Supporting Information

Carborane functionalized pyrroles and porphyrins via the Suzuki cross-coupling reaction

Erhong Hao, Frank R. Fronczek, M. Graça H. Vicente*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA. Fax: 225-578-3458; Tel: 225-578-7405; E-mail: vicente@lsu.edu

Instrumentation and Materials

All reactions were monitored by TLC using 0.25 mm silica gel plates with or without UV indicator (60F-254). Silica gel Sorbent Technologies 32-63 μ m was used for flash column chromatography. ¹H- and ¹³C-NMR were obtained on either a DPX-250 or an ARX-300 Bruker spectrometer. Chemical shifts (δ) are given in ppm relative to CDCl₃ (7.26 ppm, ¹H) or CD₂Cl₂ (5.32 ppm, ¹H), unless otherwise indicated. Electronic absorption spectra were measured on a Perkin Elmer Lambda 35 UV-Vis spectrophotometer. MALDI-TOF mass spectra were obtained on an Applied Biosystems QSTAR XL, using positive method with dithranol as matrix unless otherwise indicated. Exact mass was obtained from ESI-TOF under negative or positive mode. The isotope peaks were matched with calculated patterns. Only the most abundant peaks are listed below (see the copy of spectra for isotope peaks). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

General coupling procedure (9 as an example): A 50 mL shlenk reaction tube was charged with H₂TPPBr₄ (18.6 mg, 1 eq), Pd(PPh₃)₄ (4.6 mg, 0.2 eq), boronic acid **8** (58.4 mg, 10 eq), and anhydrous K₂CO₃ (55.2 mg, 20 eq). Anhydrous toluene (10 mL) was added via syringe. The mixture was degassed using the freeze-pump-thaw method three consecutive times. The reaction was then heated to 90 °C for three days. The resulting mixture was purified by silica gel flash chromatography using CHCl₃ for elution.

Characterization data for new compounds:

Compound 2: ¹H-NMR (300 MHz, CDCl₃) δ 7.85 (2H, d, J = 7.76 Hz), 7.23 (2H, d, J = 7.81 Hz), 3.49 (2H, s), 2.19 (3H, s), 1.5-3.5 (10H, br), 1.41 (12H, s). ¹³C-NMR (75 MHz, CDCl₃) δ 139.5, 136.6, 131.3, 85.6, 79.0, 78.3, 42.9, 26.5, 25.3. HRMS (ESI) [M-C₂H(CH₃)₄]⁻: 291.2535, calcd. for C₁₀H₂₀B₁₁O₂: 291.2565.

Compound 3: ¹H-NMR (300 MHz, CDCl₃) δ 7.50 (2H, d, J = 8.19 Hz), 7.13 (2H, d, J = 8.31), 7.10 (1H, m), 6.82 (1H, m), 6.61 (1H, m), 3.45 (2H, s), 2.16 (3H, s), 1.5-3.5 (10H, br), 1.41 (3H, s), 1.11 (18H, m). MALDI-TOF [M+H]⁺: 470.745, calcd. for C₂₃H₄₄B₁₀NSi: 470.782. HRMS (ESI) [M + Na]⁺: 492.4086, calcd. for C₂₃H₄₃B₁₀NSiNa: 492.4078.

Compound 4: ¹H-NMR (250 MHz, CD₂Cl₂) δ 8.43 (1H, br), 7.53 (2H, d, J = 8.19 Hz), 7.15 (2H, d, J = 8.31), 7.14 (1H, m), 6.84 (1H, m), 6.53 (1H, m), 3.48 (2H, s), 2.18 (3H, s), 1.5-3.5 (10H, br), ¹³C-NMR (75 MHz, CD₂Cl₂) δ 136.1, 132.5, 131.0, 125.4, 124.4, 119.4, 115.2, 106.6, 78.8, 75.7, 41.2, 23.9. MALDI-TOF [M+H]⁺: 314.367, calcd. for C₁₄H₂₄B₁₀N: 314.442. HRMS (ESI) [M-H]⁻: 312.2721, Calcd. for C₁₄H₂₂B₁₀N: 312.2721. **Compound 6:** ¹H-NMR (250 MHz, CDCl₃) δ 7.67 (2H, d, J = 8.09 Hz), 6.92 (2H, d, J = 8.07 Hz), 3.39 (2H, s), 2.15 (3H, s), 1.5-3.5 (10H, br). ¹³C-NMR (75 MHz, CDCl₃) δ 138.2, 134.9, 132.6, 94.3, 76.8, 74.8, 41.1, 24.1. HRMS (ESI) [M-H]⁻: 373.1487, calcd. for C₁₀H₈B₁₀I: 373.1462.

