Supporting Information for B613865A

Structurally Characterized Intermediates in the Stepwise Insertion of CO/Ethylene or CO/Methyl Acrylate into the Metal-Carbon Bond of Pd(II) Complexes Stabilised by (Phosphinomethyl)Oxazoline Ligands

Magno Agostinho and Pierre Braunstein*

Laboratoire de Chimie de Coordination (UMR 7177 CNRS), Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cédex, France. Fax: +33 390 241 322; Tel: +33 390 241 308; E-mail: braunst@chimie.u-strasbg.fr

1. Experimental

General considerations

All manipulations were carried out under inert dinitrogen atmosphere, using standard Schlenk-line conditions and dried and freshly distilled solvents. The ¹H, ¹³C{¹H}, ³¹P{¹H} and ¹⁹F{¹H} NMR spectra were recorded unless otherwise stated on a Bruker Avance 300 instrument at 300.13, 75.48, 121.49 and 282.38 MHz, respectively, using TMS, or H₃PO₄ (85% in D₂O) as external standards with downfield shifts reported as positive. All NMR spectra were measured at 25 °C, unless otherwise specified. The assignment of the chemical shifts and coupling constants of the complex spin systems formed by the CHCH₂ protons in complexes **7a,b** was made by ¹H, ¹H-COSY and ¹H, ¹³C-HMQC, decoupled ³¹P and dept135 NMR experiments. IR spectra in the range 4000–400 cm⁻¹ were recorded on a Bruker IFS66FT and a Perkin Elmer 1600 Series FTIR. Elemental analyses were preformed by the "Service de Microanalyse, Université Louis Pasteur (Strasbourg, France)". [PdMeCl(COD)] and [PdCl₂(COD)] (COD is 1,5-cyclooctadiene, C₈H₁₂) were prepared according to literature procedures,^{1, 2} as were ligands **1a,b**, complexes **2a,b** and **3a,b**.³

Preparation and Spectroscopic Data for 4a

A solution of **2a** (0.31 g, 0.73 mmol) in CH₂Cl₂ (50 mL) was stirred under 1 atm CO at room temperature over 1 h. After removal of the solvent under vacuum, the residue was washed with pentane (20 mL) and dried in vacuum, to afford **4a** as a yellow powder (0.30 g, 91% yield). IR (KBr): $v_{CO} = 1684$ s, $v_{CN} = 1642$ s cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.20$ [d, ⁴*J*_{HP} = 1.4 Hz, 3H, C(O)CH₃], 3.28 (dt, ²*J*_{HP} = 10.1 Hz, ⁵*J*_{HH} = 1.9 Hz, 2H, PCH₂), 3.94 (tt, ³*J*_{HH} = 9.7

Hz, ${}^{5}J_{\text{HH}}$ = 1.9 Hz, 2H, NCH₂), 4.55 (t, ${}^{3}J_{\text{HH}}$ = 9.7 Hz, 2H, OCH₂), 7.45-7.55 (complex m, 6H), 7.66-7.74 (m, 4H); ${}^{31}P{}^{1}H$ NMR (CDCl₃): δ 18.2 (s); Anal. Calcd for C₁₈H₁₉ClNO₂PPd: C 47.60, H 4.22, N 3.08, Found: C 47.51; H 4.11; N 2.90.

Preparation and Spectroscopic Data for 4b

Complex **4b** was obtained in a similar manner to **4a** from **2b** (0.25g, 0.55 mmol). Yellow powder (0.25 g, 95% yield). IR (KBr): $v_{CO} = 1685$ s, $v_{CN} = 1632$ s cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.54$ [s, 6H, NC(CH₃)₂], 2.17 [d, ⁴J_{HP} = 1.6 Hz, 3H, C(O)CH₃], 3.28 (d, ²J_{HP} = 10.4 Hz, 2H, CH₂P), 4.12 (s, 2H, OCH₂), 7.45-7.55 (complex m, 6H), 7.67-7.75 (complex m, 4H); ³¹P{¹H} NMR (CDCl₃): δ 18.0 (s); Anal. Calcd for C₂₀H₂₃ClNO₂PPd: C 49.81, H 4.81, N 2.90, Found: C 51.10; H 4.90; N 2.60.

