for

## A new consecutive three-component oxazole synthesis by an amidation-couplingcycloisomerization (ACCI) sequence

Eugen Merkul, and Thomas J. J. Müller\*

## SUPPORTING INFORMATION

## **Table of Contents:**

| I. Experimental section        | S2  |
|--------------------------------|-----|
| II. X-Ray structure data of 1b | S10 |

## Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **I. Experimental section**

General Considerations. All reactions involving water-sensitive compounds were carried out in oven-dried Schlenk glassware under an argon atmosphere. The solvents were dried according to standard procedures<sup>1</sup> and were distilled prior to use. Column chromatography: silica gel 60 M (mesh 230-400) Macherey-Nagel. Thin layer chromatography (TLC): silica gel layered aluminium foil (60  $F_{254}$  Merck, Darmstadt). Melting points (uncorrected): Reichert-Jung Thermovar and Büchi Melting Point B-540. Acid chlorides **3**, propargyl amine (**4**), *p*-iodo anisole (**7**), PTSA · H<sub>2</sub>O, PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>, and CuI were purchased from ACROS, Aldrich Chemie GmbH, Fluka AG, Lancaster AG, or Merck KGaA and used without further purification. <sup>1</sup>H and <sup>13</sup>C NMR spectra: Bruker ARX250, Bruker DRX 300 with Aceton-d<sub>6</sub>, CDCl<sub>3</sub> or DMSO-*d*<sub>6</sub> as solvents. The assignments of quaternary C, CH, CH<sub>2</sub> and CH<sub>3</sub> were made on the basis of DEPT spectra. IR: Bruker Vector 22 FT-IR. UV/Vis: Hewlett Packard HP8452 A. MS: Jeol JMS-700 und Finnigan TSQ 700. Elemental analyses were carried out in the microanalytical laboratory of the Department Chemie der Universität Heidelberg.

# General procedure for the three-component synthesis of 1-(hetero)aryl-2-(2-(hetero)aryl-oxazol-5-yl) ethanones 1.

To a solution of 56 mg (1.00 mmol) of propargylamine (4) in 5 mL of dry degassed THF in a flame dried screw-cap vessel under argon were successively added 1.00 mmol of acid chloride **3** and 0.14 mL (1.00 mmol) of triethylamine at 0 °C (external cooling with ice/water) (for experimental details see Table 1). After stirring for 1 h at room temp a colorless to pale yellow precipitate had formed. Then, 14 mg (0.02 mmol) of PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>, 8 mg (0.04 mmol) of CuI, 1.00 mmol of acid chloride **3**, and 0.14 mL (1.00 mmol) of triethylamine were successively added to the reaction mixture and stirring was continued for 1 h at room temp. Then, to the brown reaction mixture 190 mg (1.00 mmol) of *p*-toluenesulfonic acid monohydrate and 1 mL of *tert*-butanol were added and stirring was continued for 1 h at 60 °C. After cooling to room temp 20 mL of saturated brine were added and the reaction mixture was extracted three times with dichloromethane (3 × 20 mL). The combined organic layers were dried with anhydrous sodium sulfate and after evaporation of the solvents the residue was chromatographed on silica gel (ethyl acetate/hexanes) to give the analytically pure 1-(hetero)aryl-2-(2-(hetero)aryl-oxazol-5-yl) ethanones **1**.

#### Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 Table 1. Experimental details of the one-pot three-component synthesis of 1-(hetero)aryl-2-(2-

| Entry | Acid chloride <b>3</b>        | Acid chloride 3'              | 1-(hetero)aryl-2-(2-(hetero)aryl-oxazol- |
|-------|-------------------------------|-------------------------------|------------------------------------------|
|       | (substituent R <sup>1</sup> ) | (substituent R <sup>2</sup> ) | 5-yl) ethanone 1 (yield)                 |
| 1     | 141 mg (1.00 mmol)            | 141 mg (1.00 mmol)            | 185 mg (70 %) of <b>1a</b>               |
|       | of <b>3a</b>                  | of <b>3a</b>                  |                                          |
| 2     | 171 mg (1.00 mmol)            | 158 mg (1.00 mmol)            | 179 mg (58 %) of <b>1b</b>               |
|       | of <b>3b</b>                  | of <b>3c</b>                  |                                          |
| 3     | 177 mg (1.00 mmol)            | 141 mg (1.00 mmol)            | 225 mg (75 %) of <b>1c</b>               |
|       | of <b>3d</b>                  | of <b>3a</b>                  |                                          |
| 4     | 186 mg (1.00 mmol)            | 158 mg (1.00 mmol)            | 220 mg (68 %) of <b>1d</b>               |
|       | of <b>3e</b>                  | of <b>3c</b>                  |                                          |
| 5     | 141 mg (1.00 mmol)            | 150 mg (1.00 mmol)            | 143 mg (53 %) of <b>1e</b>               |
|       | of <b>3a</b>                  | of <b>3f</b>                  |                                          |
| 6     | 141 mg (1.00 mmol)            | 170 mg (1.00 mmol)            | 143 mg (49 %) of <b>1f</b>               |
|       | of <b>3a</b>                  | of <b>3g</b>                  |                                          |
| 7     | 150 mg (1.00 mmol)            | 141 mg (1.00 mmol)            | 190 mg (70 %) of <b>1g</b>               |
|       | of <b>3f</b>                  | of <b>3a</b>                  |                                          |
| 8     | 170 mg (1.00 mmol)            | 158 mg (1.00 mmol)            | 200 mg (66 %) of <b>1h</b>               |
|       | of <b>3g</b>                  | of <b>3c</b>                  |                                          |
| 9     | 145 mg (1.00 mmol)            | 158 mg (1.00 mmol)            | 161 mg (57 %) of <b>1i</b>               |
|       | of <b>3h</b>                  | of <b>3c</b>                  |                                          |

(hetero)aryl-oxazol-5-yl) ethanones 1.

