Electronic Supplementary Information

Rhodium(I) complexes with *N*-heterocyclic carbenes bearing a 2,3,4,5-tetraphenylphenyl and its higher dendritic frameworks

Hiromichi Sato, Tetsuaki Fujihara, Yasushi Obora, Makoto Tokunaga, Junya Kiyosu and Yasushi Tsuji*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, and CREST, Japan Science and Technology Agency (JST), Kyoto 615-8510, Japan, and Catalysis Research Center and Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 001-0021, Japan. E-mail:ytsuji@scl.kyoto-u.ac.jp; FAX: +81-75-383-2514.

General procedure and materials.

All manipulations were performed under an argon atmosphere using standard Schlenk-type glasswares on a dual-manifold Schlenk line. The reagents and the solvents for catalytic reactions were dried and purified before use by usual procedures.¹ ¹H NMR and ¹³C{¹H} NMR spectra were measured with a Bruker ARX-400, a JEOL ECX-400 or a JEOL ECA-600 spectrometers. MALDI-TOF mass spectra were measured with a Bruker Autoflex instrument. FD mass spectra were measured with a JEOL JMS-SX102A instrument at the GC-MS & NMR Laboratory of Faculty of Agriculture, Hokkaido University. ESI mass spectra were measured with a JEOL JMS-HX110 instrument at the Center for Instrumental Analysis, Hokkaido University. Elemental analyses were also carried out at the same center. Preparative recycling gel permeation chromatography (GPC) was performed with a JASCO LC9104. GC analysis was carried out using Shimadzu GC-17A

equipped with Shimadzu CPB1 (25 m length, 0.25 mm i.d.) or CPB10 (25 m length, 0.25 mm i.d.) columns.

Scheme 1S shows the preparation methods of 5a and 5b. 5c,² $6a-d^3$ and 4-Bromo-(2',3',4',5'-tetraphenyl)biphenyl (7a)⁴ were prepared according to the literatures.

Scheme 1S. Preparation of 5a and 5b

Synthesis of 7b:

In a $300-cm^3$ flask under an argon atmosphere, a solution of 2,5-bis(*p*-tolyl)-3,4-bis{4-[2',3',4',5'-tetra(*p*-tolyl)]biphenylyl}cyclopentadienone⁵ (8.4 g, 6.5 mmol) 2

and 4-bromo-1-ethynylbenzene (1.5 g, 8.2 mmol) in degassed *o*-xylene (150 cm³) was refluxed for 1 d. After a removal of the solvent, a residue was purified by silica gel chromatography using hexane/toluene (2/3) as an eluent. Removal of volatiles gave a white powder. Yield 5.3 g (57%). ¹H NMR (400 MHz, CDCl₃) δ 7.444 (s, 1H, Ar₅C₆*H*), 7.436(s, 1H, Ar₅C₆*H*), 7.40 (s, 1H, Ar₅C₆*H*), 6.94-7.04 (m, 12H, Ph), 6.56-6.75 (m, 36H, Ph), 6.51 (d, 2H, *J* = 8.0 Hz, C₆*H*₄Br), 6.44 (d, 2H, *J* = 8.0 Hz, C₆*H*₄Br), 2.30 (s, 3H, Me), 2.26 (s, 6H, Me), 2.19 (s, 3H, Me), 2.15 (s, 6H, Me), 2.11 (s, 12H, Me). ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 141.5, 141.0, 140.7, 140.52, 140.50, 140.3, 139.5, 139.3, 139.21, 139.15, 139.12, 139.10, 139.0, 138.91, 138.86, 137.6, 137.2, 137.0, 135.5, 134.6, 134.3, 131.6, 131.55, 131.50, 131.3, 131.2, 131.03, 130.96, 130.7, 129.9, 129.8, 128.7, 128.5, 128.3, 128.2, 127.8, 127.6, 127.4, 127.3, 21.2, 21.13, 21.10, 21.05, 21.03. MALDI-TOF-MS (matrix: dithranol) *m*/*z* = 1437 [M+H]⁺. Anal. Calcd. For C₁₀₆H₈₅Br: C, 88.49; H, 5.95. Found C, 88.40; H, 5.95.