Variable temperature NMR measurements with 3b

A solution of **3b** (*ca* 0.020 g, 3.5×10^{-2} mmol) in CD₂Cl₂ (*ca* 0.6 mL) in a NMR tube with Teflon seal was exposed to an atmosphere of ¹³CO.

Complex **5b** was identified by its NMR spectra at room temperature. Selected data: ¹H NMR (CD₂Cl₂): $\delta = 1.38$ [s, 6H, NC(CH₃)₂], 2.09 [dd, ⁴*J*_{HP} = 2.0 Hz, ²*J*_{HC} = 6.0 Hz, 3H, C(O)CH₃], 3.37 (d, ²*J*_{HP} = 11.2 Hz, 2H, CH₂P), 4.18 (s, 2H, OCH₂); ³¹P{¹H} NMR (CD₂Cl₂): δ 21.6 (d, ²*J*_{PC} = 9.7 Hz); ¹³C{¹H} NMR (CD₂Cl₂): δ 222.7 [d, ²*J*_{PC} = 9.7 Hz, *C*(O)CH₃].

At -100 °C, the equilibrium between **5b** and the palladium acyl carbonyl complex $[Pd\{C(O)Me\}(CO)(P,N)]OTf(P,N = 1b)$ is completely shifted towards the latter as shown by NMR spectroscopy. Selected data: ¹H NMR (CD₂Cl₂, -100 °C): $\delta = 1.27$ [s, 6H, NC(CH₃)₂], 2.00 [d, ²*J*_{HC} = 5.0 Hz, 3H, C(O)CH₃], 3.71 (d, ²*J*_{HP} = 9.7 Hz, 2H, CH₂P), 4.29 (s, 2H, OCH₂); ³¹P{¹H} NMR (CD₂Cl₂, -100 °C): δ 18.3 (dd, ²*J*_{PCtrans} = 83.8 Hz, ²*J*_{PCcis} = 4.1 Hz); ¹³C{¹H} NMR (CD₂Cl₂, -100 °C): δ 223.1 [d, ²*J*_{PC} = 4.1 Hz, *C*(O)CH₃], 175.3 [d, ²*J*_{PC} = 83.8 Hz, PdC(O)].

Figure S-1 ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, -100 °C) spectrum of complex [Pd{C(O)Me}(CO)(P,N)]OTf (P,N = 1b).

Figure S-2: Portion of the ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, -100 °C) spectrum of complex [Pd{C(O)Me}(CO)(P,N)]OTf (P,N = **1b**) showing the peaks corresponding to the acyl carbon (left) and coordinated ${}^{13}CO$ (right).

Preparation and Spectroscopic Data for 6a

A solution of **3a** (0.48 g, 0.89 mmol) in CH₂Cl₂ (50 mL) was stirred under 1 atm CO at room temperature for 1 h, which was then replaced by 1 atm ethylene and the solution was further stirred for 1 h. After filtration and removal of the volatiles under vacuum, the residue was washed with diethylether (20 mL) and pentane (2 × 20 mL) and dried under vacuum, to afford **6a** as yellow powder (0.46 g, 87% yield). IR (KBr): $v_{CO/CN} = 1634$ s cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.65$ (td, ³*J*_{HH} = 6.1, ³*J*_{HP} = 1.9 Hz, 2H, PdCH₂), 2.45 [s, 3H, C(O)CH₃], 3.08 (brt, ³*J*_{HH} = 6.1 Hz, 2H, PdCH₂CH₂), 3.55 (dt, ²*J*_{HP} = 10.8 Hz, ⁵*J*_{HH} = 1.8 Hz, 2H, CH₂P), 4.05 (tt, ³*J*_{HH} = 9.6 Hz, ⁵*J*_{HH} = 1.8 Hz, 2H, NCH₂), 4.74 (t, ³*J*_{HH} = 9.6 Hz, 2H, OCH₂), 7.51-7.59 (complex m, 6H), 7.64-7.73 (m, 4H); ³¹P{¹H} NMR (CDCl₃): δ 34.4 (s); ¹⁹F{¹H} NMR (CDCl₃): δ -78.6 (s); Anal. Calcd for C₂₁H₂₃F₃NO₅PPdS: C 42.33, H 3.89, N 2.35, Found: C 42.51; H 4.01; N 2.28.

