Supplementary Information of

Oxygenation vs iodonio substitution during the reactions of alkenylsilanes with iodosylbenzene: participation of the internal oxy group

Morifumi Fujita,* Hee Jin Lee, Takashi Sugimura, and Tadashi Okuyama
Graduate School of Material Science, Himeji Institute of Technology, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
fuji@sci.u-hyogo.ac.jp

CONTENTS:

General Procedures and Characterization 2-8
Figure S1. ${ }^{13} \mathrm{C}$ NMR signals of ${ }^{18} \mathrm{O}-\mathbf{3 c}$
Figure S2. ${ }^{13} \mathrm{C}$ NMR signals of the ester carbonyl carbons in $\mathbf{3 c}$ and ${ }^{18} \mathrm{O}-\mathbf{3 c} 10$
Figure S3. ${ }^{13} \mathrm{C}$ NMR signals of ${ }^{18} \mathrm{O}-\mathbf{4 c} \quad 11$
Figure S4. ${ }^{13} \mathrm{C}$ NMR signals of the ester carbonyl carbons in $\mathbf{4 c}$ and ${ }^{18} \mathrm{O}-\mathbf{4 c} 12$

General. Proton and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECA-600 spectrometer as solutions in CDCl_{3}. Proton NMR spectra were recorded using the residual CHCl_{3} as an internal reference (7.24 ppm) and ${ }^{13} \mathrm{C}$ NMR using CDCl_{3} as an internal reference (77.00 ppm). For mass spectra measurements was used JEOL JMS-T100LC. Iodosylbenzene and (diacetoxyiodo)benzene were obtained according to the literature method. ${ }^{\mathrm{S} 1}$ Dichloromethane and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ were purified by distillation over CaH_{2}.

