BF₃·OEt₂ and TMSOTf: A Synergistic Combination of Lewis Acids

Eddie L. Myers^a, Craig P. Butts^a and Varinder K. Aggarwal*^a

Supplementary Information

Contents

(a) Analysis of mixtures of TMSOTf and BF₃·OEt₂ in CDCl₃ by NMR spectroscopy

(b) Preparation and discussion of triethylphosphine oxide complexes

(c) Quantification of Lewis acidity-method of Childs

(d) Analysis of mixtures of TMSOTf and BF₃·OEt₂ in CH₃CN by NMR spectroscopy

(a) Analysis of mixtures of TMSOTf and BF₃·OEt₂ in CDCl₃ by NMR spectroscopy

 $\mathsf{BF}_3.\mathsf{OEt}_2$ TMSOTF $\xrightarrow{\mathsf{CDCl}_3}$ $\mathsf{BF}_2\mathsf{OTf}.\mathsf{OEt}_2$ TMSF

To a dry quartz NMR tube with a Young® valve was added dry CDCl₃ (0.8 ml) under a stream of nitrogen. To this was added BF₃·OEt₂ (18 µl, 0.10 mmol) and TMSOTf (15 µl, 0.10 mmol). The NMR tube was sealed and NMR data was acquired on a multinuclear Eclipse ECP-300 instrument. Five species were observed, namely BF₃·OEt₂, TMSOTf, BF₂OTf·OEt₂, TMSF and Me₂SiF₂ in an apparent ratio of 1.18: 0.95: 0.84: 1.00: 0.02 respectively. Data for **BF₃·OEt₂**: ¹H NMR (300 MHz, CDCl₃) $\delta = 1.44$ (6H, t, J = 7.1 Hz, OCH₂CH₃), 4.22 (4H, q, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) $\delta = 13.2$, 69.8; ¹¹B NMR (96 MHz, CDCl₃) $\delta = -0.62$ (bs); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -152.8$ (bs). Data for **TMSOTf**: ¹H NMR (300 MHz, CDCl₃) $\delta = 0.50$ (9H, s, CH₃); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -76.9$ (bs, OTf). Data for **BF₂OTf·OEt₂**: ¹H NMR (300 MHz, CDCl₃) $\delta = 1.52$ (6H, t, J = 7.1 Hz, OCH₂CH₃), 4.44 (4H, q, J = 7.1 Hz, OCH₂CH₃); 13 C NMR (75 MHz, CDCl₃) $\delta = 13.2$, 72.5 (t, ³ $J_{C-F} = 2.5$ Hz); ¹¹B NMR (96 MHz, CDCl₃) $\delta = -1.30$ (bs); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = [-146.4$ (1.6F, bs, ¹¹BF₂) and -146.3 (0.4F, bs, ¹⁰BF₂)], -76.7 (3F, t, ⁵ $J_{F-F} = 2.8$ Hz, OTf). Data for **TMSF**: ¹H NMR (300 MHz, CDCl₃) $\delta = 0.23$ (9H, d, ³ $J_{H-F} = 7.5$ Hz, CH₃); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -157.7$

(1F, decet, ${}^{3}J_{\text{F-H}} = 7.5 \text{ Hz}$, Si*F*). Data for **Me₂SiF₂**: ¹H NMR (300 MHz, CDCl₃) $\delta = 0.35$ (6H, t, ${}^{3}J_{\text{H-F}} = 6.2 \text{ Hz}$, CH₃); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -131.3$ (2F, septet, ${}^{3}J_{\text{F-H}} = 6.2 \text{ Hz}$, Si*F*).

¹¹B NMR spectrum of 1:1 mixture of TMSOTf:BF₃·OEt₂ in CDCl₃

¹⁹F NMR spectrum of 1:1 mixture of TMSOTf:BF₃·OEt₂ in CDCl₃

¹³C NMR spectrum of 1:1 mixture of TMSOTf:BF₃·OEt₂ in CDCl₃

(B) Preparation of triethylphosphine complexes and discussion

To a dry NMR tube was added dry CDCl₃ (0.8 ml) followed by Lewis acid (0.10 mmol) and triethylphosphine oxide (varying amounts). The sample was sealed and analysed by ¹H NMR, ³¹P NMR and/or ¹⁹F spectroscopy. The following data was acquired

(i) OPEt₃ without Lewis acid: ³¹P NMR (121 MHz, hexane) $\delta = 47.2$; ³¹P NMR (121 MHz, CDCl₃) $\delta = 56.0$; ¹H NMR (300 MHz, CDCl₃) $\delta = 1.17$ (9H, dt, ³*J*_{H-P} = 15.8 Hz and ¹*J*_{H-H} = 7.6 Hz, CH₃), 1.71 (6H, dq, ²*J*_{H-P} = 11.8 Hz and ¹*J*_{H-H} = 7.6 Hz, CH₂).