1-Phenyl-2-(2-phenyl-oxazol-5-yl) ethanone (1a)<sup>2</sup>

According to the general procedure 185 mg (70 %) of **1a** were obtained as an amorphous solid, Mp. 84–85 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz): δ4.43 (s, 2 H), 7.14 (s, 1 H), 7.39–7.55 (m, 5 H), 7.57–7.65 (m, 1 H), 7.96–8.06 (m, 4 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz): δ36.0 (CH<sub>2</sub>), 126.2 (CH), 126.9 (CH), 127.5 (C<sub>quat</sub>), 128.5 (CH), 128.7 (CH), 128.8 (CH), 130.2 (CH), 133.7 (CH), 135.9

This journal is (c) The Royal Society of Chemistry 2006 (C<sub>quat</sub>), 145.5 (C<sub>quat</sub>), 161.6 (C<sub>quat</sub>), 193.7 (C<sub>quat</sub>). EI MS (*m*/*z* (%)): 263 (M<sup>+</sup>, 12), 158 (M<sup>+</sup> – C<sub>6</sub>H<sub>5</sub>CO, 16), 105 (C<sub>6</sub>H<sub>5</sub>CO<sup>+</sup>, 100), 77 (C<sub>6</sub>H<sub>5</sub><sup>+</sup>, 30). IR (KBr):  $\tilde{v}$  1685 (s) cm<sup>-1</sup>, 1598 (m), 1580 (w), 1549 (m), 1482 (m), 1448 (m), 1335 (m), 1230 (m), 1208 (w), 1123 (m), 1066 (w), 1001 (m), 980 (m), 778 (m), 754 (m), 713 (s), 691 (s), 646 (w). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ ): 250 nm (18500), 274 (22100), 284 (20000).

#### 2-[2-(4-Methoxyphenyl)-oxazol-5-yl]-1-*p*-tolyl ethanone (1b)



According to the general procedure and after crystallization from dichloromethane/pentane 179 mg (58 %) of **1b** were obtained as light yellow needles, Mp. 88 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  2.42 (s, 3 H), 3.84 (s, 3 H), 4.38 (s, 2 H), 6.94 (d, J = 8.8 Hz, 2 H), 7.06 (s, 1 H), 7.29 (d, J = 7.9 Hz, 2 H), 7.90–7.96 (m, 4 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$  21.7 (CH<sub>3</sub>), 35.9 (CH<sub>2</sub>), 55.4 (CH<sub>3</sub>), 114.1 (CH), 120.4 (C<sub>quat</sub>), 126.5 (CH), 127.9 (CH), 128.6 (CH), 129.5 (CH), 133.5 (C<sub>quat</sub>), 144.6 (C<sub>quat</sub>), 145.1 (C<sub>quat</sub>), 161.2 (C<sub>quat</sub>), 161.6 (C<sub>quat</sub>), 193.5 (C<sub>quat</sub>). EI MS (m/z (%))): 307 (M<sup>+</sup>, 61), 188 (M<sup>+</sup> – C<sub>7</sub>H<sub>7</sub>CO, 63), 162 (15), 160 (21), 134 (26), 120 (16), 119 (C<sub>7</sub>H<sub>7</sub>CO<sup>+</sup>, 100), 113 (12), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>, 45), 65 (C<sub>3</sub>H<sub>5</sub><sup>+</sup>, 12). HRMS calcd. for C<sub>19</sub>H<sub>17</sub>NO<sub>3</sub> 307.1208; Found. 307.1217. IR (KBr):  $\tilde{v}$  1685 (s) cm<sup>-1</sup>, 1614 (s), 1585 (w), 1498 (s), 1443 (w), 1422 (w), 1326 (w), 1304 (m), 1255 (s), 1204 (m), 1173 (m), 1122 (w), 1105 (w), 1027 (m), 1009 (m), 978 (m), 838 (m), 811 (m), 743 (m). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\varepsilon$ ): 262 nm (23900), 280 (27200), 296 (20300). Anal. calcd. for C<sub>19</sub>H<sub>17</sub>NO<sub>3</sub> (307.4): C 74.25, H 5.58, N 4.56. Found: C 74.02, H 5.58, N 4.55.

#### 2-[2-(4-Chlorophenyl)-oxazol-5-yl]-1-phenyl ethanone (1c)



According to the general procedure and crystallization from dichloromethane/pentane 225 mg (75 %) of **1c** were obtained as colorless platelets, Mp. 128–129 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$ 4.44 (d, *J* = 0.7 Hz, 2 H), 7.14 (s, 1 H), 7.40 (d, *J* = 8.7 Hz, 2 H), 7.47–7.55 (m, 2 H), 7.62 (tt, *J* = 2.1, 7.3 Hz, 1 H), 7.93 (d, *J* = 8.7 Hz, 2 H), 8.00–8.06 (m, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$ 35.9 (CH<sub>2</sub>), 126.8 (C<sub>quat</sub>), 127.5 (CH), 127.9 (CH), 128.1 (CH), 128.5 (CH), 128.8 (CH), 130.1 (C<sub>quat</sub>), 133.8 (CH), 135.9 (C<sub>quat</sub>), 145.0 (C<sub>quat</sub>), 157.8 (C<sub>quat</sub>), 193.6 (C<sub>quat</sub>). EI MS (*m/z* (%)): 299

#### Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

 $({}^{37}\text{Cl-M}^+, 7)$ , 297  $({}^{35}\text{Cl-M}^+, 16)$ , 194  $({}^{37}\text{Cl-M}^+ - \acute{C}_6\text{H}_5\text{CO}, 4)$ , 192  $({}^{35}\text{Cl-M}^+ - C_6\text{H}_5\text{CO}, 13)$ , 162 (12), 138 (13), 113 (11), 105 ( $C_6\text{H}_5\text{CO}^+$ , 100), 77 ( $C_6\text{H}_5^+$ , 38). HRMS (EI) *m/z* calcd. for  $C_{17}\text{H}_{12}{}^{37}\text{ClNO}_2$ : 299.0527; Found: 299.0519; HRMS calcd. for  $C_{17}\text{H}_{12}{}^{35}\text{ClNO}_2$ : 297.0557; Found: 297.0539. IR (KBr):  $\tilde{\nu}$  1692 (m) cm<sup>-1</sup>, 1610 (w), 1580 (m), 1483 (m), 1333 (w), 1229 (w), 1208 (w), 1125 (w), 1093 (m), 1012 (w), 982 (w), 938 (w), 755 (w), 735 (w), 708 (s), 690 (w), 651 (w), 569 (w), 510 (w). UV/Vis (CH\_2Cl\_2):  $\lambda_{max}$  ( $\epsilon$ ): 250 nm (15600), 280 (24500), 290 (22300), 304 (11100). Anal. calcd. for  $C_{17}\text{H}_{12}\text{ClNO}_2$  (297.7): C 68.58, H 4.06, N 4.70, Cl 11.91. Found: C 68.21, H 4.02, N 4.68, Cl 12.12.

#### 2-[2-(4-Nitrophenyl)-oxazol-5-yl]-1-p-tolyl ethanone (1d)



According to the general procedure and after crystallization from dichloromethane/pentane 220 mg (68 %) of **1d** were obtained as a yellow solid, Mp. 190 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  2.44 (s, 3 H), 4.46 (s, 2 H), 7.23 (s, 1 H), 7.32 (d, J = 8.3 Hz, 2 H), 7.94 (d, J = 8.3 Hz, 2 H), 8.16 (d, J = 8.8 Hz, 2 H), 8.30 (d, J = 8.8 Hz, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$  21.8 (CH<sub>3</sub>), 35.8 (CH<sub>2</sub>), 124.2 (CH), 126.9 (CH), 127.9 (CH), 128.6 (CH), 129.6 (CH), 132.9 (C<sub>quat</sub>), 133.3 (C<sub>quat</sub>), 145.0 (C<sub>quat</sub>), 147.6 (C<sub>quat</sub>), 148.5 (C<sub>quat</sub>), 159.5 (C<sub>quat</sub>), 192.9 (C<sub>quat</sub>). EI MS (m/z (%)): 322 (M<sup>+</sup>, 3), 162 (13), 119 (C<sub>7</sub>H<sub>7</sub>CO<sup>+</sup>, 100), 113 (12), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>, 45), 65 (C<sub>5</sub>H<sub>5</sub><sup>+</sup>, 13). HRMS calcd. for C<sub>18</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub>: 322.0954. Found: 322.0991. IR (KBr):  $\tilde{v}$  1693 (s) cm<sup>-1</sup>, 1603 (s), 1547 (m), 1518 (s), 1358 (m), 1341 (s), 1236 (w), 1202 (w), 1181 (w), 1124 (w), 1110 (w), 994 (w), 978 (w), 857 (s), 816 (m), 714 (s), 588 (w), 571 (w). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ ): 254 nm (17700), 330 (17700). Anal. calcd. for C<sub>18</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub> (322.3): C 67.08, H 4.38, N 8.69. Found: C 66.69, H 4.35, N 8.66.

#### 2-(2-Phenyl-oxazol-5-yl)-1-thiophen-2-yl ethanone (1e)



According to the general procedure and after crystallization from dichloromethane/pentane 143 mg (53 %) of **1e** were obtained as a yellow solid, Mp. 118 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  4.36 (d, J = 0.8 Hz, 2 H), 7.14 (s, 1 H), 7.17 (dd, J = 4.9 Hz, J = 3.8 Hz, 1 H), 7.40-7.46 (m, 3

This journal is (c) The Royal Society of Chemistry 2006

H), 7.70 (dd, J = 5.1 Hz, J = 1.1 Hz, 1 H), 7.83 (dd, J = 3.8 Hz, J = 1.1 Hz, 1 H), 7.97–8.03 (m, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$  36.7 (CH<sub>2</sub>), 126.2 (CH), 126.9 (CH), 127.4 (C<sub>quat</sub>), 128.4 (CH), 128.7 (CH), 130.2 (CH), 132.9 (CH), 134.8 (CH), 142.9 (C<sub>quat</sub>), 145.1 (C<sub>quat</sub>), 161.7 (C<sub>quat</sub>), 186.4 (C<sub>quat</sub>). EI MS (m/z (%)): 269 (M<sup>+</sup>, 20), 162 (12), 158 (M<sup>+</sup> – C<sub>4</sub>H<sub>3</sub>SCO, 19), 151 (11), 111 (C<sub>4</sub>H<sub>3</sub>SCO<sup>+</sup>, 100), 83 (C<sub>4</sub>H<sub>3</sub>S<sup>+</sup>, 2), 77 (C<sub>6</sub>H<sub>5</sub><sup>+</sup>, 11). HRMS calcd. for C<sub>15</sub>H<sub>11</sub>NO<sub>2</sub>S: 269.0510. Found: 269.0490. IR (KBr):  $\tilde{v}$  3092 (w) cm<sup>-1</sup>, 2901 (w), 1660 (s), 1610 (w), 1550 (w), 1519 (w), 1482 (w), 1448 (w), 1415 (s), 1354 (m), 1240 (s), 1209 (m), 1124 (m), 1060 (m), 992 (m), 865 (m), 733 (m), 712 (s), 703 (m), 695 (m), 652 (w). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ : 266 nm (36500), 274 (38200), 282 (37300).