Synthesis of 8a:

In a 300–cm³ two-neck flask under an argon atmosphere, benzophenone imine (3.5 cm³, 21 mmol) was added to a suspension of **7a** (10 g, 18.7 mmol), *rac*-BINAP (466 mg, 0.75 mmol), Pd(DBA)₂ (95 mg, 0.19 mmol) and ^{*t*}BuONa (2.7 g, 28 mmol) in degassed toluene (100 cm³) at 80 °C. The mixture was stirred at 80 °C under argon for 2 d. After removal of the solvent, a crude product was purified by silica gel column chromatography using CH₂Cl₂ as an eluent. Removal of volatiles gave the *N*-arylated imine as a yellow solid. It was dissolved in THF (500 cm³) and 1N HCl aq. (150 cm³) was added to the solution. The mixture was stirred at room temperature for 15 h. An aqueous saturated solution of NaHCO₃ (300 cm³) was added to the reaction mixture and the organic layer was separated after vigorous shaking. The aqueous layer was extracted with AcOEt

(300 cm³ × 2) and the washing liquid was combined with the organic layer, which was dried over anhydrous MgSO₄. After removal of volatiles, a crude product was obtained. It was dissolved in CH₂Cl₂ (20 cm³) and the solution was poured into MeOH (600 cm³). The product **8a** was collected by filtration as a white precipitate, washed with MeOH and dried *in vacuo*. Yield 7.9 g (96%). ¹H NMR (400 MHz, THF-d₈) δ 7.46 (s, 1H, Ar₅C₆H), 6.77-7.14 (m, 22H, Ph), 6.35 (d, 2H, J = 8.3 Hz, C₆H₄NH₂), 4.34 (s, 2H, NH₂). ¹³C NMR (100 MHz, THF-d₈) δ 147.8, 143.1, 142.6, 142.2, 141.8, 141.7, 141.6, 141.4, 139.9, 139.2, 132.49, 132.47, 132.4, 132.1, 131.3, 130.73, 130.69, 128.23, 127.61, 127.56, 127.3, 126.7, 126.1. 126.0, 125.8. FD-MS *m*/*z* = 474 [M]⁺. Anal. Calcd. For C₃₆H₂₇N: C, 91.30; H, 5.75; N, 2.96. Found: C, 91.44; H, 5.62; N, 2.95.

Synthesis of 8b:

In a 100–cm³ two-neck flask under an argon atmosphere, benzophenone imine (0.42 cm³, 2.5 mmol) was added to a suspension of **7b** (3.2 g, 2.2 mmol), *rac*-BINAP (55 mg, 89 µmol), *'*BuONa (327 mg, 3.4 mmol) and Pd(DBA)₂ (12 mg, 24 µmol) in degassed toluene (25 cm³) at 80 °C. The mixture was stirred at 80 °C for 20 h. After removal of the solvent, a residue was purified by silica gel column chromatography using hexane/CH₂Cl₂ (from 2/1 to 1/1) as eluents. Removal of volatiles gave the *N*-arylated imine as a yellow solid. It was dissolved in THF (100 cm³) and 1N HCl aq. (50 cm³) was added to the solution. The mixture was stirred at room temperature for 1 h. An aqueous saturated solution of NaHCO₃ (100 cm³) was added to the reaction mixture and the organic layer was separated after vigorous shaking. The aqueous layer was extracted with diethyl ether (100 cm³ × 2) and the washing liquid was combined with the organic layer, which was dried over anhydrous MgSO₄. After removal of volatiles, a crude product was obtained. It was

dissolved in CH₂Cl₂ and the solution was poured into MeOH. The product **8b** was collected by filtration as a white powder, washed with MeOH and dried *in vacuo*. Yield 3.0 g (96%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H, Ar₅C₆H), 7.46 (s, 1H, Ar₅C₆H) 7.42 (s, 1H, Ar₅C₆H), 6.93-7.05 (m, 12H, Ph), 6.88 (d, 2H, *J* = 7.9 Hz, C₆H₄NH₂), 6.58-6.75 (m, 32H, Ph), 6.52 (d, 2H, *J* = 7.9 Hz, C₆H₄NH₂), 6.451 (d, 2H, *J* = 7.5 Hz, Ar₂C₆H₄), 6.450 (d, 2H, *J* = 7,5 Hz, Ar₂C₆H₄), 3.54 (br, 2H, NH₂), 2.29 (s, 3H, Me), 2.26 (s, 6H, Me), 2.18 (s, 3H, Me), 2.13 (s, 6H, Me), 2.11 (s, 12H, Me). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 141.8, 141.2, 140.7, 140.5, 140.4, 139.2, 139.1, 139.0, 138.92, 138.86, 138.7, 138.3, 138.1, 137.7, 137.6, 137.2, 137.1, 137.0, 135.6, 135.5, 134.7, 134.6, 134.3, 132.4, 132.3, 131.6, 131.3, 131.15, 131.06, 130.8, 130.03, 129.98, 129.8, 128.7, 128.3, 128.2, 127.6, 127.4, 127.3, 21.2, 21.2, 21.0. MALDI-TOF-MS (matrix: dithranol) *m*/*z* = 1374 [M+H]⁺. Anal. Calcd. For C₁₀₆H₈₇N: C, 92.60; H, 6.38; N, 1.02. Found C, 92.64; H, 6.55; N, 1.08.

