

Proline Organocatalysis as a New Tool for the Asymmetric Synthesis of Ulosonic Acid Precursors

Dieter Enders* and Tecla Gasperi

Article Ref: B611265J - Chemical Communications

14c': To a stirred solution of aldol product (*S*,*R*)-**8c** (248 mg, 1 mmol) in dry MeOH (10 mL) Amberlyst®-15 (496 mg) was added. After complete conversion (monitored by TLC, ~ 4 h) the acid ion-exchange resin was removed by filtration and the solvent was evaporated under vacuum. The hemiketal **14c'** was purified by flash chromatography (ethyl acetate/ methanol, 65:5) affording a colourless sticky oil as mixture of α and β furanose rings (185 mg, 89%). $[\alpha]_D^{24}$ +23.4 (*c* 0.97 in MeOH); Found C, 46.3, H 7.4. Calc, for C₈H₁₆O₆: C, 46.1, H, 7.7; IR (CHCl₃) v_{max}/cm⁻¹ 3422, 2938, 2837, 1646, 1454, 1195, 1086, 755; ¹H NMR δ_H (400 MHz, CD₃OD) 1.76 (dd, 1H, CCHH, *J* 5.4 Hz, *J* 13.7 Hz), 2.10 (dd, 1H, CCHH, *J* 7.8 Hz, *J* 13.6 Hz), 2.18 (dd, 1H, CCHH, *J* 8.4 Hz, *J* 13.6 Hz), 2.43 (dd, 1H, CCHH, *J* 8.0 Hz, *J* 13.7 Hz), 3.4-3.7 (m, 11H, CH₂CHOH, CH₂, OH), 3.41 (s, 3H, OCH₃), 3,42 (s, 3H, OCH₃), 3.47 (s, 3H, OCH₃), 3.51(s, 3H, OCH₃), 3.91 (dt, 1H, CH₂CHOH, *J* 3.6 Hz, *J* 5.4 Hz), 4.02 (dt, 1H, CHOH, *J* 5.4 Hz, *J* 8.0 Hz), 4.16 (*pseudo* q, 1H, CHOH, *J* 8.1 Hz), 4.25 (s, 1H, CH(OCH₃)₂), 4.26 (s, 1H, CH(OCH₃)₂); ¹³C NMR δ_C (125 MHz; CD₃OD) 39.1 (CH₂C), 40.3 (CH₂C), 56.6 (2 x CH₃), 58.5 (CH₃), 63.6 (CH₂OH), 63.7 (CH₂OH), 71.4 (CH₂CHOH), 72.7 (CH₂CHOH), 87.7 (CH₂CHO), 88.0 (CH₂CHO), 106.0 (CH(OCH₃)₂), 106.9 (CH(OCH₃)₂), 109.6 (C), 110.2 (C). *m/z* (ESI): 209 (*M*⁺+1, 4), 191 (*M*⁺-17, 24), 176 (*M*⁺-32, 100), 158 (*M*⁺-50, 40) 148 (*M*⁺-60,55).

14c: To a stirred solution of aldol product (*R*,*R*)-**8c** (124 mg, 0.5 mmol) in dry MeOH (5 mL) Amberlyst®-15 (248 mg) was added. After complete conversion (monitored by TLC, ~3.5 h) the acid ion-exchange resin was removed by filtration and the solvent was evaporated under vacuum. The hemiketal **14c** was purified by flash chromatography (ethyl acetate/ methanol, 95:5) affording a colourless sticky oil as a single pyranose form (90 mg, 87%). $[\alpha]_D^{24}$ -10.8 (*c* 1.01 in MeOH); Found C, 46.5, H 8.1. Calc, for C₈H₁₆O₆: C, 46.1, H, 7.7; ¹H NMR δ_H (400 MHz, CD₃OD+D₂O) 1.61 (dd, 1H, CCHH, *J* 11.6 Hz, *J* 13.1 Hz), 1.92 (dd, 1H, CCHH, *J* 5.3 Hz, *J* 13.1 Hz), 3.23-3.52 (m, 5H ,OCH₂, OCH₂CHOH, CCH₂CHOH, COH), 3.45 (s, 3H, OCH₃), 3.48 (s, 3H, OCH₃), 3.62-3.70 (m, 2H, OCH₂CHOH, CCH₂CHOH), 4.25 (s, 1H, CH(OCH₃)₂), ¹³C NMR δ_C (125 MHz; CD₃OD+D₂O) 35.8 (CH₂C), 56.8 (OCH₃), 58.4 (OCH₃), 64.6 (CH₂O), 70.4 (CHOH), 72.5 (CHOH), 102.4 (COH), 105.8 (CH(OCH₃)₂); *m*/*z* (EI): 208 (*M*⁺, 0.1), 191 (*M*⁺-17, 2), 158 (*M*⁺-50, 18), 147 (*M*⁺-61, 100), 96 (*M*⁺-112, 43).