Preparation and Spectroscopic Data for 6b

Complex **6b** was obtained in a similar manner to **6a** from **3b** (0.37 g, 0.65 mmol). White pale powder (0.37 g, 91% yield). IR (KBr): $v_{CO/CN} = 1629$ s cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.47$ [s, 6H, NC(CH₃)₂], 1.67 (td, ³J_{HH} = 6.2, ³J_{HP} = 1.9 Hz, 2H, PdCH₂), 2.49 [s, 3H, C(O)CH₃], 3.12 (brt, ³J_{HH} = 6.2 Hz, 2H, PdCH₂CH₂), 3.58 (d, ²J_{HP} = 11.0 Hz, 2H, CH₂P), 4.36 (s, 2H, OCH₂), 7.52-7.60 (complex m, 6H), 7.65-7.73 (m, 4H); ³¹P{¹H} NMR (CDCl₃): δ 34.7 (s); ¹⁹F{¹H} NMR (CDCl₃): δ -78.5 (s); Anal. Calcd for C₂₃H₂₇F₃NO₅PPdS: C 44.28, H 4.36, N 2.24, Found: C 44.45; H 4.40; N 2.05.

Preparation and Spectroscopic Data for 7a

A solution of **3a** (0.96 g, 1.78 mmol) and methyl acrylate (160 µL, 1equiv.) in CH₂Cl₂ (50 mL) was stirred under 1 atm CO at room temperature for 1 h. The workup as described for **6a**, afforded **7a** as a yellow powder (1.09 g, 93.6% yield). IR (KBr): $v_{C(O)OMe} = 1683$ m, $v_{CO/CN} = 1633$ s cm⁻¹; ¹H NMR (500.13 MHz, CDCl₃): spin system for PdCH_aCH_bH_c: $\delta = 2.46$ (appearance of dt, ³*J*_{HaHb} = 1.2, ³*J*_{HaHc} = 6.2, ³*J*_{HaP} = 1.5 Hz, 1H, H_a), 2.90 (brd, ²*J*_{HbHc} = 18.7 Hz, 1H, H_b), 3.26 (brdd, ³*J*_{HaHc} = 6.2, ²*J*_{HbHc} = 18.7 Hz, 1H, H_c, partial overlap with C(O)OCH₃), 2.52 [s, 3H, C(O)CH₃], ABMNX spin system (A = B = M = N = H, X = P, δ_A 3.15, δ_B 4.14, ²*J*_{AB} = 17.6, ²*J*_{AX} = 12.7, ²*J*_{BX} = 9.2, ⁵*J*_{AH} = 1.0, ⁵*J*_{AH} = 1.6, ⁵*J*_{BH} = 1.9, ⁵*J*_{BH} = 2.2, Hz, 2H, CH₂P, δ_B partial overlap with NCH*H*) 3.24 [s, 3H, C(O)OCH₃], 3.90 (m, 1H, NC*H*H), 4.19 (m, 1H, NCH*H*) ABMN spin system (A = B = M = N = H, δ_A 4.62, δ_B 4.81, ²*J*_{AB} = 10.8, ³*J*_{AH} = 8.3, ³*J*_{BH} = 8.6 Hz, 2H, OCH₂), 7.52-7.67 (complex m, 6H), 7.79-7.91 (m, 4H); ³¹P{¹H} NMR (CDCl₃): δ 32.8 (s); ¹⁹F{¹H} NMR (CDCl₃): δ -78.6 (s); Anal. Calcd for C₂₃H₂₅F₃NO₇PPdS: C 42.25, H 3.85, N 2.14, Found: C 42.22; H 3.99; N 2.00.

