A highly water-soluble \mathbf{C}_{60}-NVP copolymer: a potential material for photodynamic therapy

Supporting Information

Yuko Iwamoto and Yoko Yamakoshi*
Department of Chemistry and Biochemistry, University of California at Santa Barbara
CA93106-9510 USA

Synthesis of co-polymer of C_{60} and \boldsymbol{N}-vinylpyrrolidone

General. Melting points were measured with MELTEMP (Laboratory Devices, Holliston, MA) and are uncorrected. NMR spectra were recorded on Varian Unity 400 spectrometer (Varian Inc., CA). Mass Spectrometry was performed by VG70 doublefocusing mass spectrometer (VG Analytical, Manchester, UK). UV and IR spectra were recorded on JASCO V-530 and JASCO FT/IR-430 (JASCO, Tokyo, JPN), respectively. HPLC analysis was carried out by JASCO PU-1580 intelligent HPLC pump, JASCO UV-1570 intelligent UV/VIS detector and ChromPass Chromatography Data System (JASCO, Tokyo, JPN). All the solvents were purchased from EMD Chemicals Inc., NJ, and dried by solvent system (Innovative Technology Inc., FL) or distilled if needed. All the reagents were purchased from corresponding suppliers and purified as described when needed. Column chromatography, preparative TLC and analytical TLC were performed on silica gel (Merck Silicagel 60 F_{254} (Art 5715) 0.25 mm , EM Science silica gel $60 \mathrm{PF}_{254}$ and E. Merck Silica gel 60 ($230-400$ mesh), respectively).

Dimethylfulleropyrrolidine, 1. ${ }^{1}$ To a solution of $\mathrm{C}_{60}(99.5 \%$, Material Technology Research Ltd., OH , $144 \mathrm{mg}, 0.20 \mathrm{mmol}$) in toluene (100 mL), L-alanine (Tokyo Chemical Industry Co., Ltd., JPN, 36 mg , 0.40 mmol) and acetaldehyde (Alfa Aesar, MA, distilled, $44 \mathrm{mg}, 1.0 \mathrm{mmol}$) were added and refluxed for 41 hours under nitrogen atmosphere. The reaction process was monitored by TLC $\left(\mathrm{SiO}_{2}\right.$, tolueneEtOAc (10:1), Rf of product: 0.19) and HPLC (column: Senshu Pak Silica-1151-N ($\Phi 4.6 \times 150 \mathrm{~mm}$), solvent: toluene-EtOAc ($10: 1$), flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, detection wavelength: 390 nm , injection: 10 $\mu \mathrm{L}$, retention times: $1.68 \mathrm{~min}\left(\mathrm{C}_{60}\right), 11.48 \mathrm{~min}($ cis-1 $), 12.16 \mathrm{~min}($ trans $-\mathbf{1})$). The reaction mixture was separated by silica gel column chromatography $\left(\mathrm{SiO}_{2}: 150 \mathrm{~g}\right.$, developed with hexane, hexane-toluene, hexane-toluene-EtOAc, eluted with hexane-toluene-EtOAc (5:5:1)) to give brown solid cis and trans$1\left(57 \mathrm{mg}, 0.072 \mathrm{mmol}, \mathrm{y}=36 \%\right.$, recovered $\mathrm{C}_{60}=66 \mathrm{mg}(0.092 \mathrm{mmol})$ and conversion $\left.\mathrm{y}=67 \%\right)$. The ratio of cis and trans isomers were calculated as 77 : 23 by integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. TLC: R_{f} 0.55 (tolene-EtOAc (2:1)); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: cis- $1 \delta 5.12$ (q, $J=6.78,2 \mathrm{H}$), 2.07 (d, J=6.87, 6 H), trans-1 $\delta 4.85(\mathrm{q}, J=6.59,2 \mathrm{H}), 2.05(\mathrm{~d}, J=6.69,6 \mathrm{H})$; FAB-MS (matrix: NBA) m/z $792[\mathrm{M}+1]^{+}$.