### 4-Phenyl-1-(2-phenyl-oxazol-5-yl)-but-3-en-2-on (1f)<sup>3</sup>



According to the general procedure 143 mg (49 %) of **1f** were obtained as a yellow solid, Mp. 97 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  4.09 (s, 2 H), 6.84 (d, *J* = 15.8 Hz, 1 H), 7.13 (s, 1 H), 7.35–7.48 (m, 6 H), 7.52–7.58 (m, 2 H), 7.70 (d, *J* = 15.8 Hz, 1 H), 7.98–8.05 (m, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$  38.4 (CH<sub>2</sub>), 124.3 (CH), 126.2 (CH), 126.7 (CH), 127.4 (C<sub>quat</sub>), 128.5 (CH), 128.7 (CH), 129.0 (CH), 130.2 (CH), 130.9 (CH), 134.0 (C<sub>quat</sub>), 144.4 (CH), 145.5 (C<sub>quat</sub>), 161.7 (C<sub>quat</sub>), 193.3 (C<sub>quat</sub>). EI MS (*m*/*z* (%)): 289 (M<sup>+</sup>, 7), 162 (13), 158 (M<sup>+</sup> – C<sub>8</sub>H<sub>7</sub>CO, 15), 131 (C<sub>8</sub>H<sub>7</sub>CO<sup>+</sup>, 100), 130 (17), 104 (26), 103 (C<sub>8</sub>H<sub>7</sub><sup>+</sup>, 52), 89 (13), 77 (C<sub>6</sub>H<sub>5</sub><sup>+</sup>, 42), 63 (10). HRMS calcd. for C<sub>19</sub>H<sub>15</sub>NO<sub>2</sub>: 289.1103. Found: 289.1096. IR (KBr):  $\tilde{v}$  1674 (m) cm<sup>-1</sup>, 1612 (m), 1575 (w), 1547 (w), 1483 (w), 1449 (w), 1336 (w), 1176 (w), 1122 (w), 1073 (w), 989 (w), 978 (w), 781 (w), 749 (w), 714 (m), 690 (m), 578 (w), 457 (w), 419 (w). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ ): 286 nm (5000), 300 (4400). Anal. calcd. for C<sub>19</sub>H<sub>15</sub>NO<sub>2</sub> (289.3): C 78.87, H 5.23, N 4.84. Found: C 78.62, H 5.21, N 4.81.

#### 1-Phenyl-2-(2-thiophen-2-yl)-oxazol-5-yl) ethanone (1g)



According to the general procedure and after crystallization from dichloromethane/pentane 190 mg (70 %) of 1g were obtained as a brown solid, Mp. 108 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 

This journal is (c) The Royal Society of Chemistry 2006

4.42 (s, 2 H), 7.06–7.11 (m, 2 H), 7.39 (d, J = 4.9 Hz, 1 H), 7.51 (t, J = 7.7 Hz, 2 H), 7.59–7.64 (m, 2 H), 8.03 (d, J = 7.7 Hz, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta$  35.9 (CH<sub>2</sub>), 126.8 (CH), 127.5 (CH), 127.9 (CH), 128.1 (CH), 128.5 (CH), 128.8 (CH), 130.1 (C<sub>quat</sub>), 133.8 (CH), 135.9 (C<sub>quat</sub>), 145.0 (C<sub>quat</sub>), 157.8 (C<sub>quat</sub>), 193.6 (C<sub>quat</sub>). EI MS (m/z (%)): 269 (M<sup>+</sup>, 30), 164 (M<sup>+</sup> – C<sub>6</sub>H<sub>5</sub>CO, 30), 105 (C<sub>6</sub>H<sub>5</sub>CO<sup>+</sup>, 100), 77 (C<sub>6</sub>H<sub>5</sub><sup>+</sup>, 30). HRMS calcd. for C<sub>15</sub>H<sub>11</sub>NO<sub>2</sub>S: 269.0510. Found: 269.0502. IR (KBr):  $\tilde{v}$  3107 (w) cm<sup>-1</sup>, 3095 (w), 3057 (w), 2944 (w), 2912 (w), 1693 (s), 1606 (s), 1581 (s), 1574 (s), 1453 (m), 1423 (m), 1332 (s), 1316 (w), 1232 (s), 1210 (s), 1113 (m), 997 (s), 975 (m), 852 (m), 766 (s), 726 (s), 708 (s), 695 (s), 659 (m). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ ): 246 nm (17300), 294 (18700).

## 2-(2-Styryl-oxazol-5-yl)1-p-tolyl ethanone (1h)



According to the general procedure 200 mg (66 %) of **1h** were obtained as a yellow solid, Mp. 101 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$ 2.43 (s, 3 H), 4.37 (d, J = 0.9 Hz, 2 H), 6.91 (d, J = 16.2 Hz, 1 H), 7.07 (s, 1 H), 7.26–7.41 (m, 5 H), 7.44 (d, J = 16.7 Hz, 1 H), 7.48–7.53 (m, 2 H), 7.92 (d, J = 8.3 Hz, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$ 21.7 (CH<sub>3</sub>), 35.9 (CH<sub>2</sub>), 114.0 (CH), 126.9 (CH), 127.1 (CH), 128.6 (CH), 128.8 (CH), 129.1 (CH), 129.5 (CH), 133.4 (C<sub>quat</sub>), 135.6 (CH), 135.6 (C<sub>quat</sub>), 144.7 (C<sub>quat</sub>), 145.4 (C<sub>quat</sub>), 161.4 (C<sub>quat</sub>), 193.3 (C<sub>quat</sub>). EI MS (m/z (%)): 303 (M<sup>+</sup>, 28), 184 (M<sup>+</sup> – C<sub>7</sub>H<sub>7</sub>CO, 18), 130 (11), 120 (16), 119 (C<sub>7</sub>H<sub>7</sub>CO<sup>+</sup>, 100), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>, 37), 65 (C<sub>5</sub>H<sub>5</sub><sup>+</sup>, 10). HRMS calcd. for C<sub>20</sub>H<sub>17</sub>NO<sub>2</sub>: 303.1259. Found: 303.1263. IR (KBr):  $\tilde{v}$  1686 (s) cm<sup>-1</sup>, 1644 (m), 1607 (s), 1589 (m), 1521 (m), 1447 (m), 1372 (m), 1331 (m), 1228 (s), 1204 (m), 1184 (s), 1113 (m), 1009 (m), 966 (s), 814 (m), 756 (s), 713 (m), 690 (s), 634 (m). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ ): 242 nm (12800), 258 (17900), 310 (30600), 318 (29700), 340 (14350). Anal. calcd. for C<sub>20</sub>H<sub>17</sub>NO<sub>2</sub> (303.4): C 79.19, H 5.65, N 4.62. Found: C 78.96, H 5.65, N 4.57.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **2-(2-Cyclohex-1-enyl-oxazol-5-yl)1-***p***-tolyl ethanone (1i)** 



