	1.118(6)	0.7792(17)	1.379(5)	0.126(19)			
H26	1.000(5)	0.7243(13)	1.231(4)	0.091(14)			
H32	0.575(4)	0.6899(11)	0.930(3)	0.067(12)			
H33	0.557(5)	0.7521(14)	0.791(4)	0.102(15)			
H34	0.710(5)	0.7555(15)	0.620(4)	0.094(15)			
H35	0.875(4)	0.6985(10)	0.580(3)	0.060(11)			
H36	0.895(4)	0.6342(10)	0.723(3)	0.052(10)			
H42	0.651(3)	0.5952(10)	0.669(3)	0.049(10)			
H43	0.573(4)	0.5296(11)	0.569(4)	0.073(12)			
H44	0.572(4)	0.4688(11)	0.712(3)	0.052(10)			
H45	0.625(4)	0.4755(12)	0.946(3)	0.064(12)			
H46	0.701(3)	0.5406(9)	1.039(3)	0.048(10)			
H52	0.959(3)	0.5320(9)	0.911(3)	0.043(9)			
H53	1.021(3)	0.4803(10)	0.765(3)	0.039(9)			
H55	1.286(4)	0.5652(10)	0.610(3)	0.063(11)			
H56	1.240(4)	0.6206(11)	0.767(3)	0.057(10)			
H57A	1.189(5)	0.4329(13)	0.669(4)	0.091(15)			
H57B	1.176(5)	0.4327(13)	0.496(4)	0.097(14)			
H57C	1.044(6)	0.4470(16)	0.559(5)	0.11(2)			

Tabelle 21:Anisotropic displacement parameters (Å²) for dds22 (**7a**). The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂))

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	0.0476(16)	0.0418(15)	0.0543(15)	0.0020(12)	0.0043(11)	0.0019(12)
O2	0.0495(16)	0.0403(14)	0.0604(16)	-0.0046(11)	0.0234(12)	-0.0106(13)
O3	0.091(2)	0.0448(17)	0.0716(17)	-0.0099(13)	0.0489(16)	-0.0004(14)
C1	0.035(2)	0.039(2)	0.037(2)	-0.0014(17)	0.0150(17)	-0.0016(17)
C2	0.034(2)	0.034(2)	0.040(2)	-0.0011(16)	0.0099(17)	-0.0028(16)
C3	0.035(2)	0.032(2)	0.041(2)	-0.0026(17)	0.0102(16)	-0.0037(16)
C4	0.041(2)	0.036(2)	0.039(2)	0.0078(16)	0.0125(17)	0.0021(18)
C5	0.037(2)	0.0369(19)	0.0396(19)	-0.0035(16)	0.0101(16)	-0.0016(16)
C11	0.039(2)	0.0386(19)	0.038(2)	-0.0017(16)	0.0105(18)	0.0023(16)
C12	0.042(3)	0.050(2)	0.045(2)	-0.0086(18)	0.009(2)	0.0000(18)
C13	0.048(3)	0.068(3)	0.057(3)	-0.014(2)	0.023(2)	-0.001(2)
C14	0.042(3)	0.067(3)	0.071(3)	-0.013(2)	0.024(3)	-0.004(2)
C15	0.042(3)	0.055(2)	0.058(3)	-0.011(2)	0.010(2)	-0.0026(19)
C16	0.034(2)	0.039(2)	0.041(2)	-0.0021(16)	0.0088(18)	0.0031(16)
C21	0.040(2)	0.048(2)	0.035(2)	-0.0049(17)	0.0099(17)	0.0003(17)
C22	0.073(3)	0.065(3)	0.052(3)	-0.005(2)	0.000(2)	-0.010(2)
C23	0.098(4)	0.098(5)	0.053(3)	-0.011(3)	-0.016(3)	-0.023(3)
C24	0.089(4)	0.079(4)	0.069(4)	-0.030(3)	0.006(3)	-0.018(3)
C25	0.096(4)	0.062(3)	0.081(4)	-0.026(3)	-0.006(3)	-0.001(3)
C26	0.066(3)	0.050(3)	0.063(3)	-0.016(2)	-0.006(2)	0.000(2)
C31	0.044(2)	0.037(2)	0.038(2)	-0.0046(16)	-0.0025(17)	-0.0062(18)
C32	0.056(3)	0.045(2)	0.052(3)	-0.005(2)	-0.006(2)	-0.003(2)
C33	0.080(3)	0.050(3)	0.072(3)	0.004(3)	-0.015(3)	0.002(2)
C34	0.102(4)	0.047(3)	0.066(3)	0.015(3)	-0.024(3)	-0.016(3)
C35	0.078(3)	0.065(3)	0.042(3)	0.006(2)	-0.005(2)	-0.025(3)

