Spin-Crossover Iron(II) Complexes With a Terpyridine Embrace Packing Motif Show Remarkably Consistent Cooperative Spin-Transitions

Ruth Pritchard, Colin A. Kilner and Malcolm A. Halcrow*

Electronic Supplementary Information

Table S1 Selected bond lengths and angles for the high-spin tetragonal phases of $[Fe(L^3)_2][BF_4]_2$ and $[Fe(L^4)_2][BF_4]_2$.

Table S2 Selected bond lengths and angles for the low-spin monoclinic phase of $[Fe(L^3)_2][BF_4]_2$ at 202 K.

Figure S1 View of the complex dication in the monoclinic phase of $[Fe(L^3)_2][BF_4]_2$ at 202 K.

Figure S2 View of the complex dication in the tetragonal phase of $[Fe(L^4)_2][BF_4]_2$ at 300 K.

	$[Fe(L^3)_2][BF_4]_2$		$[Fe(L^4)_2][BF_4]_2$
	300 K	220 K	300 K
Fe(1)–N(2)	2.135(3)	2.143(5)	2.125(4)
Fe(1) - N(7)	2.188(2)	2.180(4)	2.188(3)
$N(2)-Fe(1)-N(2^{ii})$	180	180	180
N(2)-Fe(1)-N(7)	72.97(6)	73.23(10)	73.46(8)
$N(2)-Fe(1)-N(7^{ii})$	107.03(6)	106.77(10)	106.54(8)
$N(7)-Fe(1)-N(7^{ii})$	94.92(3)	94.77(5)	94.65(5)

Table S1 Selected bond lengths and angles (Å, °) for the high-spin tetragonal phases of $[Fe(L^3)_2][BF_4]_2$ and $[Fe(L^4)_2][BF_4]_2$. Symmetry code (ii) -1+y, 1-x, 2-z (see Figs. 2 and S2).

Table S2 Selected bond lengths and angles (Å, °) for the low-spin monoclinic phase of $[Fe(L^3)_2][BF_4]_2$ at 202 K.

Fe(1)–N(2)	1.898(5)
Fe(1) - N(9)	1.974(5)
Fe(1)–N(15)	1.955(6)
Fe(1) - N(20)	1.890(5)
Fe(1) - N(27)	1.985(5)
Fe(1)–N(33)	1.963(6)
N(2) - Fe(1) - N(9)	79 8(2)
N(2) - Fe(1) - N(15)	80.1(2)
N(2) - Fe(1) - N(20)	176.9(3)
N(2) - Fe(1) - N(27)	102.5(3)
N(2) - Fe(1) - N(33)	96.8(3)
N(9) - Fe(1) - N(15)	160.0(2)
N(9) - Fe(1) - N(20)	101.4(2)
N(9)-Fe(1)-N(27)	92.7(2)
N(9)-Fe(1)-N(33)	91.6(2)
N(15)-Fe(1)-N(20)	98.7(2)
N(15)-Fe(1)- $N(27)$	91.3(2)
N(15)-Fe(1)-N(33)	91.0(2)
N(20)-Fe(1)-N(27)	80.3(2)
N(20)-Fe(1)-N(33)	80.4(2)
N(27)–Fe(1)–N(33)	160.7(2)

Fig S1 View of the complex dication in the monoclinic phase of $[Fe(L^3)_2][BF_4]_2$ at 202 K. All H atoms have been removed for clarity, and thermal ellipsoids are at the 50% probability level.

Fig S2 View of the complex dication in the tetragonal phase of $[Fe(L^4)_2][BF_4]_2$ at 300 K. All H atoms have been removed for clarity, and thermal ellipsoids are at the 50% probability level. Symmetry codes: (i) –*x*, 2–*y*, *z*; (ii) –1+*y*, 1–*x*, 2–*z*; (iii) 1–*y*, 1+*x*, 2–*z*.