According to the general procedure 161 mg (57 %) of **1i** were obtained as a yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  1.59–1.77 (m, 4 H), 2.16–2.25 (m, 2 H), 2.40–2.49 (m, 5 H), 4.30 (d, J = 0.9 Hz, 2 H), 6.67–6.73 (m, 1 H), 6.96 (t, J = 0.9 Hz, 1 H), 7.28 (d, J = 7.9 Hz, 2 H), 7.90 (d, J = 8.3 Hz, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$  21.7 (CH<sub>3</sub>), 21.8 (CH<sub>2</sub>), 22.1 (CH<sub>2</sub>), 24.5 (CH<sub>2</sub>), 25.4 (CH<sub>2</sub>), 35.9 (CH<sub>2</sub>), 125.9 (CH), 126.0 (C<sub>quat</sub>), 126.2 (C<sub>quat</sub>), 128.6 (CH), 129.5 (CH), 131.0 (CH), 133.5 (C<sub>quat</sub>), 144.6 (C<sub>quat</sub>), 162.9 (C<sub>quat</sub>), 193.6 (C<sub>quat</sub>). EI MS (m/z (%)): 281 (M<sup>+</sup>, 95), 162 (25), 119 (C<sub>7</sub>H<sub>7</sub>CO<sup>+</sup>, 100), 91 (C<sub>7</sub>H<sub>7</sub><sup>+</sup>, 92), 65 (C<sub>5</sub>H<sub>5</sub><sup>+</sup>, 16). HRMS calcd. for C<sub>18</sub>H<sub>19</sub>NO<sub>2</sub>: 281.1416. Found: 281.1424. IR (KBr):  $\tilde{\nu}$  2937 (m) cm<sup>-1</sup>, 2862 (m), 1685 (s), 1607 (s), 1570 (m), 1527 (m), 1506 (m), 1448 (m), 1408 (m), 1331 (m), 1278 (m), 1233 (m), 1204 (m), 1183 (m), 1150 (m), 1119 (m), 1003 (m), 980 (m), 810 (m). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ ): 260 nm (18200), 312 (3900), 330 (2500).

#### 1-(4-Methoxyphenyl)-2-(2-trifluoromethyl-oxazol-5-yl) ethanone (8)



To a solution of 56 mg (1.00 mmol) of propargylamine (4) in 5 mL of dry degassed THF in a flame dried screw-cap vessel under argon were successively added 210 mg (1.00 mmol) of trifluoroacetic anhydride 6 and 0.14 mL (1.00 mmol) of triethylamine at 0 °C (external cooling with ice/water). After stirring for 1 h at room temp 35 mg (0.05 mmol) of PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and 4 mg (0.02 mmol) of CuI were added to the reaction mixture and a stream of carbon monoxide was bubbled through the solution for 5 min. Then, 239 mg (1.00 mmol) of 4-iodoanisole (7) and 0.14 mL (1.00 mmol) of triethylamine were added at room temp. The reaction mixture turned red within a couple of minutes. Stirring at room temp was continued for 26 h. Then, 190 mg (1.00 mmol) of *p*-toluenesulfonic acid monohydrate and 1 mL of *tert*-butanol were added and stirring was continued for 1 h at 60 °C. After cooling to room temp 20 mL of saturated brine were added and the reaction mixture was extracted three times with dichloromethane (3 × 20 mL). The combined organic layers were dried with anhydrous sodium sulfate and after evaporation of the solvents the residue was chromatographed on silica gel (ethyl acetate/hexanes 1:6) to give the analytically pure 132 mg (46 %) **8** as a yellow brown oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  3.90 (s,

This journal is (c) The Royal Society of Chemistry 2006

3 H), 4.40 (s, 2 H), 6.98 (d, J = 8.8 Hz, 2 H), 7.23 (s, 1 H), 7.98 (d, J = 8.8 Hz, 2 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta$  35.2 (CH<sub>2</sub>), 55.6 (CH<sub>3</sub>), 114.2 (CH), 116.5 (q, J = 269.9 Hz, CF<sub>3</sub>), 126.7 (CH), 128.6 (C<sub>quat</sub>), 130.7 (CH), 149.1 (C<sub>quat</sub>), 149.7 (q, J = 42.9 Hz, C<sub>quat</sub>), 164.3 (C<sub>quat</sub>), 190.9 (C<sub>quat</sub>). EI MS (m/z (%)): 285 (M<sup>+</sup>, 2), 150 (M<sup>+</sup> – C<sub>7</sub>H<sub>7</sub>OCO, 4), 135 (C<sub>7</sub>H<sub>7</sub>OCO<sup>+</sup>, 100), 107 (C<sub>7</sub>H<sub>7</sub>O<sup>+</sup>, 14), 92 (21), 77 (22), 64 (11). HRMS calcd. for C<sub>13</sub>H<sub>10</sub>F<sub>3</sub>NO<sub>3</sub>: 285.0613. Found: 285.0600. IR (KBr):  $\tilde{v}$  3139 (m) cm<sup>-1</sup>, 3080 (w), 3057 (w), 3034 (w), 2989 (w), 2915 (w), 2851 (w), 1668 (s), 1604 (s), 1573 (s), 1514 (s), 1428 (s), 1389 (s), 1329 (s), 1288 (s), 1275 (s), 1242 (s), 1201 (s), 1181 (s), 1153 (s), 1136 (s), 1112 (m), 1099 (m), 1027 (s), 993 (s), 979 (s), 837 (s). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>):  $\lambda_{max}$  ( $\epsilon$ ): 280 nm (18000).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **II. X-Ray structure data of 1b** 