Synthesis of 9a:

In a 100–cm³ flask, glyoxal (40 wt% in water, 0.4 cm³, 3.5 mmol) was added to a solution of **8a** (3.0 g, 6.3 mmol) in CH₃CN (45 cm³) at 70 °C. The mixture was stirred at 70 °C for 6.5 h. A yellow solid formed and was collected by filtration, washed with CH₃CN and dried *in vacuo*. Yield 2.2 g (73%). ¹H NMR (400 MHz, THF-d₈) δ 8.32 (s, 2H, C₂H₂N₂), 7.55 (s, 2H, Ar₅C₆H), 7.21 (d, 4H, *J* = 8.7 Hz, C₆H₄N), 7.08-7.14 (m, 12H, Ph), 6.80-6.90 (m, 32H, Ph). ¹³C NMR (100 MHz, CD₂Cl₂) δ 160.0, 142.2, 142.1, 141.9, 141.2, 140.8, 140.5, 140.4, 140.3, 139.9, 139.7, 131.87, 131.84, 131.78, 131.4, 131.3, 130.3, 127.9, 127.3, 127.2, 126.9, 126.7, 126.1, 126.0, 125.7, 121.0. FD-MS *m*/*z* = 968 [M]⁺. Anal. Calcd. For C₇₄H₅₂N₂: C, 91.70; H, 5.41; N, 2.89. Found: C, 91.42; H, 5.55; N, 2.81.

Synthesis of 9b:

In a 30–cm³ flask, a solution of glyoxal (40 wt% in water, 0.021 cm³, 0.19 mmol) in 2-methoxyethanol (1 cm³) was added to a solution of **8b** (512 mg, 0.37 mmol) in 2-methoxyethanol (4 cm³) at 50 °C. The mixture was stirred at 50 °C for 17 h. After cooling with an ice bath, a yellow suspension was filtered on a Celite and washed with cold 2-methoxyethanol. The yellow material was dissolved in diethyl ether and evaporation of the solvent gave **9b** as a yellow powder. Yield 479 mg (93%). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 2H, C₂H₂N₂), 7.45 (s, 4H, Ar₅C₆H), 7.41 (s, 2H, Ar₅C₆H), 6.84-7.16 (m, 28H, Ph), 6.44-6.73 (m, 76H, Ph), 2.30 (s, 6H, Me), 2.27 (s, 12H, Me), 2.18 (s, 6H, Me), 2.15 (s, 12H, Me), 2.12 (s, 24H, Me). ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 140.5, 140.4, 139.1, 138.92, 138.86, 137.6, 137.2, 137.1, 137.0, 136.7, 135.5, 134.7, 134.6, 134.3, 131.6, 131.3, 131.2, 131.1, 130.0, 129.8, 128.7, 128.4, 128.2, 127.6, 127.4, 127.3, 21.12, 21.09, 21.04, 21.02. MALDI-TOF-MS (matrix: dithranol) m/z = 2770 [M+H]⁺. ESI-MS-HR Calcd. For C₂₁₄H₁₇₂N₂Na: 2792.3418, Found: m/z = 2792.3484.

