Electronic Supporting Information

Design, Synthesis and Biological Evaluation of a Macrocyclic Discodermolide/Dictyostatin Hybrid

Ian Paterson,* Nicola Gardner

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

General Experimental Details

Thin layer chromatography was carried out on commercial glass backed silica gel 60 F254 plates. Visualization of chromatograms was accomplished using ultraviolet light (254 nm) and/or heating the plate after staining with either a solution of 20% ceric ammonium molybdate w/v in H₂O or 20% potassium permanganate w/v in H₂O. Optical rotations were measured with a Perkin-Elmer 241 polarimeter at 589 nm (sodium D line) and concentrations (c) are reported in g/100 mL. Infrared (IR) spectra were recorded on a Perkin-Elmer 1620 FT-IR spectrophotometer with internal calibration. Only selected, characteristic IR absorption data, in wavenumbers (cm⁻¹) are provided for each compound. NMR spectra were recorded using deuteriobenzene (C_6D_6) or deuteriomethanol (CD₃OD) as the solvent. Chemical shifts (δ) are given in parts per million (ppm) from tetramethylsilane ($\delta = 0$) and were measured relative to the signal of the solvent in which the sample was analyzed (C_6D_6 : δ 7.15, ¹H NMR; δ 128.0, ¹³C NMR; CD₃OD: δ 4.78, ¹H NMR; δ 49.0, ¹³C NMR). Coupling constants (J values) are given in Hertz (Hz) and are reported to the nearest 0.1 Hz. ¹H NMR spectral data are tabulated in the order: number of protons, multiplicity (br, broad; s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet; m, multiplet), coupling constant and proton assignment where applicable.

Aldol Adduct **10**: R_f 0.59 (20% EtOAc / hexane); [**a**]_D²⁰ +61.6 (c = 0.02, MeOH); **IR** (Thin Film) v_{max} = 3396 (*br*, OH), 2961 (m), 1613 (m), 1514 (s), 1457 (m), 1301 (m); ¹H NMR (500 MHz, C₆D₆) δ = 7.34 (2H, d, J = 8.6 Hz, Ar<u>H</u>), 7.29 (2H, d, J = 8.6 Hz, Ar<u>H</u>), 6.86 (2H, d, J = 8.6 Hz, Ar<u>H</u>), 6.82