| Identification code<br>Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system<br>Space group<br>Z | <b>1b</b><br>C <sub>19</sub> H <sub>17</sub> NO <sub>3</sub><br>307.34<br>200(2) K<br>0.71073 Å<br>orthorhombic<br>P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub><br>4 |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit cell dimensions                                                                                                          | $a = 4.6910(1) \text{ Å}$ $\alpha = 90 \text{ deg.}$                                                                                                                  |
|                                                                                                                               | b = 10.5327(2) Å $\beta$ = 90 deg.                                                                                                                                    |
|                                                                                                                               | c = 31.2403(6) Å $\gamma$ = 90 deg.                                                                                                                                   |
| Volume                                                                                                                        | 1543.55(4) A°                                                                                                                                                         |
| Density (calculated)                                                                                                          | 1.32 g/cm <sup>-</sup>                                                                                                                                                |
| Absorption coefficient                                                                                                        | 0.09 mm                                                                                                                                                               |
| Crystal snape                                                                                                                 |                                                                                                                                                                       |
| Crystal size                                                                                                                  | 0.38 x 0.12 x 0.12 mm <sup>2</sup>                                                                                                                                    |
| I heta range for data collection                                                                                              | 2.0 to 25.0 deg.                                                                                                                                                      |
| Index ranges                                                                                                                  | -5≤h≤5, -12≤k≤12, -37≤l≤37                                                                                                                                            |
| Reflections collected                                                                                                         | 13309                                                                                                                                                                 |
| Independent reflections                                                                                                       | 2738 (R(int) = 0.049)                                                                                                                                                 |
| Observed reflections                                                                                                          | 2324 (I >2o(I))                                                                                                                                                       |
| Absorption correction                                                                                                         | Semi-empirical from equivalents                                                                                                                                       |
| Max. and min. transmission                                                                                                    | 0.99 and 0.97                                                                                                                                                         |
| Refinement method                                                                                                             | Full-matrix least-squares on F                                                                                                                                        |
| Data/restraints/parameters                                                                                                    | 2/38/0/2/6                                                                                                                                                            |
| Goodness-of-fit on F                                                                                                          |                                                                                                                                                                       |
| Final K indices (I>2 $\sigma$ (I))                                                                                            | R1 = 0.035, WR2 = 0.074                                                                                                                                               |
| Absolute structure parameter                                                                                                  | 0.2(12)                                                                                                                                                               |
| Largest diff. peak and hole                                                                                                   | 0.12 and -0.18 eA                                                                                                                                                     |

Table 1: Crystal data and structure refinement for **1b**.

Table 2: Atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$  for **1b**.  $U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| Atom | x          | у         | z         | U <sub>eq</sub> |
|------|------------|-----------|-----------|-----------------|
| O10  | -0.0601(3) | 0.9040(1) | 0.7595(1) | 0.0435(4)       |
| O16  | 0.1698(3)  | 0.6391(1) | 0.8524(1) | 0.0348(3)       |
| O27  | 0.7548(3)  | 0.4048(1) | 1.0187(1) | 0.0498(4)       |
| N14  | 0.4134(4)  | 0.8115(2) | 0.8712(1) | 0.0449(4)       |
| C1   | -0.3776(4) | 0.7700(2) | 0.7225(1) | 0.0291(4)       |
| C2   | -0.4805(4) | 0.6484(2) | 0.7146(1) | 0.0344(4)       |
| C3   | -0.6714(4) | 0.6263(2) | 0.6819(1) | 0.0364(4)       |
| C4   | -0.7712(4) | 0.7242(2) | 0.6561(1) | 0.0333(4)       |
| C5   | -0.6709(4) | 0.8464(2) | 0.6643(1) | 0.0362(4)       |
| C6   | -0.4766(4) | 0.8690(2) | 0.6965(1) | 0.0355(4)       |
| C7   | -0.9797(5) | 0.6987(2) | 0.6208(1) | 0.0431(5)       |
| C10  | -0.1687(4) | 0.7990(2) | 0.7568(1) | 0.0307(4)       |
| C11  | -0.0954(4) | 0.6953(2) | 0.7886(1) | 0.0335(4)       |
| C12  | 0.1068(4)  | 0.7334(2) | 0.8227(1) | 0.0330(4)       |
| C13  | 0.2541(5)  | 0.8364(2) | 0.8347(1) | 0.0421(5)       |
| C15  | 0.3558(4)  | 0.6947(2) | 0.8805(1) | 0.0342(4)       |
| C21  | 0.4621(4)  | 0.6194(2) | 0.9162(1) | 0.0347(4)       |
| C22  | 0.3624(4)  | 0.4966(2) | 0.9243(1) | 0.0395(5)       |

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

| i nis journa | u is (c) i ne k | loyal Societ | y of Chemist | ry 2006   |
|--------------|-----------------|--------------|--------------|-----------|
| C23          | 0.4651(5)       | 0.4281(2)    | 0.9585(1)    | 0.0428(5) |
| C24          | 0.6685(4)       | 0.4798(2)    | 0.9856(1)    | 0.0375(5) |
| C25          | 0.7697(4)       | 0.6020(2)    | 0.9781(1)    | 0.0426(5) |
| C26          | 0.6682(4)       | 0.6699(2)    | 0.9433(1)    | 0.0400(5) |
| C28          | 0.9521(6)       | 0.4570(3)    | 1.0485(1)    | 0.0541(6) |
|              |                 |              |              |           |