Suppleme	entary Material	(ESI) for	Chemical Co	ommunication	15	
This journ	nal is (c) The R	loyal Socie	ty of Chemi	stry 2006		
C36	0.057(3)	0.051(2)	0.040(2)	0.002(2)	0.002(2)	-0.010(2)
C41	0.036(2)	0.042(2)	0.046(2)	-0.0096(18)	0.0130(17)	-0.0044(16)
C42	0.050(2)	0.045(2)	0.048(3)	-0.007(2)	0.0161(19)	-0.0064(19)
C43	0.070(3)	0.060(3)	0.061(3)	-0.018(3)	0.023(2)	-0.015(2)
C44	0.069(3)	0.049(3)	0.086(4)	-0.031(3)	0.029(3)	-0.022(2)
C45	0.060(3)	0.045(3)	0.073(3)	-0.005(3)	0.026(2)	-0.010(2)
C46	0.052(3)	0.042(3)	0.054(3)	-0.005(2)	0.018(2)	-0.0070(18)
C51	0.041(2)	0.037(2)	0.041(2)	0.0015(16)	0.0165(17)	0.0019(16)
C52	0.046(2)	0.037(2)	0.046(2)	0.0027(18)	0.0202(19)	0.0035(17)
C53	0.050(2)	0.033(2)	0.053(2)	0.0018(19)	0.018(2)	0.0042(18)
C54	0.059(3)	0.042(2)	0.048(2)	-0.0032(18)	0.027(2)	0.0061(19)
C55	0.070(3)	0.048(3)	0.064(3)	-0.004(2)	0.044(2)	-0.006(2)
C56	0.049(2)	0.044(2)	0.056(2)	-0.0026(19)	0.023(2)	-0.0053(19)
C57	0.111(5)	0.046(3)	0.074(4)	-0.010(2)	0.046(3)	-0.002(3)

Tabelle 22: Bond lengths (Å) and angles (deg) for dds22 (7a).

	(
01-C1	1.225(3)	C34-H34	0.94(4)	
O2-C4	1.229(3)	C35-C36	1.392(5)	
O3-C54	1.358(4)	C35-H35	1.00(3)	
O3-C57	1.430(5)	C36-H36	1.05(3)	
C1-C21	1.472(4)	C41-C42	1.386(5)	
C1-C2	1 520(4)	C41-C46	1 389(5)	
C2-C11	1 518(4)	C42-C43	1.391(5)	
C2-C3	1 531(4)	C42-H42	0.94(3)	
C2 H2	1.00(3)	C43 C44	1 365(6)	
	1.60(3)		0.08(4)	
C3-C4 C3 C5	1.527(4)	C43-1143	0.90(4)	
	1.590(5)	C44-C45	1.370(0)	
	0.97(3)		0.89(3)	
C4-C51	1.476(4)	045-046	1.381(5)	
C5-C31	1.532(4)	C45-H45	0.94(3)	
C5-C41	1.531(4)	C46-H46	0.95(3)	
C5-C16	1.534(4)	C51-C52	1.385(4)	
C11-C16	1.382(4)	C51-C56	1.402(4)	
C11-C12	1.387(4)	C52-C53	1.379(4)	
C12-C13	1.391(5)	C52-H52	0.98(3)	
C12-H12	0.96(3)	C53-C54	1.378(4)	
C13-C14	1.371(5)	C53-H53	0.93(3)	
C13-H13	0.94(3)	C54-C55	1.386(5)	
C14-C15	1.391(5)	C55-C56	1.362(5)	
C14-H14	0.97(4)	C55-H55	0.93(3)	
C15-C16	1.384(5)	C56-H56	1.05(3)	
C15-H15	1.03(3)	C57-H57A	0.99(4)	
C21-C26	1.374(5)	C57-H57B	1.01(4)	
C21-C22	1.390(5)	C57-H57C	0.92(5)	
C22-C23	1.385(6)	C54-03-C57	117 4(3)	
C22-H22	1 02(4)	01-01-021	121 1(3)	
C23-C24	1 379(7)	01-01-02	110 1(3)	
C23-U24	0.94(5)	C21_C1_C2	110.8(3)	
C24 C25	1 364(6)	$C_{11} C_{2} C_{1}$	113.0(3) 114.4(3)	
C24-025	0.95(5)	C11 C2 C3	101.4(3)	
C24-1124	1 272(6)	C1 C2 C3	101.4(2)	
	1.373(0)		113.0(3)	
	0.98(5)		109.0(15)	
C26-H26	1.03(4)	C1-C2-H2	107.7(16)	
031-032	1.396(5)	C3-C2-H2	110.0(14)	
C31-C36	1.405(5)	C4-C3-C2	111.1(3)	
C32-C33	1.389(6)	C4-C3-C5	120.9(3)	
C32-H32	1.00(3)	C2-C3-C5	104.1(2)	
C33-C34	1.375(6)	C4-C3-H3	107.6(16)	
C33-H33	1.02(4)	C2-C3-H3	106.9(15)	
C34-C35	1.375(6)	C5-C3-H3	105.3(17)	