Preparation of (E)-alkenysilanes, (E)-1. (E)-1-(Triethylsilyl)-1-buten-4-ol and (E)-1-(triethylsilyl)-1-penten-5-ol have been prepared by stereoselective hydrosilylation using rhodium complex. ${ }^{9}$ These (E)-alkenols were prepared according to the reported procedures, ${ }^{9}$ and were converted to esters (E)-1a-d. (E)-Methyl 6-(triethylsilyl)hex-5-enoate $((E)-\mathbf{1 e})$ was prepared via (E)-6-(triethylsilyl)hex-5-enoic acid, which was selectively prepared by the rhodium catalyzed hydrosilylation of hex-5-ynoic acid.
(\boldsymbol{E})-5-(triethylsilyl)pent-4-enyl benzoate ((E)-1a). $\quad \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.03(2 \mathrm{H}, \mathrm{d}, J 7.6), 7.54$ ($1 \mathrm{H}, \mathrm{t}, J 7.6$), $7.42(2 \mathrm{H}, \mathrm{t}, J 7.6), 6.05(1 \mathrm{H}, \mathrm{dt}, J 18.6$ and 7.6$), 5.61(1 \mathrm{H}, \mathrm{d}, J 18.6), 4.31(2 \mathrm{H}, \mathrm{t}, J 7.6)$, $2.27(2 \mathrm{H}, \mathrm{q}, J 7.6), 1.87(2 \mathrm{H}$, quint, $J 7.6), 0.90(9 \mathrm{H}, \mathrm{t}, J 7.6)$ and $0.53(6 \mathrm{H}, \mathrm{q}, J 7.6) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 166.58,146.75,132.79,130.49,129.55,128.30,127.11,64.47,33.28,27.90,7.33$ and $3.50 ; \mathrm{m} / \mathrm{z}$ (ESI+) $327.1776\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}\right.$ requires 327.1756), 327 (100%).
(\boldsymbol{E})-5-(triethylsilyl)pent-4-enyl acetate $((E)-\mathbf{1 b}) . \quad \delta_{H}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.00(1 \mathrm{H}, \mathrm{dt}, J 18.0$ and 7.2), $5.57(1 \mathrm{H}, \mathrm{dt}, J 18.0$ and 1.2$), 4.04(2 \mathrm{H}, \mathrm{t}, J 7.2), 2.17(2 \mathrm{H}, \mathrm{q}, J 7.2), 2.03(3 \mathrm{H}, \mathrm{s}), 1.72(2 \mathrm{H}$, quint, $J 7.2), 0.90(9 \mathrm{H}, \mathrm{t}, J 8.4)$ and $0.52(6 \mathrm{H}, \mathrm{q}, J 8.4) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 171.12, 146.77, 126.98, 64.00, 33.13, 27.76, 20.96, 7.32 and $3.50 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 265.1603\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}\right.$ requires 265.1600), 265 (100\%).
(\boldsymbol{E})-4-(triethylsilyl)but-3-enyl benzoate $\left((E)\right.$-1c). $\quad \delta_{H}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.01(2 \mathrm{H}, \mathrm{d}, J 7.6), 7.53$ (1 H, t, $J 7.6$), $7.41(2 \mathrm{H}, \mathrm{t}, J 7.6), 6.05(1 \mathrm{H}, \mathrm{dt}, J 18.6$ and 6.4$), 5.72(1 \mathrm{H}, \mathrm{dt}, J 18.6$ and 1.4$), 4.37(2 \mathrm{H}, \mathrm{t}$, $J 6.4), 2.57\left(2 \mathrm{H}, \mathrm{qd}, J 6.4\right.$ and 1.4), $0.89(9 \mathrm{H}, \mathrm{t}, J 8.2)$ and $0.53(6 \mathrm{H}, \mathrm{q}, J 8.2) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $166.53,143.02,132.80,130.44,129.74,129.55,128.26,63.83,36.25,7.28$ and $3.41 ; \mathrm{m} / \mathrm{z}$ (ESI+) $313.1578\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}\right.$ requires 313.1600), 313 (100%).
(\boldsymbol{E})-4-(triethylsilyl)but-3-enyl acetate $((E)-1 d) . \quad \delta_{H}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.95(1 \mathrm{H}, \mathrm{dt}, J 18.6$ and 6.9$)$, $5.65(1 \mathrm{H}, \mathrm{dt}, J 18.6$ and 1.4$), 4.11(2 \mathrm{H}, \mathrm{t}, J 6.9), 2.43(2 \mathrm{H}, \mathrm{qd}, J 6.9$ and 1.4$), 2.01(3 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{t}$, $J 8.2)$ and $0.53(6 \mathrm{H}, \mathrm{q}, J 8.2) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.07$, 142.94, 129.54, 63.43, 36.09, 20.90, 7.29 and 3.41; m/z (ESI+) $251.1423\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}\right.$ requires 251.1443), $251(100 \%)$.
(Z)-4-(triethylsilyl)but-3-enyl benzoate ((Z)-1c). The titled compound was prepared by hydrosilylation of but-3-ynyl benzoate using Grubbs' catalyst as reported. ${ }^{10}$ The reaction gave a mixture of (Z)-1c and 3-(triethylsilyl)but-3-enyl benzoate (73:27). Proton NMR spectra of these
products agree well with the reported data. ${ }^{10}$
(Z)-4-(triethylsilyl)but-3-enyl acetate ((Z)-1d). The titled compound was prepared by the Grubbs' catalyst-mediated hydrosilylation of but-3-ynyl acetate. The reaction gave a mixture of (Z) - $\mathbf{1 d}$ and 3-(triethylsilyl)but-3-enyl acetate (67 : 33). Selected data for (Z)-2d: $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.32(1 \mathrm{H}, \mathrm{dt}$, $J 13.7$ and 6.9), $5.55(1 \mathrm{H}, \mathrm{dt}, J 13.7$, and 1.4$), 4.09(2 \mathrm{H}, \mathrm{t}, J 6.9), 2.43(2 \mathrm{H}, \mathrm{qd}, J 6.9$ and 1.4), 2.03 (3 $\mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{t}, J 7.6)$ and $0.61(6 \mathrm{H}, \mathrm{q}, J 7.6)$.
(\boldsymbol{E})-methyl 6-(triethylsilyl)hex-5-enoate $((E)-\mathbf{1 e}) . \quad \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.96(1 \mathrm{H}, \mathrm{dt}, J 18.6$ and 6.9), 5.54 ($1 \mathrm{H}, \mathrm{d}, J 18.6$), $3.64(3 \mathrm{H}, \mathrm{s}), 2.27(2 \mathrm{H}, \mathrm{t}, J 6.9), 2.13(2 \mathrm{H}, \mathrm{q}, J 6.9), 1.71$ (2 H, quint, $J 6.9$), $0.89(9 \mathrm{H}, \mathrm{t}, J 8.2)$ and $0.51(6 \mathrm{H}, \mathrm{q}, J 8.2) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.05$, 146.97, 127.11, 51.40, 36.19, 33.33, 23.95, 7.31 and 3.48.