 $(2H, d, J = 8.8 \text{ Hz}, \text{Ar}\underline{H}), 6.73 (1H, app dt, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}, C_{25}-\underline{H}), 6.32 (1H, dd, J = 17.0, 11.0 \text{ Hz}$ 9.7, 11.4 Hz, C_{11} -<u>H</u>), 6.13 (1H, *app* t, J = 11.1 Hz, C_{24} -<u>H</u>), 5.98 (1H, d, J = 11.6 Hz, C_{10} -<u>H</u>), 5.74 (1H, *app* t, J = 10.7 Hz, C_{23} -<u>H</u>), 5.70 - 5.60 (2H, m, C_2 -<u>H</u> + C_3 -<u>H</u>), 5.28 (1H, d, J= 16.8 Hz, C_{26} - H_x H_v), 5.15 (1H, d, J = 9.5 Hz, C_{26} -H_xH_v), 4.97 (1H, d, J = 10.3 Hz, C_{15} -H), 4.61 and 4.57 (2H, AB system, J = 10.6 Hz, OCH₂Ar), 4.43 and 4.40 (2H, AB system, J = 11.6 Hz, OCH₂Ar), 4.35 - 4.27 (1H, m, C₇-<u>H</u>), 4.14 (1H, dd, J = 5.2, 11.7 Hz, $C_1-H_1H_2$, 4.05 (1H, dd, J = 5.0, 11.8 Hz, $C_1-H_1H_2$), 3.97 - 3.89 (2H, m, $C_5-H_1 + C_{12}-H_2$), 3.67 (1H, d, J = 2.9 Hz, C_{19} -<u>H</u>), 3.63 (1H, *app* t, J = 4.1 Hz, O<u>H</u>), 3.49 (1H, dd, J = 2.8, 8.0 Hz, C_{13} -<u>H</u>), 3.38 (1H, dd, J = 3.8, 7.4 Hz, C_{21} -<u>H</u>), 3.34 (3H, s, OCH₃), 3.32 (3H, s, OCH_3 , 3.14 - 3.10 (1H, m, C_{22} -H), 2.86 - 2.81 (1H, m, C_4 -H), 2.62 - 2.59 (1H, dd, J =2.1, 17.1 Hz, $C_8-\underline{H}_xH_v$), 2.60 – 2.52 (1H, m, $C_{14}-\underline{H}$), 2.40 (1H, dd, J = 9.3, 17.4 Hz, $C_8-\underline{H}_xH_v$) $H_{x}H_{v}$), 2.22 (1H, *app* t, J = 12.5 Hz, $C_{17}-H_{x}H_{v}$), 2.06 - 2.02 (1H, m, $C_{20}-H$), 1.97 - 1.92 $(2H, m, C_6-H + C_{18}-H)$, 1.81 (1H, d, J = 11.4 Hz, $C_{17}-H_xH_y$), 1.68 (3H, s, $C_{16}-CH_3$), 1.28 $(3H, d, J = 6.8 \text{ Hz}, C_{20}\text{-}C\underline{H}_3), 1.17 (6H, d, J = 6.1 \text{ Hz}, C_{12}\text{-}C\underline{H}_3 + C_{22}\text{-}C\underline{H}_3), 1.10 - 0.92$ $(33H, C_4-CH_3 + C_6-CH_3 + C_{14}-CH_3 + 3 \times SiC(CH_3)_3), 0.88 (3H, d, J = 7.1 \text{ Hz}, C_6-CH_3),$ $0.21 (3H, s, Si(CH_3)), 0.20 (3H, s, Si(CH_3)), 0.18 (3H, s, Si(CH_3)), 0.17 (3H, s, Si(CH_3)), 0.17$ 0.16 (3H, s, Si(C<u>H₃</u>)), 0.10 (3H, s, Si(C<u>H₃</u>)); ¹³C NMR (125MHz, C₆D₆) δ = 201.2, 159.6, 159.5 (2C), 151.3, 137.5, 135.4, 134.7, 132.7, 132.5, 131.3, 131.1, 130.8, 129.4, 129.2 (2C), 127.2, 125.9, 125.4, 117.7, 113.9 (2C), 84.7, 80.8, 77.8, 76.9, 75.2, 74.9, 72.1 (d, J = 6.1 Hz), 69.3, 65.9, 65.8, 54.5, 50.9, 48.6, 44.8, 40.4, 38.5, 37.8, 37.1, 36.9, 36.5, 35.9, 35.6, 35.5, 30.2, 26.4, 26.3, 26.1, 26.0, 25.9, 22.9, 18.7, 18.6, 18.5, 18.3, 17.9, 17.8, 17.6, 14.8, 11.8, 11.0, -3.1, -3.3, -3.5, -3.9, -4.0, -4.2; **HRMS** (ES⁺) Calcd for C₆₈H₁₁₆O₉Si₃Na [M+Na]⁺ 1183.7819, found 1183.7786.