[^0]
\boldsymbol{N}-Carboxyvinylfulleropyrrolidine, 2. To a solution of cis and trans-1 (34 mg, 0.043 mmol) in toluene (20 mL), acryloyl chloride (TCI, $40 \mu \mathrm{~L}, 45 \mathrm{mg}, 0.46 \mathrm{mmol}$) and pyridine (Alfa Aesar, distilled, 2 mL) were added and stirred for 2 min under N_{2} atmosphere. The reaction progress was monitored by TLC (SiO_{2}, toluene - EtOAc (10:1), Rf: cis, trans-1: 0.19 , cis-2: 0.44 , trans-2: 0.37). The reaction mixture was separated by silica gel column chromatography $\left(\mathrm{SiO}_{2}: 50 \mathrm{~g}\right.$, developed with hexane, toluene-EtOAc, eluted with toluene-EtOAc ($30: 1$)) to give a brown solid (cis- and trans-2, 30.3 mg), which was purified further by preparative TLC (toluene-EtOAc(10:1)) to give cis-2 ($20.4 \mathrm{mg}, 0.024 \mathrm{mmol}$) and trans-2 ($8.2 \mathrm{mg}, 0.0097 \mathrm{mmol}$) (total 0.034 mmol , yield $=79 \%$).
cis-2: $\mathrm{mp}>260{ }^{\circ} \mathrm{C}$; IR (neat) $2969 \mathrm{~cm}^{-1}, 2925,2848,1649,1609,1415,1376,1303,1277,1213,1185$, 1099,$972 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.01(\mathrm{dd}, J=10.29,16.74 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 6.63 (dd, $J=16.74$, $1.84 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 5.93 (dd, $J=10.29,1.84 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 5.80 (br.q, $J=5.99,2 \mathrm{H}, \mathrm{C} \underline{\mathrm{H}}$), 2.32 (d, $J=$ $\left.5.99,6 \mathrm{H}, \mathrm{CH}_{3}\right)$) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 168.1$ ($\underline{\mathrm{C}}=\mathrm{O}$), 154.8, 152.0, 147.7, 146.6, 146.6, 146.4 (3 peaks overlap), 145.8 (2 peaks overlap), 145.8, 145.7, 145.6, 145.5, 144.8, 144.7, 143.4, 143.0, $142.9,142.4,142.4,142.3$ (2 peaks overlap), 142.1, 142.0, 140.4, 140.0, 137.0, 135.9, 130.6 (vinyl), 129.2 (vinyl), 74.0 (sp3 quaternary), $64.6(\underline{\mathrm{CH}}), 20.2\left(\underline{\mathrm{CH}}_{3}\right)$; MS (FAB, NBA) m/z 846 ([M+H] ${ }^{+}$); HRMS (ESI) 868.0772 obs., 868.0732 calcd. for $\mathrm{C}_{67} \mathrm{H}_{11} \mathrm{NONa}$.
trans-2: $\mathrm{mp}>260^{\circ} \mathrm{C}$; IR (neat) $3007 \mathrm{~cm}^{-1}, 2967,2925,2851,1666,1614,1407,1378,1338,1264,1227$, 1186, 1123, 972; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.97$ (dd, $J=10.3,16.7 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 6.74 (dd, $J=$ $16.7,2.00 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), $6.20(\mathrm{q}, J=7.06,2 \mathrm{H}, \mathrm{C} \underline{\mathrm{H}}), 6.00(\mathrm{dd}, J=10.3,2.00 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 2.28 (d, J $\left.=7.06, \mathrm{~Hz} 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 164.1$ ($\left.\mathrm{C}=\mathrm{O}\right), 155.8,152.1,147.7,146.6,146.5$, 146.4, 146.3, 146.2, 145.8, 145.6 (2 peaks overlap), 145.6, 145.5, 144.9, 144.8, 144.6, 143.5, 142.9, $142.9,142.5,142.4,142.3$ (2 peaks overlap), 142.2, 141.8, 140.4, 140.2, 137.6, 134.5, 130.2 (vinyl), 127.8 (vinyl), 73.6 (sp3 quaternary), $64.1(\underline{\mathrm{CH}}), 24.7\left(\mathrm{CH}_{3}\right)$; MS (FAB, NBA) $\mathrm{m} / \mathrm{z} 846$ ([M+H] ${ }^{+}$) ; HRMS (ESI) 868.0730 obs., 868.0732 calcd. for $\mathrm{C}_{67} \mathrm{H}_{11} \mathrm{NONa}$.

Figure 1s. ${ }^{1} \mathrm{H}$-NMR spectra of monomer cis-2.

Figure 2s. ${ }^{13} \mathrm{C}$-NMR spectra of monomer cis-2.

Figure 3s. IR spectra of monomer cis-2.

Figure 4s. MS spectra of monomer cis-2.

