An efficient biomimetic Fe-catalyzed epoxidation of olefins using hydrogen peroxide.

Gopinathan Anilkumar^a, Bianca Bitterlich^a, Feyissa Gadissa Gelalcha^a, Man Kin Tse^{a,b}, and Matthias Beller^{a,b}*

^aLeibniz-Institut für Katalyse, Albert-Einstein Straβe 29a, D-18059 Rostock, Germany; ^bCenter for Life Science Automation, Friedrich-Barnewitz-Str. 8, D-18119 Rostock, Germany; E-mail: matthias.beller@catalysis.de; Fax: +49-381-1281-5000; Tel: +49-381-1281-113.

Supporting information

Table 1. Base effect of Fe-catalyzed epoxidation of *trans*-stilbene

Entry	Base	Conv.	Yield	Selec.	Entry	Base	Conv.	Yield	Selec.
		$(\%)^{a,b}$	$(\%)^{b}$	(%) ^c			$(\%)^{a,b}$	$(\%)^{b}$	(%) ^c
1	-	0	0	$0^{d,e}$	13	1-Methyl- imidazole	78	72	92 ^f
2	NaOAc	50	43	86 ^e	14	2-Methyl- imidazole	12	11	92 ^f
3	КОН	33	30	91 ^e	15	4-Methyl- imidazole	100	97	97 ^f
4	NaHCO ₃	67	63	94 ^e	16	1-Butyl- imidazole	99	95	96 ^f
5	KO ^t Bu	80	42	52 ^e	17	1-Benzyl- imidazole	97	90	93 ^f
6	Cyclohexyl amine	61	59	97	18	1-Phenyl- imidazole	95	85	89 ^f
7	Bn-NH ₂	100	97	97	19	Pyridine	56	50	89 ^e
8	Et_3N	86	74	86	20	Pyrrolidine	100	97	97
9	DMAP	19	16	84 ^e	21	(S)-Prolinol	89	89	>99
10	DABCO	40	33	82 ^e	22	-	7	4	57 ^g
11	DBU	41	33	80 ^e	23	Pyrrolidine	0	0	0^{h}
12	Imidazole	91	90	99	24	Pyrrolidine	0	0	0^{g}

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

a) Reaction conditions: In a 25 mL Schlenk tube, $FeCl_3\cdot 6H_2O$ (0.025 mmol), H_2pydic (0.025 mmol), tert-amyl alcohol (9 mL), base (0.05 mmol), trans-stilbene (0.5 mmol) and dodecane (GC internal standard, 100 μ L) were added in sequence at rt in air. To this mixture, a solution of 30% hydrogen peroxide (170 μ L, 1.5 mmol) in tert-amyl alcohol (830 μ L) was added over a period of 1 h at rt by a syringe pump. b) Conversion and yield were determined by GC analysis. c) Selectivity refers to the ratio of yield to conversion in percentage. d) Na₂pydic was used instead of H_2pydic . e) H_2O_2 solution was added over a period of 12 h at rt by a syringe pump. f) 2 equiv. of H_2O_2 was used. g) H_2pydic was not used. h) $FeCl_3\cdot 6H_2O$ was not used.