1,3-*anti* diol **11**: R_f 0.32 (20% EtOAc / hexane); [**a**]_D²⁰ +49.7 (c = 0.68, CHCl₃); **IR** (Thin Film) v_{max} = 3477 (*br*, OH), 2957 (s), 2930 (s), 2856 (s), 1614 (m), 1515 (s), 1462 (s), 1375 (m); ¹H NMR (500 MHz, C₆D₆) $\delta = 7.32$ (2H, d, J = 8.6 Hz, Ar<u>H</u>), 7.30 (2H, d, J = 8.6 Hz, Ar<u>H</u>), 6.84 (4H, *app* t, J = 11.4

Hz, ArH), 6.73 (1H, *app* dt, J = 16.8, 10.4 Hz, C₂₅-H), 6.11 (1H, *app* t, J = 11.0 Hz, C₂₄-<u>H</u>), 5.71 (1H, app t, J = 10.6 Hz, C₂-<u>H</u>), 5.69 (1H, app t, J = 11.2 Hz, C₂₃-<u>H</u>), 5.66 – 5.64 $(2H, m, C_{10}-\underline{H} + C_{11}-\underline{H}), 5.57 (1H, app t, J = 10.4 Hz, C_3-\underline{H}), 5.26 (1H, d, J = 16.9 Hz), 5.26 (1H, d, J = 16.9$ $C_{26}-\underline{H}_{x}H_{y}$), 5.19 (1H, d, J = 10.3 Hz, $C_{15}-\underline{H}$), 5.13 (1H, d, J = 10.1 Hz, $C_{26}-H_{x}H_{y}$), 4.91 (1H, br s, C₉-<u>H</u>), 4.60 and 4.54 (2H, AB system, J = 10.6 Hz, OCH₂Ar), 4.47 and 4.41 (2H, AB system, J = 11.5 Hz, OCH₂Ar), 4.17 and 4.04 (2H, dd AB system, J = 10.1, 12.2 Hz, C_1 -<u>H</u>₂), 4.10 (1H, *app* t, J = 8.5 Hz, C_7 -<u>H</u>), 3.80 (1H, dd, J = 3.4, 6.4 Hz, C_5 -<u>H</u>), 3.65 $(1H, app t, J = 4.6 Hz, C_{19}-H), 3.46 (1H, br s, OH), 3.41 (1H, dd, J = 4.6, 6.3 Hz, C_{13}-H),$ 3.36 (1H, dd, J = 4.2, 6.8 Hz, C_{21} -<u>H</u>), 3.33 (3H, s, OC<u>H₃</u>), 3.32 (3H, s, OC<u>H₃</u>), 3.16 - 3.09 $(1H, m, C_{22}-\underline{H}), 3.03 - 2.96 (1H, m, C_{12}-\underline{H}), 2.90 - 2.82 (1H, m, C_4-\underline{H}), 2.74 - 2.67 (1H, m, C_{12}-\underline{H}), 2.74 - 2.67 (1H, m,$ m, C_{14} -<u>H</u>), 2.58 (1H, br s, O<u>H</u>), 2.32 (1H, app t, J = 12.5 Hz, C_{17} -<u>H</u>_xH_y), 2.08 – 1.98 (3H, m, $C_6-\underline{H} + C_{18}-\underline{H} + C_{20}-\underline{H}$), 1.91 - 1.86 (2H, m, $C_8-\underline{H}_xH_v + C_{17}-\underline{H}_xH_v$), 1.77 - 1.72 (1H, m, $C_8-H_xH_y$), 1.73 (3H, s, $C_{16}-CH_3$), 1.26 (3H, d, J = 6.9 Hz, $C_{20}-CH_3$), 1.17 (3H, d, J = 6.9Hz, C_{12} - CH_3), 1.15 (3H, d, J = 6.5 Hz, C_{22} - CH_3), 1.13 (3H, d, J = 6.6 Hz, C_{14} - CH_3), 1.12 $(3H, d, J = 6.9 \text{ Hz}, C_4-C\underline{H}_3)$, 1.09 (9H, s, SiC(C \underline{H}_3)₃), 1.05 (9H, s, SiC(C \underline{H}_3)₃), 1.00 (9H, s, Si(C<u>H₃</u>)₃), 0.97 (3H, d, J = 6.1 Hz, C₆-C<u>H₃</u>), 0.94 (3H, d, J = 7.3 Hz, C₂₀-C<u>H₃</u>), 0.21 (3H, s, SiCH₃), 0.19 (3H, s, SiCH₃), 0.16 (3H, s, SiCH₃), 0.15 (6H, s, SiCH₃), 0.08 (3H, s, $SiCH_3$; ¹³C NMR (125 MHz, C₆D₆) δ = 159.5 (2C), 151.8, 137.3, 134.7, 134.1, 132.8, 132.5, 132.1, 131.6, 131.3, 130.8, 129.4, 129.3, 128.3, 127.3, 125.8, 117.7, 113.9 (2C), 84.6, 80.9, 79.1, 77.6, 75.1, 72.2, 71.2, 65.9 (2C), 54.6 (2C), 44.1, 41.3, 40.4, 37.5, 37.1, 36.6, 36.5, 35.6, 35.5, 26.4, 26.3, 26.1, 23.1, 18.7, 18.6, 18.5, 18.2, 17.7, 17.5, 14.7, 14.2, 11.1, 1.2, -3.1, -3.2, -3.9 (2C), -4.3; **HRMS** (ES⁺) Calcd for C₆₈H₁₁₈O₉Si₃Na [M+Na]⁺ 1185.7976 found 11858.7975.

Acetonide 14: R_f 0.53 (10% EtOAc / hexane); [**a**]_D²⁰ +35.8 (c = 0.15, CHCl₃); **IR** (Thin film) v_{max} = 2956 (s), 2929 (s), 2857 (s), 1726 (w), 1613 (m), 1514 (s), 1462 (s); ¹H NMR (500 MHz, C₆D₆) $\delta =$ 7.31 (2H, d, J = 8.5 Hz, Ar<u>H</u>), 7.29)2H, d, J = 8.9Hz, Ar<u>H</u>), 6.85 (2H, d, J = 8.4 Hz, Ar<u>H</u>), 6.82 (2H, d, J = 8.4 Hz, Ar<u>H</u>), 6.71 (1H, *app* dt, J = 16.8,