Preparation and Spectroscopic Data for 7b

Complex **7a** was obtained in a similar manner to **7a** from **3b** (0.54 g, 0.95 mmol) and methyl acrylate (85.6 μ L, 1 equiv.). Yellow powder (0.53 g, 82% yield). IR (KBr): $v_{C(O)OMe}$ = 1684 m, $v_{CO/CN}$ = 1629 s cm⁻¹; ¹H NMR (500.13 MHz, CDCl₃): δ = 1.45 [s, 3H, NC(*CH*₃)(*CH*₃)], 1.51 [s, 3H, NC(*CH*₃)(*CH*₃)], spin system for PdCH_aCH_bH_c: 2.46 (appearance of dt, ³J_{HaHb} = 1.4, ³J_{HaHc} = 6.3, ³J_{HaP} = 1.8 Hz, 1H, H_a), 2.87 (brd, ²J_{HbHc} = 18.7 Hz, 1H, H_b), 3.27 (brdd, ³J_{HaHc} = 6.3, ²J_{HbHc} = 18.7 Hz, 1H, H_c), 2.55 [s, 3H, C(O)CH₃], ABX spin system (A = B = H, X = P, δ_A 3.08, δ_B 4.38, ²J_{AB} = 17.6, ²J_{AX} = 13.6, ²J_{BX} = 9.6 Hz, 2H, *CH*₂P, δ_B partially overlapping with OCH₂), 3.22 [s, 3H, C(O)OCH₃], AB spin system (A = B = H, δ_A 4.2, δ_B 4.4, ²J_{AB} = 8.5 Hz, 2H, OCH₂), 7.54-7.67 (complex m, 6H), 7.81-7.94 (m, 4H); ³¹P{¹H} NMR (CDCl₃): δ 34.3 (s); ¹⁹F{¹H} NMR (CDCl₃): δ -78.6 (s); Anal. Calcd for C₂₅H₂₉F₃NO₇PPdS: C 44.03, H 4.29, N 2.05, Found: C 44.28; H 4.44; N 1.80.

Complexes **2a,b**, **4a,b**, and **7a,b** can be stored for several months in a Schlenk flask under N₂ atmosphere, whereas complexes **3a,b** and **6a,b** start to show signs of decomposition into palladium black after 3-4 weeks.

2. Crystal Structure Determinations

Crystals suitable for X-ray determination were obtained for of **2a** (Figure S-3), **2b** (Figure S-4), **3a** (Figure S-5), **3b** (Figure S-6), **4b** (Figure S-7) and **6b** (Figure S-8) by slow diffusion of hexane into a CH₂Cl₂ solution of the respective complex at 5 °C, and for **7a** (Figure S-9) and **7b** (Figure S-10) by slow diffusion of pentane into a THF solution of the respective complex also at 5 °C. Diffraction data were collected on a Kappa CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) (Tables S-1 and S-2). Data were collected using phi-scans and the structures were solved by direct methods using the SHELX 97 software,^{4, 5} and the refinement was by full-matrix least squares on F^2 . No absorption correction was used. All non-hydrogen atoms were refined anisotropically with H atoms introduced as fixed contributors ($d_{C-H} = 0.95$ Å, U₁₁ = 0.04). Crystallographic data (excluding structure factors) have been deposited in the Cambridge Crystallographic Data Centre as Supplementary publication n° CCDC **********. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccd.cam.ac.uk).

Complex **2a** crystallized with two independent molecules in the asymmetric unit (Figure S-3). A comparison between the bond lengths and angles (Table S-3) of the independent molecules reveals that they present approximately the same conformation around the metal centre.

Complex **2b** crystallized in a chiral space group $(P2_12_12_1)$, however, in solution the complex is not chiral.

The structure of **3a** (Figure S-5) contains three independent molecules in the asymmetric unit with approximately the same conformation around the metal centre (Table S-3).

Insertion products **6b** and **7a** crystallized with two independent cations and two triflate anions in the asymmetric unit (Figures S-8 and S-9 respectively). In the structure of **6b** the two independent cations have very similar bonding parameters (Table S-4), however the comparison between these 2 cations (Figure S-8 b)) reveals that the ellipsoids of the cation containing Pd2 are larger than those of the cation containing Pd1. This is probably due to a less efficient stabilization by the neighbouring triflate anions thus leading to higher thermal parameters in the Pd2 than in the Pd1 cation. In **7a** the two slightly different cations found in the asymmetric unit also have very similar bonding parameters (Table S-4), but present stereogenic centres of opposite chirality. This is confirmed by their opposite torsion-angle values [O2-Pd1-C17-C21 = 87.2 (3)] and [O6-Pd2-C39-C43 = -87.2 (3)]. The symmetryequivalent asymmetric units contain enantiomers of these cations.