(ii) OPEt₃ (0.25 eq.) with **BF₃·OEt₂**: ³¹P NMR (121 MHz, CDCl₃) δ = 79.0 (q, ³*J*_{P-F} = 5.6 Hz, BF₃·OPEt₃); ¹H NMR (300 MHz, CDCl₃) free diethyl ether and BF₃·OPEt₃ adduct with the following chemical shifts δ = 1.28 (9H, dt, ³*J*_{H-P} = 18.0 Hz and ¹*J*_{H-H} = 7.7 Hz, CH₃), 2.09 (6H, dq, ²*J*_{H-P} = 12.3 Hz and ¹*J*_{H-H} = 7.6 Hz, CH₂).

(iii) OPEt₃ (0.25 eq.) with **TMSOTf** (1.0 eq.): ³¹P NMR (121 MHz, CDCl₃) $\delta = 88.1$ (s, tentatively assigned as HOTf.OPEt₃), 92..8 (s, TMSOTf.OPEt₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 0.41$ (9H, s, *TMS*OTf.OPEt₃), 0.50 (33H, s, TMSOTf), 1.30 (10.8H, m, methyl of HOTf.OPEt₃ and TMSOTf.OPEt₃), 2.21 (1.2H, m, tentatively assigned to methylene of HOTf.OPEt₃), 2.40 (6H, m, methylene of TMSOTf.OPEt₃).

(iv) OPEt₃ (1.65 eq.) with **TMSOTf** (1.0 eq.) and **BF₃·OEt₂** (2.0 eq.): ³¹P NMR (121 MHz, CDCl₃) δ = 79.0 (q, ³*J*_{P-F} = 5.6 Hz, BF₃·OPEt₃), 84.6 (br. s, BF₂OTf·OPEt₃), 84.8 (t, ³*J*_{P-F} = 2.2 Hz, BF₂(OPEt₃)₂); ¹H NMR (300 MHz, CDCl₃) δ = 0.22 (9H, d, ³*J*_{H-F} = 7.5 Hz, TMSF), 1.19-1.35 (22.9H, m, methyl moieties of Et₂O, BF₃·OPEt₃, BF₂OTf·OPEt₃ and BF₂(OPEt₃)₂), 2.10-2.21 (9.9H, m, methylene moieties of BF₃·OPEt₃, BF₂OTf·OPEt₃ and BF₂(OPEt₃)₂), 3.70 (12H, br. s, OCH₂).

(v) OPEt₃ (1.5 eq.) with **TMSOTf** (1.0 eq.) and **BF₃·OEt₂** (1.1 eq.): ¹⁹F NMR (282 MHz, CDCl₃) δ = -157.6 (decet, ³*J*_{F-H} = 7.5 Hz, TMSF), [δ = -145.9 (br. s, ¹¹BF₃·OPEt₃) and -145.8 (br. s, ¹⁰BF₃·OPEt₃)], [δ = -139.5 (br. s, ¹¹B*F*₂OTf·OPEt₃) and -139.4 (br. s, ¹⁰B*F*₂OTf·OPEt₃)], -137.9 (1:1:1:1 q, ¹*J*_{F-B} = 13.0 Hz, ¹¹BF₂(OPEt₃)₂), -78.5-77.0 (m, OTf).

(vi) OPEt₃ (4.7 eq.) with **TMSOTf** (1.0 eq.) and **BF₃·OEt₂** (2.0 eq.): ³¹P NMR (121 MHz, CDCl₃) δ = 79.0 (q, ³*J*_{P-F} = 5.6 Hz, BF₃·OPEt₃), 84.8 (t, ³*J*_{P-F} = 2.2 Hz, BF₂·(OPEt₃)₂); ¹H NMR (300 MHz, CDCl₃) δ = 0.22 (9H, d, ³*J*_{H-F} = 7.5 Hz, TMSF), 1.07-1.30 (76H, m, methyl moieties of Et₂O, BF₃·OPEt₃ and BF₂(OPEt₃)₂), 1.72 (11H, methylene of free OPEt₃), 2.10-2.21 (26H, m, methylene moieties of BF₃·OPEt₃ and BF₂(OPEt₃)₂), 3.70 (9H, q, OCH₂).