Synthesis of 4a:

In a 5–cm³ flask, **9a** (1.0 g, 1.0 mmol) was added to ClCH₂OEt (2 cm³, 22 mmol) at room temperature with vigorous stirring. After **9a** was completely dissolved in ClCH₂OEt (in ca. 1 min), CH₃CN (2.5 cm³) was added and the mixture was stirred for 30 min. After removal of volatiles, a

residue was purified by silica gel column chromatography. Materials eluted with CH₂Cl₂ were discarded and a fraction eluted with MeOH/CH₂Cl₂ (1/9) was collected. Evaporation of the fraction *in vacuo* gave a crude product as a pale-brown solid. Further purification was performed with a preparative recycling GPC to afford a white powder. Yield 733 mg (69%). ¹H NMR (400 MHz, CDCl₃) δ 11.51 (s, 1H, NC*H*N), 7.90 (d, 4H, *J* = 8.7 Hz, C₆*H*₄Im), 7.69 (s, 2H, NC*H*=C*H*N), 7.50 (s, 2H, Ar₅C₆*H*), 7.37 (d, 4H, *J* = 8.7 Hz, C₆*H*₄Im), 6.78-6.93 (m, 40H, Ph). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 142.1, 141.3, 141.1, 140.2, 139.9, 139.7, 139.4, 139.2, 138.6, 135.1, 132.4, 132.0, 131.43, 131.41, 131.36, 131.1, 129.9, 127.7, 127.3, 127.0, 126.7, 126.0, 125.8, 125.5, 121.1, 120.8. FD-MS *m*/*z* = 981 [M-Cl]⁺. ESI-MS-HR Calcd. For C₇₅H₅₃N₂: 981.4209, Found: *m*/*z* = 981.4197.

Synthesis of 4b:

In a 50–cm³ flask under an argon atmosphere, a solution of CICH₂OEt (0.25 cm³, 2.7 mmol) in degassed diethyl ether (5 cm³) was added at –25 °C to a solution of **9b** (502 mg, 0.18 mmol) in degassed diethyl ether (10 cm³). The mixture was stirred at –25 °C for 19 h. After removal of volatiles, a crude product was purified by silica gel column chromatography. Materials eluted with CH₂Cl₂, diethyl ether, and MeOH/diethyl ether (2/98) was discarded. A fraction eluted with MeOH/CH₂Cl₂ (1/9) was collected and evaporation gave a pale-brown powder. Yield 218 mg (43%). ¹H NMR (600 MHz, CDCl₃) δ 11.15 (s, 1H, NCHN), 7.81 (d, 4H, *J* = 7.2 Hz, C₆H₄Im), 7.66 (s, 2H, NCH=CHN), 7.45 (s, 2H, Ar₅C₆H), 7.44 (s, 2H, Ar₅C₆H), 7.41 (s, 2H, Ar₅C₆H), 7.32 (d, 4H, *J* = 7.2Hz, C₆H₄Im), 6.96-7.04 (m, 24H, Ph), 6.58-6.71 (m, 64H, Ph), 6.54 (d, 4H, *J* = 7.2 Hz, Ar₂C₆H₄), 6.46 (d, 4H, *J* = 7.2 Hz, Ar₂C₆H₄), 2.29 (s, 6H, Me), 2.27 (s, 12H, Me), 2.16 (s, 6H, Me),

2.15 (s, 12H, Me), 2.11 (s, 24H, Me). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.8, 141.7, 140.9, 140.5, 140.3, 139.7, 139.25, 139.20, 138.92, 138.87, 138.7, 138.5, 137.6, 137.3, 137.2, 137.1, 137.0, 136.3, 135.9, 135.5, 135.3, 134.7, 134.6, 134.3, 132.3, 131.9, 131.6, 131.5, 131.3, 131.2, 131.0, 130.9, 129.9, 129.8, 128.8, 128.5, 128.3, 128.2, 128.0, 127.6, 127.4, 127.3, 121.3, 121.0, 21.19, 21.15, 21.11, 21.08, 21.06, 21.04. MALDI-TOF-MS (matrix: dithranol) m/z = 2782 [M-Cl]⁺. ESI-MS-HR Calcd. For C₂₁₅H₁₇₃N₂: 2782.3599, Found: m/z = 2782.3599.