Figure S-3 ORTEP view of the molecular structure of compound **2a** (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density

Figure S-4 ORTEP view of the molecular structure of compound **2b** (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density

Figure S-5: a) ORTEP view of the molecular structure of compound **3a**; **b**) Comparative views of the three different molecules in **3a** (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density.

a)

b)

Figure S-6: ORTEP view of the molecular structure of compound **3b** (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density

Figure S-7: ORTEP view of the molecular structure of compound **4b** (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density

Figure S-8: a) ORTEP view of the molecular structure of compound **6b**; **b)** Comparative view of the two different cations in **6b** (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density

a)

b)

Figure S-9: ORTEP view of the molecular structure of compound **7a**; **b**) Comparative view of the two different cations in **7a** (on the left cation with stereogenic centre of configuration S and on the right of configuration R) (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density.

Figure S-10: ORTEP view of the molecular structure of the cation in complex **7b** (H atoms omitted for clarity). Thermal ellipsoids include 50% of the electron density

Table S-1 Crystal data and	details of the structure detern	mination for the complexes 2a	a,b, and 3a,b .	
	2a	2b	3a	<u>3b</u>
Formula	2[C ₁₇ H ₁₉ CINOPPd]	C ₁₉ H ₂₃ CINOPPd	$3[C_{17}H_{19}NOPPd\cdot CF_{3}SO_{3}]$	C ₁₉ H ₂₃ NOPPd·CF ₃ SO ₃
$M_{ m r}$	426.15	454.20	539.77	567.82
Crystal system	Triclinic	Orthorhombic	Monoclinic	Triclinic
Space group	$P\bar{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}/n$	$P\bar{1}$
<i>a</i> [Å]	8.5550 (4)	7.7310 (10)	17.4710 (2)	8.3330(10)
$b [\text{\AA}]$	8.8270 (5)	11.711 (2)	13.1780 (2)	9.827 (2)
c [Å]	22.6280 (9)	21.589 (4)	29.3020 (3)	14.261 (3)
α [°]	82.744 (4)			92.55 (5)
ß [°]	83.051 (4)		107.1200 (6)	100.18(5)
	86.4320 (16)			98.93 (5)
$V[\bar{A}^3]$	1680.70(14)	1954.6 (6)	6447.36 (14)	1132.4 (4)
Ζ	4	4	12	2
$D_{\rm x} [{ m Mg}{ m m}^{-3}]$	1.684	1.543	1.668	1.665
$\mu [\mathrm{mm}^{-1}]$	1.358	1.173	1.084	1.033
T [K]	173 (2)	173 (2)	173 (2)	173 (2)
λ [Å]	0.71073	0.71073	0.71073	0.71073
θ_{\max} [°]	27.46	30.04	30.03	30.05
data set $[h; k; l]$	-7/11; -9/11; -25/25	-10/10; -16/16; -30/30	-24/24; -18/17; -41/41	-11/11; -13/11; -13/20
tot., unique data, R(int)	8059, 6429, 0.0480	5650, 5650	33223, 18821, 0.0835	8568, 6592, 0.0173
observed data $[I > 2\sigma(I)]$	4199	4464	9279	5724
No. reflns, No. params	6429, 397	5650, 217	18821, 784	6592, 280
<i>R</i> ₁ , w <i>R</i> ₂ , GOF Flack parameter	0.0956, 0.2694, 1.105	0.0397, 0.1272, 0.863 -0.04 (4)	0.0548, 0.1518, 0.948	0.0303, 0.0714, 1.054