Table 3: Hydrogen coordinates and isotropic displacement parameters  $(\mathring{A}^2)$  for **1b**.

| Atom | x         | у          | z         | $U_{eq}$ |
|------|-----------|------------|-----------|----------|
| H2   | -0.416(4) | 0.5773(18) | 0.7315(6) | 0.041(5) |
| H3   | -0.736(4) | 0.5408(17) | 0.6761(5) | 0.035(5) |
| H5   | -0.751(4) | 0.9165(18) | 0.6473(6) | 0.051(5) |
| H6   | -0.403(4) | 0.9552(19) | 0.7023(6) | 0.050(5) |
| H7A  | -0.936(4) | 0.7442(19) | 0.5953(7) | 0.053(6) |
| H7B  | -0.993(5) | 0.606(2)   | 0.6135(6) | 0.060(6) |
| H7C  | -1.173(5) | 0.7279(19) | 0.6287(6) | 0.059(6) |
| H11A | -0.278(4) | 0.6720(16) | 0.8023(5) | 0.037(5) |
| H11B | -0.030(4) | 0.6237(19) | 0.7725(6) | 0.054(6) |
| H13  | 0.261(4)  | 0.9153(18) | 0.8199(5) | 0.040(5) |
| H22  | 0.216(4)  | 0.4606(16) | 0.9040(6) | 0.039(5) |
| H23  | 0.404(5)  | 0.346(2)   | 0.9634(6) | 0.057(6) |
| H25  | 0.911(4)  | 0.6365(17) | 0.9960(6) | 0.039(5) |
| H26  | 0.745(4)  | 0.7546(17) | 0.9376(5) | 0.034(4) |
| H28A | 0.992(5)  | 0.388(2)   | 1.0709(8) | 0.072(7) |
| H28B | 1.142(6)  | 0.485(2)   | 1.0355(7) | 0.079(8) |
| H28C | 0.876(5)  | 0.5301(19) | 1.0614(6) | 0.053(6) |

Table 4: Anisotropic displacement parameters (Å<sup>2</sup>) for **1b**. The anisotropic displacement factor exponent takes the form: -2 pi<sup>2</sup> (h<sup>2</sup> a<sup>\*2</sup> U<sub>11</sub> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sub>12</sub>))

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| O10  | 0.0573(9)       | 0.0267(7)       | 0.0465(8)       | 0.0010(5)       | -0.0069(7)      | -0.0073(6)      |
| O16  | 0.0416(7)       | 0.0286(6)       | 0.0341(6)       | -0.0012(5)      | -0.0041(6)      | -0.0021(6)      |
| O27  | 0.0590(9)       | 0.0482(8)       | 0.0422(7)       | 0.0043(6)       | -0.0121(7)      | 0.0040(7)       |
| N14  | 0.0532(10)      | 0.0342(9)       | 0.0472(10)      | 0.0013(7)       | -0.0129(8)      | -0.0063(8)      |
| C1   | 0.0307(9)       | 0.0255(9)       | 0.0310(9)       | -0.0001(7)      | 0.0063(7)       | 0.0056(7)       |
| C2   | 0.0377(11)      | 0.0283(10)      | 0.0371(10)      | 0.0058(8)       | -0.0009(9)      | 0.0011(8)       |
| C3   | 0.0359(10)      | 0.0331(10)      | 0.0403(11)      | 0.0005(8)       | 0.0005(9)       | -0.0025(9)      |
| C4   | 0.0276(9)       | 0.0403(11)      | 0.0318(10)      | 0.0009(7)       | 0.0055(8)       | 0.0055(8)       |
| C5   | 0.0377(10)      | 0.0343(10)      | 0.0365(10)      | 0.0058(8)       | 0.0023(9)       | 0.0093(9)       |
| C6   | 0.0387(11)      | 0.0281(10)      | 0.0396(11)      | 0.0018(8)       | 0.0053(9)       | 0.0029(8)       |
| C7   | 0.0372(12)      | 0.0531(14)      | 0.0391(12)      | 0.0012(10)      | -0.0012(9)      | 0.0074(10)      |
| C10  | 0.0337(10)      | 0.0271(9)       | 0.0312(9)       | -0.0042(7)      | 0.0053(8)       | 0.0020(8)       |
| C11  | 0.0370(11)      | 0.0285(9)       | 0.0349(10)      | -0.0013(8)      | -0.0016(9)      | 0.0004(8)       |
| C12  | 0.0371(10)      | 0.0273(9)       | 0.0345(10)      | 0.0002(7)       | 0.0014(8)       | 0.0032(8)       |
| C13  | 0.0503(12)      | 0.0297(10)      | 0.0462(11)      | 0.0037(9)       | -0.0101(10)     | -0.0061(9)      |
| C15  | 0.0357(10)      | 0.0333(10)      | 0.0335(10)      | -0.0071(7)      | -0.0026(8)      | 0.0003(8)       |
| C21  | 0.0367(10)      | 0.0342(10)      | 0.0333(10)      | -0.0061(8)      | 0.0005(8)       | 0.0042(8)       |
| C22  | 0.0477(12)      | 0.0361(10)      | 0.0346(10)      | -0.0048(8)      | -0.0049(10)     | -0.0041(9)      |
| C23  | 0.0552(14)      | 0.0333(11)      | 0.0400(11)      | -0.0019(8)      | -0.0029(10)     | -0.0034(10)     |
| C24  | 0.0432(12)      | 0.0383(10)      | 0.0311(10)      | -0.0026(8)      | 0.0012(9)       | 0.0062(9)       |
| C25  | 0.0409(11)      | 0.0469(12)      | 0.0401(11)      | -0.0053(9)      | -0.0082(10)     | -0.0001(10)     |
| C26  | 0.0416(11)      | 0.0350(10)      | 0.0436(11)      | -0.0030(8)      | -0.0031(10)     | -0.0037(9)      |