In the ³¹P spectrum of (vi) the signal for "free ligand" is extremely broad. Since the resonances of the complexed species are still relatively sharp, there remains at least two possibilities for such a phenomenon: (i) trace amounts of protic acid are present and the broad signal represents an average of two species (free and protonated ligand). (ii) in the existing BF_3 and BF_2 complexes there exists a rapidly exchanging second coordination sphere of ligand (see figure below)

Possible second coordination sphere of ligand

In the 1970s Gutmann introduced a quantitative parameter for describing the electrophilic character of solvents.¹ They found that the ³¹P chemical shift of triethylphosphine oxide was very sensitive to solvent; donation of electron density from oxygen to the electrophilic solvent, decreased the electron density on phosphorous causing a downfield shift. The δ values were normalised relative to that of the Et₃PO-SbCl₅ adduct dissolved in 1,2-dichloroethane, which was given the arbitrary number of 100; the chemical shift for Et₃PO in hexane was given the value 0. These values are termed "acceptor numbers" or ANs. This method has been extended by Beckett and co-workers to include Lewis acids.² The phosphine oxide complexes described herein, in addition to providing further evidence for BF₂OTf·OEt₂ also provides us with a relative order of Lewis acidity. The downfield shift of the ³¹P resonance upon complexation suggests the following order of decreasing Lewis acidity: TMS^+ (92.8 ppm) > H⁺ (88.1 ppm) > BF₂OTf (84.6 ppm)> BF₃ (79.0 ppm). As a caveat, although Beckett and coworkers have shown that there is a linear correlation between the Gutmann and Childs methods, others have shown that this trend doesn't strictly apply to all Lewis acids.^{3, 4} Britozsek and co-workers suggest that the non-linear behavior can be rationalised in terms of the hard soft acid base classification; for example taking a hard Lewis acid such as BF₃, its interaction with a carbonyl group (having a π orbital covalent which is largely

covalent in character) will be weaker than its interaction with phosphine oxide, whose double bond has more ionic character.³ As we have shown in this communication, the concentration of the Lewis acid-Lewis base complex can be just as important as the reactivity of the Lewis acid-Lewis base complex.

(C) Quantification of Lewis acidity: Method of Childs⁵

To a dry NMR tube was added dry $CDCl_3$ (0.8 ml) followed by Lewis acid (0.10 mmol) and crotonaldehyde (0.03 mmol). The sample was sealed and analysed by ¹H NMR spectroscopy. In most cases data was acquired at low temperatures (as low as -55 °C) in order to reduce the rate of ligand exchange. The following data was acquired:

(a) *trans*-crotonaldehyde without Lewis acid: ¹H NMR (CDCl₃, r.t.) $\delta = 2.03$ (3H, dd, J = 6.8, 1.7 Hz, H4), 6.15 (1H, ddq, J = 15.5, 8.0, 1.7 Hz, H2), 6.88 (1H, dq, J = 15.5, 6.8 Hz, H3), 9.50 (1H, d, J = 8.0 Hz, H1).

(b) *trans*-crotonaldehyde with **BF₃·OEt₂**: ¹H NMR (CDCl₃, -55 °C.) the spectrum showed free crotonaldehyde which was ~0.05 ppm downfield of those chemical shifts given in (a), free diethyl ether, BF₃·OEt₂ and a new species which is assigned as the BF₃ crotonaldehyde complex with the following chemical shifts $\delta = 2.45$ (3H, br. d, J = 7.0 Hz, H4), 6.77 (1H, br. dd, J = 15.2, 9.5 Hz, H2), 8.05 (1H, br. dq, J = 15.2, 7.0 Hz, H3), 9.15 (1H, br. d, J = 9.3 Hz, H1).

(c) *trans*-crotonaldehyde with **TMSOTf**: ¹H NMR (CD₂Cl₂, r.t.) the spectrum showed one set of signals for the TMS moiety ($\delta = 0.50$, s) and one for crotonaldehyde with the following chemical shifts $\delta = 2.13$ (3H, dd, J = 6.9, 1.5 Hz, H4), 6.31 (1H, ddq, J = 15.6,

8.3, 1.5 Hz, H2), 7.17 (1H, dq, J = 15.6, 6.9 Hz, H3), 9.42 (1H, br. d, J = 8.3 Hz, H1).The NMR sample was then cooled from room temperature to -90 °C in increments of 20 °C (See figure below). As the temperature was lowered, the H3 resonance broadened slightly and was observed to shift further downfield; at -90 °C [$\Delta\delta$ (H3)] was measured to be 0.70 ppm. Although chemical shift of free crotonaldehyde is inherently dependent upon temperature [$\Delta\delta$ (H3) is ~0.1 ppm between room temperature and -55 °C], the large downfield shift observed here indicates an increase in the concentration of complexed species 1 and/or 2 due to the decreasing T Δ S term. The large temperature effect on K_{eq} suggests that Δ S is of significant magnitude which suggests that the entropically more demanding hypervalent species 1 rather than 2 predominates. Unfortunately, even at -90 °C the H3 resonance remained averaged and thus we are unable to compare the reactivity of complex 1 or 2 to that of the BF₃ or BF₂OTf complex.