14

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

Table S-2 Crystal data and	details of the structure detern	nination for the complexes 4b , e	6b , and 7a , b .	
	4b	6b	7a	7b
Formula	C ₂₀ H ₂₃ CINO ₂ PPd	$2[C_{22}H_{27}NO_2PPd\cdot CF_3SO_3]$	$2[C_{22}H_{25}NO_4PPd\cdot CF_3SO_3]$	C ₂₄ H ₂₉ NO ₄ PPd·CF ₃ SO ₃
$M_{ m r}$	482.21	623.89	1307.74	681.92
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	$P\bar{1}$	$Par{1}$	$P\bar{1}$	$P\bar{1}$
a [Å]	8.962 (5)	11.4740(5)	11.2740 (5)	8.927 (5)
$b\left[{ m \AA} ight]$	10.100(5)	13.9030 (7)	14.8270 (5)	12.268 (5)
$c [m \AA]$	12.534 (5)	18.0810 (10)	17.4450(9)	13.682 (5)
α [₀]	82.414 (5)	92.4860 (15)	73.4310 (16)	76.667 (5)
β [°]	80.486 (5)	96.7650 (15)	85.1550 (15)	87.664 (5)
λ [₀]	64.312 (5)	112.951 (3)	73.2490 (14)	75.302 (5)
$V[\text{Å}^3]$	1006.0(9)	2624.9 (2)	2676.4 (2)	1410.1 (11)
Ζ	2	4	2	2
$D_{\rm x} [{ m Mg} { m m}^{-3}]$	1006.0(9)	1.579	1.623	1.606
μ [mm ⁻¹]	1.148	0.902	0.894	0.852
T [K]	173 (2)	173 (2)	173 (2)	173 (2)
λ [Å]	0.71069	0.71073	0.71073	0.71069
θ_{\max} [°]	35.00	30.07	29.16	27.46
data set $[h; k; l]$	-14/14; -16/16; 0/20	-16/14; -18/19; -25/25	-15/15; -20/20; -23/23	-11/11; -15/15; 0/17
tot., unique data, <i>R</i> (int)	8736, 8735, 0.0000	24511, 15294, 0.0395	23205, 14401, 0.0464	6394, 6394,
observed data $[I > 2\sigma(I)]$	8240	8608	8027	5427
No. refins, No. params	8735, 235	15294, 625	14401, 667	6394, 352
R_1 , w R_2 , GOF	0.0226, 0.0635, 1.046	0.0724, 0.2146, 1.079	0.0511, 0.1375, 0.961	0.0542, 0.1722, 1.075

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

15

Table S-3 Coi	mparison of the	s bond lengths [/	Å] and angles [^o] for the differe	ent molecules in	n the structures	of 2a and 3a .		
	2a	7	2a'	•	3a	3	la'	ŝ	a''
Pd1-N1	2.103 (12)	Pd2-N2	2.098 (11)	Pd1-N1	2.131 (4)	Pd2-N2	2.124 (4)	Pd3-N3	2.139 (4)
Pd1-P1	2.212 (4)	Pd2-P2	2.230 (3)	Pd1-P1	2.1699 (12)	Pd2-P2	2.1716 (12)	Pd3-P3	2.1741 (13)
Pd1-C17	2.057 (13)	Pd2-C34	2.087 (12)	Pd1-C17	2.026 (5)	Pd2-C35	2.017(5)	Pd3-C53	2.032 (5)
				Pd1-02	2.156 (3)	Pd2-06	2.151 (3)	Pd3-010	2.175 (3)
Pd1-Cl1	2.383 (4)	Pd2-Cl2	2.376 (4)						
N1-C3	1.291 (18)	N2-C20	1.284 (17)	N1-C3	1.281 (6)	N2-C21	1.288(6)	N3-C39	1.284(6)
C3-C4	1.468 (19)	C20-C21	1.49(2)	C3-C4	1.476(6)	C21-C22	1.483(6)	C39-C40	1.487(7)
C4-P1	1.847 (13)	C21-P2	1.851 (13)	C4-P1	1.839 (5)	C22-P2	1.846 (5)	C40-P3	1.858 (5)
N1-Pd1-P1	82.2 (3)	N2-Pd2-P2	82.8 (3)	N1-Pd1-P1	84.85 (11)	N2-Pd2-P2	84.63 (11)	N3-Pd3-P3	84.93 (11)
N1-Pd1-C17	176.4 (5)	N2-Pd2-C34	176.9(5)	N1-Pd1-C17	174.97 (17)	N2-Pd2-C35	174.38 (17)	N3-Pd3-C53	174.96 (18)
	× *		x ¢	N1-Pd1-O2	95.14 (14)	N2-Pd2-O6	95.97 (14)	N3-Pd3-O10	95.54 (15)
N1-Pd1-Cl1	93.2 (3)	N2-Pd2-Cl2	92.3 (3)		~		~		~
				P1-Pd1-O2	172.64 (9)	P2-Pd2-O6	176.65 (9)	P3-Pd3-O10	171.95 (10)
P1-Pd1-C17	94.5 (4)	P2-Pd2-C34	95.3 (4)	P1-Pd1-C17	90.68 (15)	P2-Pd2-C35	90.08 (15)	P3-Pd3-C53	90.44 (16)
P1-Pd1-Cl1	174.66 (15)	P2-Pd2-Cl2	174.38 (14)						
				C17-Pd1-O2	89.00 (18)	C35-Pd2-O6	89.19 (18)	C53-Pd3-O10	88.77 (19)
C17-Pd1-Cl1	90.1 (5)	C34-Pd2-Cl2	89.5 (4)						