Synthesis of 5a:

In a 100–cm³ two-neck flask under argon atmosphere, a suspension of **4a** (329 mg, 0.32 mmol) and Ag₂O (46 mg, 0.20 mmol) in 1,2-dichloroethane (30 cm³) was stirred at 50 °C for 1 d under Ar. At room temperature, [RhCl(COD)]₂ (96 mg, 0.20 mmol) was added to the solution and the whole mixture was stirred at room temperature under Ar for 8 h. After filtration through Celite to remove insoluble materials, a residue obtained by evaporation was purified by silica gel column chromatography using CH₂Cl₂/hexane (1/1) as an eluent. The crude product was recrystallized from CH₂Cl₂/diethyl ether. Yellow crystals were collected by filtration, washed with diethyl ether and dried *in vacuo*. Yield 274 mg (69%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, 4H, *J* = 8.6 Hz, C₆H₄Im), 7.60 (s, 2H, Ar₅C₆H), 7.37 (d, 4H, *J* = 8.6 Hz, C₆H₄Im), 7.16-7.21 (m, 12H, Ph), 6.79-6.96 (m, 30H, Ph), 4.88 (m, 2H, COD), 2.58 (m, 2H, COD), 1.92 (m, 2H, COD), 1.49-1.59 (m. 6H, COD). ¹³C NMR (100 MHz, CDCl₃) δ 184.4 (d, *J*_{Rh-C} = 48.7 Hz, N*C*N), 142.1, 141.6, 141.5, 141.0, 140.2, 139.8, 139.7, 139.6, 139.3, 138.5, 131.54, 131.46, 131.38, 131.32, 130.4, 129.9, 127.7, 127.2, 127.1, 126.9, 126.67, 126.62, 126.4, 125.9, 125.7, 125.4, 124.2, 122.0, 97.3 (d, *J*_{Rh-C} = 6.7 Hz), 68.0 (d, *J*_{Rh-C} = 14.3 Hz), 32.3, 28.6. FD-MS *m*/*z* = 1227 [M]⁺. Anal. Calcd. For C₈₃H₆₄N₂CIRh: C, 81.20; H, 5.25; N, 2.28. Found C, 81.26; H, 5.32; N, 2.33.

Synthesis of 5b:

In a 100-cm³ two-necked flask under argon atmosphere, a solution of **4b** (652 mg, 0.23 mmol) and Ag₂O (33 mg, 0.14 mmol) in 1,2-dichloroethane (20 cm³) was stirred at 50 °C for 9 h under Ar. At room temperature, [RhCl(COD)]₂ (70 mg, 0.14 mmol) was added to the solution and the mixture was stirred at room temperature for 18 h. After filtration through Celite to remove insoluble materials, a residue obtained by evaporation was purified by silica gel column chromatography using CH₂Cl₂/hexane (3/7) as an eluent. Removal of volatiles gave a pale-orange solid. Yield 487 mg (70%). ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, 4H, J = 8.4 Hz, C₆H₄Im), 7.53 (s, 2H, NCH=CHN), 7.47 (s, 2H, Ar₅C₆H), 7.42 (s, 2H, Ar₅C₆H), 7.32 (d, 4H, J = 7.8 Hz, C₆H₄Im), 7.21 (s, 2H, Ar₅C₆H) 6.95-7.05 (m, 24H, Ph), 6.79-6.47 (m, 72H, Ph), 4.87 (br, 2H, COD), 2.60 (br, 2H, COD), 2.31, 2.27, 2.17, 2.16, 2.15, 2.13, 2.122, 2.119 (s, 60H, Me) 1.92 (br, 2H, COD), 1.66 (br, 2H, COD), 1.57 (br, 2H, COD), 1.52 (br, 2H, COD). 13 C NMR (150 MHz, CDCl₃) δ 184.3 (d, J_{Rh-C} = 47.7 Hz, NCN), 141.9, 141.8, 141.7, 140.7, 140.53, 140.50, 140.3, 139.7, 139.25, 139.19, 139.10, 139.08, 138.96, 138.92, 138.87, 138.7, 138.6, 138.4, 137.8, 137.6, 137.5, 137.2, 137.1, 137.0, 136.8, 135.8, 135.5, 135.0, 134.7, 134.6, 134.3, 131.6, 131.3, 131.2, 131.0, 130.3, 129.9, 129.8, 128.7, 128.3, 128.2, 128.0, 127.6, 127.5, 127.3, 124.1, 121.9, 97.2 (br, COD), 68.0 (br, COD), 32.2, 28.5, 21.2, 21.14, 21.08, 21.06, 21.02. MALDI-TOF-MS m/z = 2992 [M-Cl]⁺. Anal. Calcd. For C₂₂₃H₁₈₄N₂ClRh: C, 88.39; H, 6.12; N, 0.92. Found C, 88.59; H, 6.29; N, 1.01.