Supplementary Mater	rial (ESI) for Chemical Commu	nications	
1 nis journal is (c) 1 n	120 4(2)		102 6(2)
02-04-051 02-04-03	120.4(3)	C42-C41-C5 C46-C41-C5	123.0(3)
C51-C4-C3	121 1(3)	C41-C42-C43	120 8(4)
C31-C5-C41	114.2(3)	C41-C42-H42	119.6(18)
C31-C5-C16	109.6(2)	C43-C42-H42	119.5(18)
C41-C5-C16	110.9(2)	C44-C43-C42	120.6(4)
C31-C5-C3	110.4(3)	C44-C43-H43	122(2)
C41-C5-C3	112.3(2)	C42-C43-H43	117(2)
C16-C5-C3	98.4(2)	C43-C44-C45	119.8(4)
C16-C11-C12	120.7(3)	C43-C44-H44	122(2)
C16-C11-C2	110.5(3)	C45-C44-H44	118(2)
C12-C11-C2	128.8(3)	C44-C45-C46	119.5(4)
	118.4(4)		124(2)
C13-C12-H12	120.9(10)	C40-C45-C45	17(2) 122 0(4)
C14-C13-C12	121 0(4)	C45-C46-H46	119 1(19)
C14-C13-H13	124(2)	C41-C46-H46	118.8(19)
C12-C13-H13	115(2)	C52-C51-C56	117.6(3)
C13-C14-C15	120.6(4)	C52-C51-C4	124.3(3)
C13-C14-H14	120(2)	C56-C51-C4	118.1(3)
C15-C14-H14	119(2)	C53-C52-C51	121.9(3)
C16-C15-C14	118.7(4)	C53-C52-H52	119.0(16)
C16-C15-H15	118.6(17)	C51-C52-H52	119.0(16)
C14-C15-H15	122.5(18)		119.3(3)
	120.0(3)	C52 C53 H53	122.0(17) 118.3(18)
C15-C16-C5	128.3(3)	03-054-053	124 9(3)
C26-C21-C22	117.9(4)	03-C54-C55	115.4(3)
C26-C21-C1	123.5(3)	C53-C54-C55	119.7(3)
C22-C21-C1	118.6(3)	C56-C55-C54	120.8(4)
C23-C22-C21	120.6(5)	C56-C55-H55	121(2)
C23-C22-H22	124(2)	C54-C55-H55	118(2)
C21-C22-H22	115(2)	C55-C56-C51	120.6(3)
C24-C23-C22	119.9(5)	C55-C56-H56	122.2(17)
C24-C23-H23	120(3)	C51-C56-H56	117.2(16)
C22-C23-H23	120(3)	03-057-H57A	110(2)
C25-C24-C25	120(3)	U3-U37-H57B	100(2)
C23-C24-H24	120(3)	03-C57-H57C	106(3)
C24-C25-C26	120.2(5)	H57A-C57-H57C	115(4)
C24-C25-H25	119(3)	H57B-C57-H57C	102(4)
C26-C25-H25	121(3)		
C25-C26-C21	121.7(4)		
C25-C26-H26	119(2)		
C21-C26-H26	119(2)		
C32-C31-C36	117.2(3)		
C36 C31 C5	121.8(3)		
C33-C32-C31	121.0(3)		
C33-C32-H32	120(2)		
C31-C32-H32	118(2)		
C34-C33-C32	120.0(5)		
C34-C33-H33	123(2)		
C32-C33-H33	117(2)		
C35-C34-C33	119.8(5)		
C35-C34-H34	122(3)		
C33-C34-H34	120.6(5)		
034-030-030 034-035-435	120.0(3) 110 2(10)		
C36-C35-H35	120(2)		
C35-C36-C31	120.7(4)		
C35-C36-H36	120.4(16)		
C31-C36-H36	118.8(16)		
C42-C41-C46	117.1(3)		

- ² a) L. Brandsma, *Preparative Acetylenic Chemistry*, Elsevier, Amsterdam, Oxford, New York, Tokyo, **1988**. b) N. Krause, D. Seebach, *Chem. Ber.* **1987**, *120*, 1845.
- ³ Two quaternary carbon resonances overlap.
- ⁴ One quaternary carbon resonance overlaps.
- ⁵ One quaternary carbon resonance overlaps.

¹ Various authors, *Organikum*, 14. edition, VEB Deutscher Verlag der Wissenschaften, Berlin, 1993.