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

16

Table S-4 Cor	nparison of the	bond lengths [Å] and angles [°]	for the different	t cations in the s	structures of 6a a	and 7a .
	6b		6b'		7a		7a'
Pd1-N1	2.104(4)	Pd2-N2	2.127 (5)	Pd1-N1	2.082 (3)	Pd2-N2	2.088 (3)
Pd1-P1	2.1878 (14)	Pd2-P2	2.1992 (19)	Pd1-P1	2.2051 (10)	Pd2-P2	2.2022 (10)
Pd1-C17	2.030(5)	Pd2-C39	2.012 (7)	Pd1-C17	2.046(4)	Pd2-C39	2.046(4)
Pd1-02	2.125 (4)	Pd2-04	2.145(5)	Pd1-02	2.112 (2)	Pd2-06	2.120(3)
N1-C3	1.270 (6)	N2-C25	1.249(9)	N1-C3	1.285(5)	N2-C25	1.295(5)
C3-C4	1.480 (7)	C25-C26	1.523(10)	C3-C4	1.496(5)	C25-C26	1.487(5)
C4-P1	1.841 (5)	C26-P2	1.855(6)	C4-P1	1.837(4)	C26-P2	1.843(4)
C17-C18	1.527(8)	C39-C40	1.383 (12)	C17-C18	1.545(6)	C39-C40	1.543 (7)
C18-C19	1.485 (8)	C40-C41	1.485 (11)	C18-C19	1.472 (6)	C40-C41	1.472 (7)
C19-02	1.248(6)	C41-O4	1.223 (9)	C19-02	1.220 (5)	C41-O6	1.237(6)
N1-Pd1-P1	83.91 (12)	N2-Pd2-P2	83.88 (18)	N1-Pd1-P1	82.13 (9)	N2-Pd2-P2	81.72 (9)
N1-Pd1-C17	177.1 (2)	N2-Pd2-C39	178.7(3)	N1-Pd1-C17	174.17 (15)	N2-Pd2-C39	174.28 (15)
N1-Pd1-O2	100.03(14)	N2-Pd2-O4	100.6(2)	N1-Pd1-O2	96.10 (12)	N2-Pd2-O6	95.33 (12)
P1-Pd1-O2	174.72 (10)	P2-Pd2-O4	175.56 (13)	P1-Pd1-02	175.29 (8)	P2-Pd2-O6	172.10 (8)
P1-Pd1-C17	93.30 (16)	P2-Pd2-C39	95.5 (3)	P1-Pd1-C17	99.24 (11)	P2-Pd2-C39	99.99 (12)
C17-Pd1-O2	82.80 (18)	C39-Pd2-O4	80.1 (3)	C17-Pd1-O2	82.10 (14)	C39-Pd2-O6	82.26 (15)

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

17

3. References

- R. E. Rulke, J. M. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen and K. Vrieze, *Inorg. Chem.*, 1993, **32**, 5769-5778.
- 2. F. T. Ladipo and G. K. Anderson, *Organometallics*, 1994, **13**, 303-306.
- 3. P. Braunstein, M. D. Fryzuk, M. L. Dall, F. Naud, S. J. Rettig and F. Speiser, *J. Chem. Soc., Dalton Trans.*, 2000, 1067-1074.
- 4. *Kappa CCD Operation Manual; Nonius BV*, (1997), Kappa CCD Operation Manual; Nonius BV, Delft, The Nederlands.
- 5. G. M. Sheldrick, *SHELXL97*, (1997), SHELXL97, Program for the refinement of crystal structures, University of Göttingen, Germany.