10.6 Hz, C_{25} -<u>H</u>), 6.11 (1H, *app* t, J = 11.0 Hz, C_{24} -<u>H</u>), 5.83 (1H, *app* t, J = 11.9 Hz, C_{11} -<u>H</u>), $5.72 - 5.66 (2H, m, C_2 - H + C_{23} - H)$, $5.63 - 5.57 (2H, m, C_{10} - H + C_3 - H)$, 5.26 (1H, d, J)= 16.6 Hz, C_{26} - \underline{H}_x H_v), 5.13 (1H, d, J = 10.0 Hz, C_{26} - H_x H_v), 5.09 (1H, d, J = 10.2 Hz, C_{15} -<u>H</u>), 4.73 (1H, br app q, J = 8.3 Hz, C₉-<u>H</u>), 4.59 and 4.54 (2H, AB system, J = 10.5 Hz, OCH_2Ar), 4.43 (2H, s, OCH_2Ar), 4.18 – 4.13 (2H, m, $C_1-H_xH_v + C_1-H_xH_v$), 4.03 (1H, *app*) dt, J = 6.0, 9.3 Hz, C_7-H), 3.96 (1H, dd, J = 2.6, 10.0 Hz, C_5-H), 3.62 (1H, *app* t, J = 4.1Hz, C_{19} -<u>H</u>), 3.38 – 3.34 (2H, m, C_{21} -<u>H</u> + C_{13} -<u>H</u>), 3.35 (3H, s, ArOC<u>H</u>₃), 3.32 (3H, s, ArOC<u>H</u>₃), 3.14 - 3.08 (1H, m, C₂₂-<u>H</u>), 2.92 - 2.84 (2H, m, C₁₂-<u>H</u> + C₄-<u>H</u>), 2.66 - 2.59(1H, m, C₁₄-<u>H</u>), 2.26 (1H, *app* t, J = 10.5 Hz, C₁₇-<u>H</u>_xH_y), 2.04 - 2.00 (3H, m, C₆-<u>H</u> + C₁₈-<u>H</u> + C₂₀-<u>H</u>), 1.87 - 1.80 (2H, m, C₈-<u>H</u>_xH_y + C₁₇-H_xH_y), 1.75 - 1.69 (1H, C₈-H_xH_y), 1.72 $(3H, s, C_{16}-CH_3), 1.47 (3H, s, C(CH_3)), 1.45 (3H, s, C(CH_3)), 1.25 (3H, d, J = 6.8 Hz, C_{18}-CH_3)$ CH_3 , 1.19 (3H, d, J = 7.0 Hz, C_4 - CH_3), 1.15 (3H, d, J = 6.8 Hz, C_{22} - CH_3), 1.13 (3H, d, J= 6.4 Hz, C_{12} -CH₃), 1.10 (3H, d, J = 6.6 Hz, C_{14} -CH₃), 1.08 (9H, s, SiC(CH₃)₃), 1.04 $(18H, s, 2 \times SiC(CH_3)_3), 0.99 - 0.95 (6H, m, C_6-CH_3 + C_{20}-CH_3), 0.22 (3H, s, Si(CH_3)),$ $0.20 (3H, s, Si(CH_3), 0.18 (3H, s, Si(CH_3), 0.15 (6H, s, Si(CH_3)_2), 0.14 (3H, s, Si(CH_3));$ ¹³**C NMR** (125 MHz, C_6D_6), $\delta = 159.7$, 137.2, 135.9, 134.8, 132.6, 132.5, 131.6, 131.5, 131.3, 130.7, 129.6, 129.5, 129.4, 125.7, 117.9, 114.1 (2C), 100.3, 84.8, 81.5, 78.0, 75.9, 75.5, 72.3, 67.9, 66.4, 63.5, 54.8 (2C), 46.7, 40.6, 38.8, 38.0, 37.3, 36.7, 35.9, 35.8, 35.7, 26.6, 26.5, 26.4, 25.8, 25.4, 23.2, 19.1, 19.0, 18.9, 18.7, 18.5, 18.4, 15.3, 11.0, 10.6, -2.8, -3.0, -3.1, -3.4, -3.7, -4.1; **HRMS** (ES⁺) Calcd for C₇₁H₁₂₂O₀Si₃Na [M+Na]⁺ 1225.8289 found 1225.8245.

Alcohol **12**: R_f 0.20 (20% EtOAc / hexane); $[\mathbf{\alpha}]_D^{20}$ +18.4 (c = 0.13, CHCl₃); **IR** (Thin film) $v_{max} = 3418$ (br w), 2957 (s), 2930 (s), 2856 (s), 1729 (m), 1515 (m), 1462 (s), 1376 (s); ¹H NMR (500 MHz, C₆D₆) $\delta = 6.65$ (1H, *app* dt, J = 16.9, 10.9 Hz, C₂₅-<u>H</u>), 6.06 (1H, *app* t, J = 10.9 Hz, C₂₄-<u>H</u>), 5.91 (1H, *app* t, J = 10.4 Hz, C₁₁-<u>H</u>), 5.65 (1H, dd, J = 8.0, 10.9