Figure 5s. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of monomer trans-2.

Figure 6s. ${ }^{13} \mathrm{C}$-NMR spectra of monomer trans-2.

Figure 7s. IR spectra of monomer trans-2.

Figure 8s. MS spectra of monomer trans-2.

General procedure for the preparation of polymers 3a-g. To a solution of cis- and trans- $\mathbf{2}$ in dichlorobenzene (TCI), N-vinylpyrrolidone (TCI) and azoisobutyronitrile (AIBN, Aldrich) were added. Reaction mixture was degassed by freeze-pump-thaw (5 cycles) and stirred under nitrogen atmosphere at $60^{\circ} \mathrm{C}$. Normally, the reaction mixture became solid during the reaction. The reaction mixture was reconstituted with a small amount of CHCl_{3} and subsequently 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate (two times) a brown substance, which was dried in a vacuum oven $\left(60^{\circ} \mathrm{C}\right)$ to give a brown powder.

Table Is. Reaction conditions and yields of copolymer preparations.

copolymer	feed ratio of 2 and NVP	feed amount of reagents			solvent [mL]	time [hours]	polymer obtained [mg]	Yield[\%]
		$\begin{gathered} 2[\mathrm{mg}] \\ (\mathrm{mmol}) \end{gathered}$	NVP [mg] (mmol)	AIBN [mg] (mmol)				
3 a	1:50	7.4 (0.0087)	49 (0.44)	14 (0.086)	0.06	41	24	43
3b	1:75	8.5 (0.010)	83 (0.75)	25 (0.15)	0.10	72	49	53
3 c	1:100	8.5 (0.010)	111 (1.0)	33 (0.20)	0.13	46	79	66
3d	1:150	17.3 (0.020)	333 (3.0)	99 (0.60)	0.40	40	295	84
3 e	1:200	17.2 (0.020)	447 (4.0)	131 (0.80)	0.53	24	447	96
3 f	1:250	9.0 (0.011)	296 (2.7)	88 (0.53)	0.34	24	292	96
3 g	1:300	6.4 (0.0076)	252 (2.3)	75 (0.46)	0.3	24	245	95

Figure 9s. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of copolymer $\mathbf{3 e}$.

Figure 10s. IR spectra of copolymer 3e.

GPC analysis of C_{60}-NVP co-polymers

GPC analysis was performed by Waters 2690 separation module and Waters 2410 RI detector (Waters Co., MA) equipped with a Styragel column ($\Phi 7.8 \times 300 \mathrm{~mm}$ Waters, Co. MA). An aliquot of each $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer (6 mg), 2.0 mL of DMF with 0.1% of LiBr was added and was analyzed after filtration (Acrodisk ${ }^{\circledR}, 0.45 \mu \mathrm{~m}$, PTFE CR13 pall). Elution was carried out by DMF with 0.1% of LiBr . The calibration was carried out with standard polystyrenes with MW $947 \mathrm{Da}-188 \mathrm{kDa}$.

DSC analysis of $\mathrm{C}_{60}-\mathrm{NVP}$ co-polymers

Differential scanning calorimetry (DSC) analysis was carried out by DSC 2920 (TA instrument, New Castle, DE). An aliquot of each $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer ($3-4 \mathrm{mg}$) was measured and analyzed. Temperature was raised from $0^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$ by the rate of $10^{\circ} \mathrm{C} / \mathrm{min}$, then cooled to $-30^{\circ} \mathrm{C}$ by the rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ to determine glass transition temperature $\left(\mathrm{T}_{\mathrm{g}}\right)$ of each copolymer.

DLS analysis of $\mathrm{C}_{60}-\mathrm{NVP}$ co-polymers

Dynamic light scattering (DLS) analysis was carried out by BI-9000AI digital correlator, BIAPD Avalanche photodiode (Brookhaven Instruments Ltd., NY) equipped with 63310 mW HeNe laser with power module. An aliquot of each $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer was measured and water, DMSO or DMF was added to prepare $1.25 \mathrm{mg} / \mathrm{mL}$ solution. After filtration (Nalgene syringe filter $0.45 \mu \mathrm{~m}$, No.1902545 for aqueous solution and Alltech Polypure ${ }^{\mathrm{TM}}$ syringefilter $0.45 \mu \mathrm{~m}$ for DMSO and DMF solution), the solution was analyzed.

Table IIs. Characterization of C_{60}-NVP copolymers.