VT-NMR of a solution of TMSOTf and crotonaldehyde

(d) *trans*-crotonaldehyde with **TMSOTf** and **BF**₃•**OEt**₂: ¹H NMR (CDCl₃, -55 °C) the spectrum showed a set of crotonaldehyde signals which are assigned as the BF₃- crotonaldehyde complex as given in (b); signals for TMSF, BF₃·OEt₂, BF₂OTf·OEt₂, the TMS moiety (TMSOTf and other species) and broad signals for free etherate and crotonaldehyde were also apparent; a further set of relatively sharp crotonaldehyde signals are assigned as the BF₂OTf-crotonaldehyde complex with the following chemical shifts $\delta = 2.13$ (3H, br. d, J = 7.0 Hz, H4), 6.89 (1H, br. dd, J = 14.9, 9.3 Hz, H2), 8.34 (1H, br. dq, J = 14.9, 7.0 Hz, H3), 9.14 (1H, br. d, J = 9.3 Hz, H1).

(D) Analysis of mixtures of TMSOTf and BF₃·OEt₂ in CH₃CN by NMR spectroscopy

To a dry quartz NMR tube with a Young® valve was added dry CH₃CN (0.8 ml) under a stream of nitrogen. To this was added BF₃·OEt₂ (18 µl, 0.10 mmol) and TMSOTf (15 µl, 0.10 mmol). The NMR tube was sealed and NMR data was acquired on a multinuclear ECP-300 instrument. For ¹H the spectrum, the solvent signal was pre-saturated; the signals are broad due to the lack of a deuterium lock. ¹H NMR (300 MHz, CDCl₃) δ = 0.23 (21.0H, br. d, ³*J*_{H-F} = 7.4 Hz, TMSF), 0.50 (14.1H, br. s, averaged signal of TMSOTf, TMS.CH₃CN and TMS.OEt₂), 1.31 (16.2H, br. t, *J* = 7.1 Hz, methyl of Et₂O, BF₃·OEt₂ and perhaps TMS.O*E*t₂). 1.45 (6H, br. q, *J* = 7.1 Hz, methyl of BF₂OTf·OEt₂), 3.93 (10.8H, br. q, *J* = 7.1 Hz, methylene of BF₂OTf·OEt₂); ¹⁹F NMR (282 MHz, CDCl₃) δ = -156.7 (~3F, decet, ³*J*_{F-H} = 7.4 Hz, TMSF), -149.3 (~6.0F, br. s, BF₃·OEt₂ and BF₃·CH₃CN), [δ = -146.1 (~2.4F, bs, ¹¹B*F*₂OTf·OEt₂) and -146.0 (~0.6F, bs, ¹⁰B*F*₂OTf·OEt₂)], [-140.2 (~0.8F, bs, ¹¹B*F*₁Ln.4) and -140.1 (~0.2, bs, ¹⁰B*F*_nLn.4)], [-139.7 (~0.8F, bs, ¹¹B*F*_nLn.4) and -139.6 (~0.2F, bs, ¹⁰B*F*_nLn.4)], -77.8—77.6 (~9.0F, m, OTf), -77.5 (~4.5F, t, ⁵*J*_{F-F} = 2.9 Hz, BF₂OTf·OEt₂), -77.4 (~1.0F, br. s, OTf); ¹¹B NMR

(96 MHz, CDCl₃) δ = -3.59 (1B, br. s), -1.56 (1B, bs), [-0.86 (br. s) and -0.70 (br. s), ~10B].

¹H NMR spectrum of 1:1 mixture of TMSOTf:BF₃·OEt₂ in CH₃CN

¹⁹F NMR spectrum of 1:1 mixture of TMSOTf:BF₃·OEt₂ in CH₃CN

¹¹B NMR spectrum of 1:1 mixture of TMSOTf:BF₃·OEt₂ in CH₃CN

References

- 1 V. Gutmann, Coord. Chem. Rev., 1976, 18, 225
- 2 M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, *Inorg. Chem. Commun.*, 2000, **3**, 530
- G. J. P. Britovsek, J. Ugolotti and A. J. P. White, Organometallics 2005, 24, 1685
- 4 W. A. G. Graham and F. G. A. Stone, J. Inorg. Nucl. Chem., 1956, 3, 164
- 5 R. F. Childs, D. L. Mulholland and A. Nixon, *Can. J. Chem.*, 1982, **60**, 801.

^a School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.. Fax: +44 (0)117 929 8611; Tel: +44 (0)117 954 6315; E-mail: v.aggarwal@bristol.ac.uk