Hz, C_{10} -<u>H</u>), 5.57 (1H, *app* dt, J = 11.0, 6.9 Hz, C_2 -<u>H</u>), 5.43 (1H, *app* t, J = 10.4 Hz, C_3 -<u>H</u>), 5.21 (1H, app t, J = 10.5 Hz, C_{23} -<u>H</u>), 5.17 (1H, d, J = 17.6 Hz, C_{26} -<u>H</u>_xH_y), 5.12 (1H, d, J =10.1 Hz, C_{15} -<u>H</u>), 5.06 (1H, d, J = 10.2 Hz, C_{26} -H_x<u>H</u>_y), 4.75 (1H, *app* q, J = 7.5 Hz, C_{9} -<u>H</u>), 4.19 - 4.13 (2H, m, $C_1 - \underline{H}_x H_v + C_7 - \underline{H}$), 3.99 (1H, br dd, J = 5.8, 11.7 Hz, $C_1 - H_x \underline{H}_v$), 3.79 -3.75 (2H, m, $C_5-\underline{H} + C_{19}-\underline{H}$), 3.38 – 3.34 (2H, $C_{13}-\underline{H} + C_{21}-\underline{H}$), 3.00 – 2.88 (2H, m, $C_4-\underline{H} + C_{11}-\underline{H}$) C_{12} -<u>H</u>), 2.84 – 2.79 (1H, m, C_{22} -<u>H</u>), 2.70 – 2.65 (1H, m, C_{14} -<u>H</u>), 2.44 (1H, *app* t, *J* = 12.4 Hz, C_{17} - H_xH_y), 2.13 – 2.06 (2H, m, C_{18} -H + C_6 -H), 1.92 – 1.84 (3H, m, C_8 - H_xH_y + C_{17} - $H_xH_v + C_{20}-H$, 1.83 - 1.82 (1H, m, $C_8-H_xH_v$), 1.80 (3H, s, $C_{16}-CH_3$), 1.51 (3H, s, $C(CH_3)$, 1.48 (3H, s, $C(CH_3)$), 1.20 (3H, d, J = 7.0 Hz, $C_{12}-CH_3$), 1.14 (3H, d, J = 6.7 Hz, $C_{14}-CH_{3}$, 1.12 (3H, d, J = 6.9 Hz, $C_{20}-CH_{3}$), 1.08 (9H, s, SiC(CH_{3})₃), 1.06 (3H, d, J = 7.0Hz, C₄-C<u>H</u>₃), 1.041 (9H, s, SiC(C<u>H</u>₃)₃), 1.036 (9H, s, SiC(C<u>H</u>₃)₃), 1.01 (3H, d, J = 7.2Hz, C₆-C<u>H₃</u>), 0.98 (3H, d, J = 6.7 Hz, C₁₈-C<u>H₃</u>), 0.87 (3H, d, J = 6.8 Hz, C₂₂-C<u>H₃</u>), 0.21 (3H, s, Si(CH₃)), 0.20 (3H, s, Si(CH₃)), 0.19 (3H, s, Si(CH₃)), 0.15 (3H, s, Si(CH₃)), 0.14 $(3H, s, Si(CH_3)), 0.13 (3H, s, Si(CH_3)); {}^{13}C NMR (125 MHz, C_6D_6) \delta = 136.9, 135.7,$ 134.7, 132.8, 132.5, 131.5, 131.3, 130.8, 118.5, 100.5, 81.5, 79.1, 77.5, 76.0, 67.7, 63.7, 58.5, 44.8, 39.1, 38.2, 37.8, 37.7, 37.3, 36.6, 36.0, 35.1, 26.6, 26.5, 26.4, 25.6, 25.4, 23.4, 19.5, 18.8 (2C), 18.5, 17.3, 14.2, 14.0, 11.8, 10.0, -3.0, -3.1 (2C), -3.4, -3.5, -3.8; **HRMS** (ES⁺) Calcd for $C_{55}H_{106}O_9Si_3Na$ [M+Na]⁺ 985.7139 found 985.7126.

Seco-acid **13**: R_f 0.42 (20% EtOAc / hexane); ¹H **NMR** (500 MHz, C₆D₆) δ = 6.60 (1H, *app* dt, J = 16.6, 10.5 Hz, C₂₅-<u>H</u>), 6.11 (1H, dd, J = 10.2, 11.4 Hz, C₃-<u>H</u>), 6.06 (1H, *app* t, J = 10.2 Hz, C₁₁-<u>H</u>), 6.02 (1H, *app* t, J = 10.5 Hz, C₂₄-<u>H</u>), 5.82 (1H, d, J = 11.5 Hz, C₂-<u>H</u>), 5.70 (1H, dd, J, = 8.2, 10.7 Hz, C₁₀-<u>H</u>), 5.16 (1H, dd, J = 0.9, 16.7 Hz, C₂₆-<u>H</u>_xH_y),