Ratio of feed C_{60} and NVP	$1: 50$	$1: 75$	$1: 100$	$1: 150$	$1: 200$	$1: 250$	$1: 300$
Mn by GPC [kDa]	41	41	30	43	40	46	51
Grass transition temperature by DSC [$\left.{ }^{\circ} \mathrm{C}\right]$	151	160	149	163	173	168	169
Diameter of polymer granule by DLS [nm]	in DMSO	not	not				
soluble	soluble	84.2	23.9	19.5	18.1	19.2	
	in DMF	89.7	13.5	17.4	15.2	15.5	10.0

Measurement of solubility of C_{60}-NVP co-polymers

To an aliquot of C_{60} polymer, DI water was added to make 1 mL solution and treated by sonication for 2 min . The solution was filtered through a cotton-plugged filter and subsequently a membrane filter (Millex®-GV, Millipore Co., MA) to remove the insoluble solid. The filtrate was diluted with DI water $(1 / 100)$ to measure the absorbance at 300 nm . All the measurements were carried out for three times.

Figure 11s-a. Solubility curves of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer (1:50) in water.

Figure 11s-c. Solubility curves of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer ($1: 100$) in water.

Figure 11s-b. Solubility curves of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer ($1: 75$) in water.

Figure 11s-d. Solubility curves of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer ($1: 150$) in water.

Figure 11s-e. Solubility curves of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer (1:200) in water.

Figure 11s-f. Solubility curves of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer (1:250) in water.

Figure 11s-g. Solubility curves of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer
(1:300) in water.
Figure 9s. Solubility curves of $\mathrm{C}_{60}-$ NVP polymer in water.

Table IIIs. Solubility of C_{60}-NVP copolymers in water.

Ratio of feed C_{60} and NVP	$1: 50$	$1: 75$	$1: 100$	$1: 150$	$1: 200$	$1: 250$	$1: 300$
Solubility $(\mathrm{mg} / \mathrm{mL})$	0.04	0.05	80	120	180	200	240
Concentration of $\mathrm{C}_{60}(\mathrm{mM}$ calculated as monomer)	0.0063	0.0055	6.7	6.9	7.8	7.0	7.0
Concentration of PVP $(\% \mathrm{w} / \mathrm{v})$	0.0035	0.0045	7.4	11	17	19	23

Detection of superoxide radical anion from $\mathrm{C}_{60}-$ NVP co-polymer by NBT method

The generation of $\mathrm{O}_{2}{ }^{-}$from $\mathrm{C}_{60}-\mathrm{NVP}$ co-polymer (1:200) was detected by NBT (nitro blue tetrazolium) method as reported by Nagano and co-workers. ${ }^{2}$ Assay was performed in 50 mM phosphate buffer (pH 6.5) in the presence of NBT 0.24 mM , EDTA 0.1 mM , NADH 10 mM .

For the time course measurement, solution with $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer $11.5 \mathrm{mg} / \mathrm{mL}$ (estimated concentration of C_{60} as monomer: 0.5 mM) was incubated under or without photoirradiation using two 200-W photoreflector lamps with $12-13 \mathrm{~cm}$ of distance through glass ($35,000-37,000$ lux) in the ice bath $\left(0-5{ }^{\circ} \mathrm{C}\right)$. As a reference, 1.1% of PVP was used. An aliquot ($200 \mu \mathrm{~L}$) of each reactant was subsequently diluted with 50 mM phosphate buffer $(1800 \mu \mathrm{~L})$ before measuring the absorbance at 560 nm.

Figure 12s. Time course of photoinduced $\mathrm{O}_{2}{ }^{-}$generation by $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer in 50 mM phosphate buffer (pH 6.5). Irradiation: two $200-\mathrm{W}$ photoreflector lamps ($35,000-37,000$ lux) at $0-5^{\circ} \mathrm{C}$. In the presence of C_{60} copolymer ($11.5 \mathrm{mg} / \mathrm{mL}, 50 \mathrm{mM}$ of C_{60}) and NADH (10 mM), under visible light irradiation (\square); in the presence of C_{60} copolymer and NADH, without light irradiation $\left(\boldsymbol{)}\right.$; without C_{60} copolymer, with NADH, under light irradiation ($)$.

For the dose-dependent experiment, solutions with corresponding concentrations of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer was prepared and incubated under same conditions of photoirradiation for 30 min .