Reaction of $(\boldsymbol{E}) \mathbf{- 1 a}$. To a solution of $(E) \mathbf{- 1 a}(101 \mathrm{mg}, 0.33 \mathrm{mmol})$ and iodosylbenzene $(109 \mathrm{mg}, 0.49$ $\mathrm{mmol})$ in dichloromethane (3 mL) was added $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(0.06 \mathrm{~mL}, 0.49 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 40 min at $0^{\circ} \mathrm{C}$. After the addition of an aqueous solution of sodium tetrafluoroborates, the mixture was stirred for a few min at $0^{\circ} \mathrm{C}$. Extraction with dichloromethane, filtration, and then concentration gave a crude oil, which was washed several times with hexane-dichloromethane to give 2a ($108 \mathrm{mg}, 0.225 \mathrm{mmol}, 68 \%$ yield), which was a mixture of $92: 8$ of $(E)-\mathbf{2 a}$ and $(Z)-\mathbf{2 a}$. The ${ }^{1} \mathrm{H}$ NMR spectra of (E)-2a and (Z)-2a agree well with the reported values. ${ }^{8}$

Reaction of $(\boldsymbol{E}) \mathbf{- 1 b}$. To a solution of $(E) \mathbf{- 1 b}(100 \mathrm{mg}, 0.41 \mathrm{mmol})$ and iodosylbenzene $(137 \mathrm{mg}, 0.62$ $\mathrm{mmol})$ in dichloromethane $(3.5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$. After the addition of an aqueous solution of sodium tetrafluoroborates, the mixture was stirred for a few min at $0^{\circ} \mathrm{C}$. Extraction with dichloromethane, filtration, and then concentration gave a crude oil, which was washed several times with hexane-dichloromethane to give $(E)-\mathbf{2 b}\left(92 \mathrm{mg}, 0.22 \mathrm{mmol}, 54 \%\right.$ yield). Selected data for $(E)-\mathbf{2 b}: \delta_{H}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.00(2 \mathrm{H}, \mathrm{d}, J$ 7.8), 7.64 ($1 \mathrm{H}, \mathrm{t}, J 7.8$), 7.49 ($2 \mathrm{H}, \mathrm{t}, J 7.8$), 7.01 ($1 \mathrm{H}, \mathrm{dt}, J 13.8$ and 6.6), 6.85 ($1 \mathrm{H}, \mathrm{d}, J 13.8$), 4.03 (2 $\mathrm{H}, \mathrm{t}, J 6.6), 2.42(2 \mathrm{H}, \mathrm{q}, J 6.6) ; 2.00(3 \mathrm{H}, \mathrm{s})$ and $1.81(2 \mathrm{H}$, quint, $J 6.6) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.24$, $153.66,135.73,132.84,132.48,109.41,97.63,62.87,31.68,26.58$ and $20.83 ; m / z$ (ESI+) 331.0229 (M $\mathrm{BF}_{4} . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{I}$ requires 331.0195), 331 (100%).

Reaction of (\boldsymbol{E})-1c. To a solution of $(E)-\mathbf{1 c}(373 \mathrm{mg}, 1.28 \mathrm{mmol})$ and iodosylbenzene ($340 \mathrm{mg}, 1.54$ $\mathrm{mmol})$ in dichloromethane (5.1 mL) was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.19 \mathrm{~mL}, 1.54 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 100 min at $-40^{\circ} \mathrm{C}$. The mixture was quenched by NaBF_{4} aqueous solution, and extracted with dichloromethane. The organic extracts were concentrated in vacuo, and purified by the SiO_{2} column chromatography (eluent: 10% EtOAc in hexane) to give 3 c ($222 \mathrm{mg}, 0.72 \mathrm{mmol}, 56 \%$ yield), cis-4c ($24 \mathrm{mg}, 0.078 \mathrm{mmol}, 6 \%$ yield), and $\mathbf{5 c}(8 \mathrm{mg}, 0.04 \mathrm{mmol}, 3 \%$ yield). Selected data for