5.09 - 5.03 (3H, m, $C_{15}-H + C_{23}-H + C_{26}-H_{x}H_{y}$), 4.68 (1H, br app q, J = 8.3 Hz, $C_{9}-H$), 4.32 (1H, *app* dt, J = 9.5, 5.9 Hz, C_7 -<u>H</u>), 3.96 (1H, dd, J = 3.5, 7.4 Hz, C_5 -<u>H</u>), 3.88 – 3.84 $(2H, m, C_4-\underline{H} + C_{19}-\underline{H}), 3.43 (1H, br dd, J = 1.2, 5.1 Hz, C_{21}-\underline{H}), 3.30 (1H, dd, J = 1.3, 8.6)$ Hz, C_{13} -<u>H</u>), 2.92 (1H, br app quin., J = 7.0 Hz, C_{12} -<u>H</u>), 2.82 - 2.75 (1H, m, C_{22} -<u>H</u>), 2.66 -2.58 (1H, m, C_{14} -H), 2.53 (1H, t, app t, J = 12.4 Hz, C_{17} -H, H,), 2.18 (1H, app sex., J =6.8 Hz, $C_6-\underline{H}$), 2.14 – 2.09 (1H, m, $C_{18}-\underline{H}$), 2.02 – 1.90 (2H, m, $C_8-\underline{H}_xH_v + C_{20}-\underline{H}$), 1.85 $(3H, s, C_{16}-CH_3), 1.83 - 1.76 (2H, m, C_8-H_xH_v + C_{17}-H_xH_v), 1.52 (3H, s, C(CH_3)), 1.49$ $(3H, s, C(CH_3)), 1.21 (3H, d, J = 7.0 Hz, C_{12}-CH_3), 1.20 (3H, d, J = 6.9 Hz, C_6-CH_3), 1.15$ $(3H, d, J = 7.9 \text{ Hz}, C_{14}-C\underline{H}_3), 1.12 (3H, d, J = 6.9 \text{ Hz}, C_{20}-C\underline{H}_3), 1.10 (9H, s, SiC(C\underline{H}_3)_3),$ 1.05 (9H, SiC(CH₃)₃), 1.03 (3H, d, J = 7.8 Hz, C₄-CH₃), 1.01 (9H, s, SiC(CH₃)₃), 0.96 $(3H, d, J = 6.6 \text{ Hz}, C_{18}\text{-}C\underline{H}_3), 0.78 (3H, d, J = 6.6 \text{ Hz}, C_{22}\text{-}C\underline{H}_3), 0.26 (3H, s, Si(C\underline{H}_3)),$ 0.23 (3H, s, Si(CH₃)), 0.20 (3H, s, Si(CH₃)), 0.14 (3H, s, Si(CH₃)), 0.13 (3H, s, Si(CH₃)), 0.06 (3H, s, Si(C<u>H₃</u>)); ¹³C NMR (125 MHz, C₆D₆) δ = 170.0, 168.1, 156.4, 135.2, 134.1, 133.1, 132.2, 131.7, 131.2, 130.8, 127.5, 118.9, 100.4, 81.7, 78.8, 76.7, 76.4, 66.6, 63.5, 60.0, 43.8, 38.8, 38.3, 37.8, 37.1, 36.3, 35.3, 34.6, 34.3, 30.2, 26.6, 26.5, 26.4, 25.4 (2C), 23.2, 20.5, 20.4, 19.6, 18.9, 18.8, 18.7, 16.9, 14.2, 14.0, 13.0, 10.2, 9.9, 1.4, -2.7, -2.9, -3.1, -3.4, -3.6; **HRMS** (ES⁺) Calcd for $C_{55}H_{104}O_8Si_3Na$ [M+Na]⁺ 999.6931 found 999.6934.

Macrocycle **15**: R_f 0.32 (5% EtOAc / hexane); [**a**]_D²⁰ +40.9 (c = 0.11, CHCl₃); **IR** (Thin film) v_{max} = 2959 (s), 2928 (s), 2857 (s), 1721 (s, C=O), 1462 (s), 1380 (m); ¹**H NMR** (500 MHz, C₆D₆) $\delta = 6.67$ (1H, *app* dt, J = 16.8, 10.6 Hz, C₂₅-<u>H</u>), 6.13 (1H, *app* t, J = 12.0 Hz, C₃-<u>H</u>), 6.11 (1H, *app* t, J = 10.7Hz, C₁₁-<u>H</u>), 5.93 (1H, *app* t, J = 11.3 Hz, C₂₄-<u>H</u>),