Compound 8: ¹H-NMR (300 MHz, DMSO-d⁶) δ 8.06 (2H, s), 7.74 (2H, d, J = 7.75), 7.21 (2H, d, J = 7.86), 3.32 (2H, s), 2.21 (3H, s), 1.5-3.5 (10H, br). ¹³C-NMR (75 MHz, DMSO-d⁶) δ 137.2, 134.1, 129.5, 78.9, 76.4, 75.2, 40.5, 22.9. HRMS (ESI) [M-H]⁻: 291.2566, calcd. for C₁₀H₂₀B₁₁O₂: 291.2565.

Compound 9: ¹H-NMR (250 MHz, CD₂Cl₂ with 0.1 % TFA) δ 8.30 (8H, br), 8.24 (4H, s), 7.67-7.70 (12H, m), 6.71-6.74 (16H, m), 3.20-3.22 (8H, m), 2.05 (12H, s), 1.5-3.5 (40H, br). MS (MALDI-TOF) [M⁺]: 1600.24 calcd. for C₈₄H₁₀₂B₄₀N₄: 1600.18. HRMS (ESI) [M + H]⁺: 1601.2177, calcd. for C₈₄H₁₀₃B₄₀N₄: 1601.2214. UV-vis (CH₂Cl₂ with 1% NEt₃) λ_{max} (nm): 433 (log ε 5.41), 527 (4.25), 600 (3.79), 670 (3.54).

Compound 10: ¹H-NMR (250 MHz, CD₂Cl₂) δ 8.69-8.72 (2H, m), 8.56-8.58 (2H, m), 8.47-8.49 (1H, m), 8.25-8.29 (2H, m), 7.68-7.80 (8H, m), 7.23-7.39 (12H, m), 6.96-6.99 (2H, d, J = 8.21), 6.87-6.91 (4H, m), 6.66-6.69 (4H, d, J = 7.03), 3.39 (2H,s), 3.17 (4H, s), 2.21 (3H, s), 2.14 (6H, s), 1.5-3.5 (30H, br), -2.38 (2H, br). MS (MALDI-TOF) [M⁺]: 1353.62, calcd. for C₇₄H₈₄B₃₀N₄: 1353.82. HRMS (ESI) [M + H]⁺: 1354.9814, calcd. for C₇₄H₈₅B₃₀N₄: 1354.9795. UV-vis (CH₂Cl₂ with 1% NEt₃) λ_{max} (nm): 431 (log ε 5.51), 526 (4.41), 555 (sh, 4.18), 597 (4.05), 657 (3.72).

Compound 11: ¹H-NMR (250 MHz, CD₂Cl₂) δ 7.76 (8H, m), 7.24-7.32 (12H, m), 6.55-6.84 (32H, m), 3.18-3.34 (16H, m), 2.11-2.21 (24H, m), 1.5-3.5 (80H, br). MS (MALDI-TOF) [M+H]⁺: 2643.807, calcd. for C₁₂₄H₁₇₃B₈₀N₄Ni: 2643.174. UV-vis (CH₂Cl₂) λ_{max} (nm): 441 (log ε 5.11), 556 (4.04), 597 (3.93).

Figure 1: HRMS (ESI) for compound 2.

Mass spectra for all new compounds:

Figure 2: HRMS (ESI) for compound **3**.

Figure 3: HRMS (ESI) for compound 4.

Figure 4: HRMS (ESI) for compound 6.

Figure 5: HRMS (ESI) for compound 8.

Figure 6: HRMS (ESI) for compound 9.

Figure 7: HRMS (ESI) for compound 10.

Figure 6: MALDI-TOF for compound **11**.