[^1]

Figure 13s. Dose-dependent effect of C_{60} on $\mathrm{O}_{2}{ }^{-}$generation by C_{60} - NVP copolymer in 50 mM phosphate buffer (pH 6.5). Irradiation: : two $200-\mathrm{W}$ photoreflector lamps (35,000-37,000 lux) at 0 $5^{\circ} \mathrm{C}$ for 30 min .

DNA-cleaving test of $\mathrm{C}_{60}-\mathrm{NVP}$ copolymers

A super coiled plasmid DNA (pBR322, $1000 \mu \mathrm{~g} / \mathrm{mL}$, New England Biolabs Inc., MA) was diluted with 1 M TDC buffer (pH 8.0) to $100 \mu \mathrm{~g} / \mathrm{mL}$. The DNA solution, $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer solutions and other reagent solutions (reductant) were mixed well in TDC buffer (Tris- HCl buffer with KCl and MgCl_{2}) and subjected to photoirradiation with a $200-\mathrm{W}$ photoreflector lamp at a distance of $12-13 \mathrm{~cm}$ (60,000-63,000 lux) at $37^{\circ} \mathrm{C}$. After irradiation, an aliquot ($20 \mu \mathrm{~L}$) of the irradiated solution was mixed with bromophenol blue-glycerol solution ($5 \mu \mathrm{~L}$) and subjected to the agarose gel electrophoresis (1% agarose in Timiza base EDTA (TBE) buffer, $100 \mathrm{~V}, 70 \mathrm{~min}$). The gel was stained with ethidium bromide and photographed on the transilluminator for analysis of the ratio of Form I (supercoiled) and Form II (nicked).

Figure 14s. Photoinduced DNA cleavage by water-soluble C_{60}-NVP copolymer (time dependency of visible light irradiation). The pBR322 supercoiled plasmid was incubated with $23 \mathrm{mg} / \mathrm{mL}\left(1 \mathrm{mM}\right.$ of C_{60} estimated as monomer) of C_{60}-NVP copolymer ($1: 200$) in TDC buffer in the presence of 10 mM of NADH at $37{ }^{\circ} \mathrm{C}$ for $0,1,2$ and 4 hours under irradiation with a $200-\mathrm{W}$ photoreflector lamp. Lanes $1-8$, in the presence of C_{60} copolymer; lanes 9,10 , without C_{60} copolymer; lanes 1-4 and 9 , incubated under visible light irradiation; lanes 5-8 and 10 , incubated without light irradiation; lanes 1 and 5, incubated for 0 min ; lanes 2 and $6,1 \mathrm{~h}$; lanes 3 and $7,2 \mathrm{~h}$; lanes 4 and 8-10, 4 h .

Figure 15s. Photoinduced DNA cleavage by water-soluble $\mathrm{C}_{60}-\mathrm{NVP}$ copolymer (concentration dependency of copolymer). The pBR322 supercoiled plasmid was incubated with $0,5.75,11.5$ and $23 \mathrm{mg} / \mathrm{mL}$ of C_{60}-NVP copolymer ($1: 200$) $\left(0,0.25,0.5\right.$ and 1 mM of C_{60} estimated) in TDC buffer at $37^{\circ} \mathrm{C}$ for 2 hours under irradiation with two 200-W photoreflector lamps. Lanes $1-8$, in the presence of C_{60} copolymer; lanes 9 , 10 , without C_{60} copolymer; lanes 1-4 and 9, incubated under visible light irradiation; lanes 5-8 and 10, incubated without light irradiation; lanes 1 and 5, in the absence of C_{60} copolymer; lanes 2 and $6,5.75 \mathrm{mg} / \mathrm{mL}$ of C_{60} copolymer ($\mathrm{C}_{60} 0.25$ $\mathrm{mM})$; lanes 3 and $7,11.5 \mathrm{mg} / \mathrm{mL}(0.5 \mathrm{mM})$; lanes 4 and $8,23 \mathrm{mg} / \mathrm{mL}(1 \mathrm{mM})$.

[^0]: ${ }^{11}$ Tan, X.; Schuster, D. I.; Wilson, S. R. Tetrahedron Lett. 1998, 39, 4187-4190.

[^1]: ${ }^{2}$ Umezawa. N.; Arakane. K.; Kyu, A.; Mashiko, S.; Hirobe, M.; Nagano, T. Arch. Biochem. Biophys. 1997, 342, 275-281.