5.72 (1H, d, J = 11.4 Hz, C_{2} -<u>H</u>), 5.68 (1H, *app* t, J = 10.3 Hz, C_{10} -<u>H</u>), 5.13 – 5.05 (4H, m, $C_{21}-H + C_{23}-H + C_{26}-H_xH_y + C_{26}-H_xH_y$, 4.99 (1H, d, J = 9.3 Hz, $C_{15}-H$), 4.72 (1H, br q, J = 9.2 Hz, $C_9-\underline{H}$), 4.51 – 4.45 (1H, m, $C_7-\underline{H}$), 4.02 (1H, *app* quin, J = 7.6 Hz, $C_4-\underline{H}$), 3.75 $(1H, d, J = 10.0 \text{ Hz}, \text{C}_5-\underline{H}), 3.39 (1H, d, J = 10.2 \text{ Hz}, \text{C}_{19}-\underline{H}), 3.28 (1H, d, J = 9.1 \text{ Hz}, \text{C}_{13}-\underline{H})$ <u>H</u>), 3.00 - 2.92 (2H, m, C_{12} -<u>H</u> + C_{22} -<u>H</u>), 2.69 (1H, *app* t, J = 13.0 Hz, C_{17} -<u>H</u>_xH_y), 2.66 - 1002.52 (2H, m, C_{14} -<u>H</u> + C_{18} -<u>H</u>), 2.30 - 2.25 (1H, m, C_{6} -<u>H</u>), 2.15 - 2.09 (1H, m, C_{20} -<u>H</u>), 1.99 $-1.94 (1H, m, C_8 - H_xH_v), 1.97 (3H, s, C_{16} - CH_3), 1.79 (1H, d, J = 12.5 Hz, C_{17} - H_xH_v), 1.71$ $-1.66 (1H, m, C_8-H_xH_y), 1.50 (3H, s, C(CH_3)), 1.49 (3H, s, C(CH_3)), 1.29 (3H, d, J = 6.8)$ Hz, C₆-C<u>H</u>₃), 1.17 (3H, d, J = 7.3 Hz, C₁₂-C<u>H</u>₃), 1.14 (3H, d, J = 6.9 Hz, C₁₄-C<u>H</u>₃), 1.13 -1.10 (3H + 9H, m, C_{20} -CH₃ + SiC(CH₃)₃), 1.04 (9H, s, SiC(CH₃)₃), 1.01 (9H, s, SiC(C<u>H</u>₃)₃), 0.97 (3H, d, J = 6.7 Hz, C₁₈-C<u>H</u>₃), 0.92 (3H, d, J = 6.6 Hz, C₄-C<u>H</u>₃), 0.75 $(3H, d, J = 6.5 \text{ Hz}, C_{22}\text{-}C\underline{H}_3), 0.27 (3H, s, Si(C\underline{H}_3)), 0.26 (3H, s, Si(C\underline{H}_3)), 0.18 (3H, s, Si(C\underline{H}_3)))$ $Si(CH_3)$, 0.12 (3H, s, $Si(CH_3)$), 0.10 (3H, s, $Si(CH_3)$), 0.04 (3H, s, $Si(CH_3)$); ¹³C NMR $(125 \text{ MHz}, C_6 D_6) \delta = 165.5, 159.0, 134.8, 133.5, 132.9, 131.6, 131.5, 130.5, 130.3, 127.5, 130.5, 1$ 125.8, 119.0, 117.8, 100.6, 81.4, 78.0, 77.8, 76.1, 65.8, 63.7, 60.0, 41.8, 39.3, 38.8, 38.1, 36.2, 34.8, 34.6, 34.3, 32.6, 32.4, 30.4, 26.5 (2C), 26.4, 25.3, 24.9, 22.7, 22.6, 21.3, 20.2, 18.9, 18.8, 17.0, 14.2, 11.4, 10.9, 10.7, 10.0, -2.2, -2.4, -2.7, -2.9, -3.0, -3.1; **HRMS** (ES⁺) Calcd for C₅₅H₁₀₂O₇Si₃Na [M+Na]⁺ 981.6826, found 981.6866.

Macrocyclic Discodermolide **3**: R_f 0.39 (100% EtOAc); \mathbf{R}_t 28 min (10% IPA / hexane); $[\mathbf{\alpha}]_D^{20}$ +71.6 (c = 0.27); **IR** (Thin film) $v_{max} = 3385$ (br, s, OH), 2963 (s), 2929 (s), 2873 (s), 1713 (s, C=O), 1640 (m), 1454 (s), 1413 (m), 1379 (m); ¹H NMR (700 MHz, CD₃OD) $\delta = 6.62$ (1H, *app* dt, J = 17.0, 10.6 Hz, C₂₅-