| O10-C10        | 1.221(2)   | C3-C4-C7      | 120.90(17) |  |
|----------------|------------|---------------|------------|--|
| O16-C15        | 1.369(2)   | C5-C4-C7      | 121.41(16) |  |
| O16-C12        | 1.3896(19) | C6-C5-C4      | 121.16(16) |  |
| 027-024        | 1 362(2)   | C6-C5-H5      | 121 1(12)  |  |
| 027-028        | 1 423(3)   | C4-C5-H5      | 117 6(11)  |  |
| N14-C15        | 1 293(2)   | C5-C6-C1      | 120 91(18) |  |
| N14-C13        | 1 389(2)   | C5-C6-H6      | 121 6(11)  |  |
| $C_{1}C_{2}$   | 1 391(2)   | C1-C6-H6      | 117 5(12)  |  |
| C1-C6          | 1 401(2)   | C4-C7-H7A     | 112 7(13)  |  |
| C1 C10         | 1 / 83(2)  |               | 112.7(13)  |  |
|                | 1.403(2)   |               | 108.2(16)  |  |
| C2-C3          | 0.963(19)  |               | 100.2(10)  |  |
| $C_3 C_4$      | 1 389(2)   |               | 104 5(17)  |  |
| C3 H3          | 0.966(17)  |               | 107.0(17)  |  |
| C4 C5          | 1.304(2)   |               | 120 82(15) |  |
| C4-C3          | 1.094(2)   |               | 120.02(15) |  |
| C4-C7<br>C5 C6 | 1.490(3)   |               | 120.02(13) |  |
|                | 1.370(3)   |               | 114.02(14) |  |
|                | 0.90(2)    |               | 109 1(10)  |  |
|                | 0.99(2)    |               | 100.1(10)  |  |
|                | 0.95(2)    |               | 103.3(10)  |  |
|                | 1.00(2)    |               | 112.7(12)  |  |
|                | 0.99(2)    |               | 107.1(12)  |  |
| C10-C11        | 1.517(2)   | H11A-C11-H11B | 108.1(16)  |  |
| C11-C12        | 1.482(2)   | 013-012-016   | 106.49(15) |  |
| C11-H11A       | 0.989(19)  | C13-C12-C11   | 138.60(17) |  |
| C11-H11B       | 0.96(2)    | 016-C12-C11   | 114.91(14) |  |
| C12-C13        | 1.339(2)   | C12-C13-N14   | 110.74(17) |  |
| C13-H13        | 0.951(18)  | C12-C13-H13   | 126.2(11)  |  |
| C15-C21        | 1.457(2)   | N14-C13-H13   | 123.0(11)  |  |
| C21-C26        | 1.391(2)   | N14-C15-O16   | 113.40(15) |  |
| C21-C22        | 1.399(3)   | N14-C15-C21   | 128.16(17) |  |
| C22-C23        | 1.376(3)   | O16-C15-C21   | 118.44(15) |  |
| C22-H22        | 1.009(19)  | C26-C21-C22   | 118.39(16) |  |
| C23-C24        | 1.387(3)   | C26-C21-C15   | 119.74(17) |  |
| C23-H23        | 0.92(2)    | C22-C21-C15   | 121.87(16) |  |
| C24-C25        | 1.391(3)   | C23-C22-C21   | 120.55(18) |  |
| C25-C26        | 1.386(3)   | C23-C22-H22   | 122.0(10)  |  |
| C25-H25        | 0.94(2)    | C21-C22-H22   | 117.4(10)  |  |
| C26-H26        | 0.979(18)  | C22-C23-C24   | 120.62(19) |  |
| C28-H28A       | 1.03(2)    | C22-C23-H23   | 120.8(14)  |  |
| C28-H28B       | 1.02(3)    | C24-C23-H23   | 118.6(13)  |  |
| C28-H28C       | 0.94(2)    | O27-C24-C23   | 116.06(17) |  |
|                |            | O27-C24-C25   | 124.33(17) |  |
| C15-O16-C12    | 104.87(13) | C23-C24-C25   | 119.61(17) |  |
| C24-O27-C28    | 117.67(16) | C26-C25-C24   | 119.56(18) |  |
| C15-N14-C13    | 104.51(16) | C26-C25-H25   | 120.6(11)  |  |
| C2-C1-C6       | 117.90(16) | C24-C25-H25   | 119.8(11)  |  |
| C2-C1-C10      | 123.13(15) | C25-C26-C21   | 121.25(18) |  |
| C6-C1-C10      | 118.98(15) | C25-C26-H26   | 119.1(10)  |  |
| C3-C2-C1       | 120.75(16) | C21-C26-H26   | 119.7(10)  |  |
| C3-C2-H2       | 118.5(11)  | O27-C28-H28A  | 106.9(13)  |  |
| C1-C2-H2       | 120.7(11)  | O27-C28-H28B  | 114.7(13)  |  |
| C2-C3-C4       | 121.58(17) | H28A-C28-H28B | 108.2(19)  |  |
| C2-C3-H3       | 119.8(10)  | O27-C28-H28C  | 110.4(13)  |  |
| C4-C3-H3       | 118.6(10)  | H28A-C28-H28C | 111.0(18)  |  |
| C3-C4-C5       | 117.69(16) | H28B-C28-H28C | 105.7(19)  |  |

#### Table 5: Bond lengths (Å) and angles (deg) for **1b**.

- <sup>1</sup> Various authors, *Organikum*, 14<sup>th</sup> edition, VEB Deutscher Verlag der Wissenschaften, Berlin, 1993.
- <sup>2</sup> R. L. Dow, J. Org. Chem. **1990**, 55, 386-388.
- <sup>3</sup> P. Wipf, Y. Aoyama, T. E. Benedum, *Org. Lett.* **2004**, *6*, 3593-3595.