General procedure for the hydrosilylation (entry 1 in Table 1): A mixture of **5a** (0.01 mmol, 12 mg), CH_2Cl_2 (1 cm³), 2-cyclohexen-1-one (1 mmol, 9.7×10^{-2} dm³), and bibenzyl (0.25 mmol, 45.6 mg) as an internal standard was placed in a 10-cm³ Schlenk tube under an Ar atmosphere and the

resulting solution was stirred for 5 min. Then, Ph_2SiH_2 (1.2 mmol, 0.22 dm³) was added via a syringe and the reaction mixture was stirred at room temperature for 24 h. After removal of volatiles under vacuum at -30 °C, a residue was dissolved in Et₂O (1 cm³). The solution was further stirred for 1 h with K₂CO₃ (1 mg) and MeOH (1 cm³). Total yield (77%) and a ratio (91/9) of cyclohexanone and 2-cyclohexen-1-ol were determined by a GC (Shimadzu CPB10 column, 25 m length, 0.25 mm i.d.).

X-ray Diffraction Study. Single crystals of **5a**·C₃H₁₂ suitable for X-ray diffraction study were obtained by diffusion of *n*-pentane into **5a** in CH₂Cl₂. Data were collected on a Rigaku/Saturn70 CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å) at 113 K, and processed using CrystalClear (Rigaku). The structures were solved by a direct method (SIR92) and refined by full-matrix least-square refinement on F^2 . The non-hydrogen atoms except for solvated molecules were refined anisotropically. All hydrogen atoms were located on the calculated positions and not refined. All calculations were performed using the CrystalStructure software package. Crystal data for **5a**·C₅H₁₂: C₈₈H₇₆ClN₂Rh, *M* = 1299.9, *T* = 113 K, triclinic, space group $P\overline{1}$ (No. 2), *a* = 14.85(2), *b* = 20.51(2), *c* = 25.04(2) Å, $\alpha = 79.38(7)$, $\beta = 71.05(9)$, $\gamma = 81.10(10)$ °, *U* = 7054(1) Å³, *Z* = 4, μ (Mo K α) = 3.30 cm⁻¹, Unique reflections 31888, Observed reflections 16076 (*I*>3 σ (*I*)), *R*1, *wR*2 = 0.056, 0.164, GOF = 1.01. CCDC Number 617650.

Calculation

An optimized structure of **5b** was obtained by ONIOM⁶ calculations. In the ONIOM calculation, the molecular system of **5b** was divided into two layers. The high layer was assigned to **5b** with R = C_6H_4 for B3LYP⁷/LANL2DZ⁸ calculation. The low layer contains the rest dendritic frameworks of **5b** for molecular mechanics calculation using UFF force field was carried out on the layer.⁹ All calculations were performed with the Gaussian 03 program¹⁰ on a HIT HPC-IA642/SS 1.3/3D-4G.

References

- 1. W. L. F. Armarego and D. D. Perrin, *Purification of Laboratory Chemicals, 4th ed.*, Burrerworth-Heinemann, Oxford, U.K., 1997.
- 2. (a) A. M. Seayad, K. Selvakumar, M. Ahmed and M. Bellar, *Tetrahedron Lett.*, 2003, 44, 1679;
 (b) P. A. Evans, E. W. Baum, A. N. Fazal and M. Pink, *Chem. Commun.*, 2005, 63.
- 3. T. Fujihara, Y. Obora, M. Tokunaga, H. Sato and Y. Tsuji, Chem. Commun., 2005, 4526.
- 4. Y. J. Boxhall, P. C. Bulman Page, Y. Chan, C. M. Hayman and H. Heaney, Synlett, 2003, 997.
- 5. T. Iwasawa, M. Tokunaga, Y. Obora and Y. Tsuji, J. Am. Chem. Soc., 2004, 126, 6554.
- (a) F. Maseras and K. Morokuma, J. Comp. Chem., 1995, 16, 1170; (b) S. Humbel, S. Sieber, and K. Morokuma, J. Chem. Phys., 1996, 105, 1959; (c) M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber and K. Morokuma, J. Phys. Chem., 1996, 100, 19357.
- 7. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270; (b) W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284; (c) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024.
- Gaussian 03 program: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J.

Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,

B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 03*, Revison A.1, Gaussian, Inc., Pittsburgh, PA, **2003**.