<u>H</u>), 6.08 (1H, app t, J = 10.9 Hz, C_3 -<u>H</u>), 5.98 (1H, app t, J = 10.9 Hz, C_{24} -<u>H</u>), 5.65 (1H, d, J = 11.8 Hz, C₂-<u>H</u>), 5.57 (1H, dd, J = 9.0, 10.9 Hz, C₁₁-<u>H</u>), 5.30 (1H, *app* t, J = 10.1 Hz, C_{10} -<u>H</u>), 5.19 (1H, br app t, J = 9.0 Hz, C_{23} -<u>H</u>), 5.16 (1H, d, J = 17.0 Hz, C_{26} -<u>H</u>_xH_y), 5.08 $(1H, d, J = 10.1 \text{ Hz}, C_{26}\text{-}H_xH_v), 4.88 (1H, br d, J = 4.9 \text{ Hz}, C_{21}\text{-}H), 4.83 (1H, d, J = 10.2)$ Hz, C₁₅-H), 4.50 (1H, *br* d, J = 8.3 Hz, C₉-<u>H</u>), 4.12 (1H, *br* dd, J = 3.9, 9.7 Hz, C₇-<u>H</u>), 3.55 (1H, br s, C_4 -<u>H</u>), 3.37 – 3.32 (1H, m, C_5 -<u>H</u>), 3.07 – 3.02 (2H, m, C_{13} -<u>H</u> + C_{22} -<u>H</u>), 2.98 (1H, br s, C_{19} -<u>H</u>), 2.56 (1H, app quin., J = 7.7 Hz, C_{12} -<u>H</u>), 2.40 - 2.35 (1H, m, C_{14} -<u>H</u>), 2.32 (1H, br s, C_{17} -<u>H</u>_xH_y), 2.11 (1H, br s, C_{18} -<u>H</u>), 1.96 – 1.91 (1H, m, C_{20} -<u>H</u>), 1.78 (1H, app sex., J = 7.2 Hz, C_6-H), 1.65 (3H, s, $C_{16}-C_{H_3}$), 1.53 (1H, d, J = 12.6 Hz, $C_{17}-C_{H_3}$) H_xH_v), 1.36 (1H, ddd, J = 2.6, 11.4, 13.8 Hz, $C_8-H_xH_v$), 1.24 (1H, dd, J = 2.9, 10.7 Hz, $C_8-H_xH_v$) $H_{x}H_{y}$), 1.05 (3H, d, J = 7.2 Hz, C_{12} - CH_{3}), 0.97 (3H, d, J = 6.8 Hz, C_{20} - CH_{3}), 0.95 (3H, d, J= 6.8 Hz, C_4 - CH_3), 0.93 (3H, d, J = 6.8 Hz, C_{14} - CH_3), 0.91 (3H, d, J = 6.8 Hz, C_{22} - CH_3), 0.84 (3H, d, J = 7.0 Hz, C_6-CH_3), 0.64 (3H, d, J = 6.3 Hz, $C_{18}-CH_3$); ¹³C NMR (175 MHz, CD_3OD) $\delta = 173.0 (C_1), 167.6 (C_{16}), 135.3 (C_{10}), 134.5 (C_{23}), 133.6 (C_{25}), 131.4 (C_{24}),$ 131.3 (C₁₅), 131.0 (C₁₁), 119.6 (C₂), 118.4 (C₂₆), 80.8 (C₁₃), 78.6 (C₅), 78.1 (C₂₁), 77.0 $(C_{19}), 68.2 (C_7), 65.1 (C_9), 43.4 (C_6), 38.6 (C_{17}), 38.4 (C_8), 38.3 (C_{14} + C_{20}), 37.2 (C_4), 35.8$ (C_{12}) , 35.5 (C_{22}) , 32.8 (C_{18}) , 23.2 $(C_{16}-\underline{C}H_3)$, 19.9 $(C_{12}-\underline{C}H_3)$, 19.3 $(C_{22}-\underline{C}H_3)$, 17.8 $(C_{14}-\underline{C}H_3)$ <u>CH</u>₃), 12.8 (C₄-<u>C</u>H₃), 12.0 (C₆-<u>C</u>H₃), 11.7 (C₁₈-<u>C</u>H₃), 10.1 (C₂₀-<u>C</u>H₃); **HRMS** (ES⁺) Calcd for C₃₄H₅₆O₇Na [M+Na]⁺ 599.3918, found 599.3923.

Molecular Modelling

The following low energy structures were obtained using Macromodel (Version 8.0),^a a 10,000 step Monte Carlo conformational search, with the MM2* force field and a Born/surface area (GB/SA) water solvent model.^b

Hybrid **3** global minimum structure.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

Overlay of the global minimum energy of hybrid **3** with the X-ray structure of discodermolide **1**.

Alternative view of overlay of the global minimum energy of hybrid **3** and the X-ray structure of discodermolide **1**.

Comparison of experimental and molecular modelling predicted ${}^{3}J_{H,H}$ coupling constants. ${}^{3}J_{H,H}$ coupling constants were calculated using the modified form of the Karplus equation by Altana *et al.*^c Boltzmann average values were then calculated from all conformations at 298K.

Proton Number	Experimental/H	Z	Predicted/Hz	
13-14	10.1		8.8	
17up-18	small	(small)	3.2	
17down-18	12.6		12.3	
18-19	2.9		3.3	
19-20	8.8		9.9	
20-21	3.2		2.6	
21-22	7.8		11.4	
45	4.2		4.1	
56	8.3		9.4	
67	5.7		3.8	
78up	11		11.7	
78down	2.2		2.6	
8up9	10.6		4.6	
8down9	small	(small)	2.0	
1213	small	(small)	2.0	
Average Error /ppm			1.77	

(assuming small J values are ~ 2Hz)

^aF. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, *J. Comput. Chem.*, 1990, **11**, 440.

^b W. C. Still, A. Tempczyk, R. C. Hawley and T. Hendrickson, *J. Am. Chem. Soc.*, 1990, **112**, 6127.

^c C. A. G. Haasnoot, F. A. M. De Leeuw and C. Altona, *Tetrahedron*, 1980, 36, 2783.