4-(triethylsilyl)-3-oxobutyl benzoate (3c): $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}, \mathrm{d}, J 7.6), 7.52(1 \mathrm{H}, \mathrm{t}, J 7.6)$, $7.39(2 \mathrm{H}, \mathrm{t}, J 7.6), 4.55(2 \mathrm{H}, \mathrm{t}, J 6.2), 2.81(2 \mathrm{H}, \mathrm{t}, J 6.2), 2.25(2 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{t}, J 7.6)$ and 0.61 (6 $\mathrm{H}, \mathrm{q}, J 7.6) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 206.25,166.45,132.90,130.14,129.57,128.28,60.02,43.02,33.53$, 7.07 and 3.71; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2954,1722,1692,1277,1116,1025$ and $711 ; ~ m / z$ (ESI+) 329.1559 (M + $\mathrm{Na} . \quad \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}$ requires 329.1549), 329 (100). Selected data for cis-2-(triethylsilyl)-tetrahydrofuran-3-yl benzoate (cis-4c): $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.02(2 \mathrm{H}, \mathrm{d}, J 7.6)$, $7.55(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.43(2 \mathrm{H}, \mathrm{t}, J 7.6), 5.81(1 \mathrm{H}, \mathrm{ddd}, J 5.5,4.1$ and 1.4$), 4.03(1 \mathrm{H}, \mathrm{q}, J 8.2), 3.76(1 \mathrm{H}$, $\mathrm{td}, J 8.2$ and 5.5$), 3.47(1 \mathrm{H}, \mathrm{d}, J 4.1), 2.35(1 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{m}), 0.97(9 \mathrm{H}, \mathrm{t}, J 7.6), 0.70(3 \mathrm{H}, \mathrm{dq}, J$ 15.2 and 7.6) and $0.64(3 \mathrm{H}, \mathrm{dq}, J 15.2$ and 7.6$)$; $\delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.36,133.00,130.43,129.63$, 128.39, 78.78, 74.86, 67.76, 35.74, 7.49 and 2.92; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2953,2875,1717,1272,1109$ and $712 ; \mathrm{m} / \mathrm{z}$ (ESI+) $329.1540\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}\right.$ SiNa requires 329.1549), 329 (100%).

Key HMBC Correlations of cis-4c

Position	$\delta \mathrm{H}(\mathrm{ppm})$	carbon no. (ppm)
5	4.03	$\mathrm{C}-4(35.74), \mathrm{C}-2(74.86), \mathrm{C}-3(78.78)$
5	3.76	$\mathrm{C}-4(35.74), \mathrm{C}-2(76.86), \mathrm{C}-3(78.78)$
3	5.81	$\mathrm{C}-2(74.86), \mathrm{C}-5(67.76), \mathrm{C}=\mathrm{O}(166.36)$
2	3.47	$\mathrm{C}-3(78.78)$
4	2.35	$\mathrm{C}-5(67.76), \mathrm{C}-2(74.86)$
4	2.01	$\mathrm{C}-2(74.86), \mathrm{C}-3(78.78)$
$\mathrm{SiCH}_{2} \mathrm{Me}$	$0.70,0.64$	$\mathrm{C}-2(74.86), \mathrm{SiCH}_{2} \mathrm{Me}(7.49)$

Key NOE of cis-4c

Position	$\delta \mathrm{H}(\mathrm{ppm})$	proton no. (ppm)
2	3.47	$\mathrm{H}-3(5.81), \mathrm{H}-5^{\prime}(3.76)$
3	5.81	$\mathrm{H}-4(2.35), \mathrm{H}-2(3.47)$
4	2.35	$\mathrm{H}-4^{\prime}{ }^{\prime}(2.01), \mathrm{H}-5^{\prime}(3.76), \mathrm{H}-3(5.81)$
5	3.76	$\mathrm{H}-4(2.35), \mathrm{H}-2(3.47), \mathrm{H}-5(4.03)$
5	4.03	$\mathrm{H}-4^{\prime}(2.01), \mathrm{H}-5^{\prime}(3.76)$

Reaction of (Z)-1c. A 73:27 mixture of (Z)-1c : 3-(triethylsilyl)but-3-enyl benzoate (1c') was employed for the reaction with iodosylbenzene. To a solution of the mixture of $\mathbf{1 c}$ and $\mathbf{1 c}{ }^{\prime}(200 \mathrm{mg}$, $0.69 \mathrm{mmol})$ and iodosylbenzene ($182 \mathrm{mg}, 0.83 \mathrm{mmol}$) in dichloromethane (2.8 mL) was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ $(0.1 \mathrm{~mL}, 0.81 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 130 min at $-40^{\circ} \mathrm{C}$. The mixture was
quenched by NaBF_{4} aqueous solution, and extracted with dichloromethane. The organic extracts were concentrated in vacuo. Proton NMR analysis of the crude products indicated that ratio of (Z)-1c/1c'/2c/3c/cis-4c/trans-4c/5c was 0/17/0/67/0/10/6. Thus, only the isomeric substrate $\mathbf{1 c}$ ' was recovered. The cured products were purified by the SiO_{2} column chromatography (eluent: $10 \% \mathrm{EtOAc}$ in hexane) to give $\mathbf{3 c}(68 \mathrm{mg}, 0.22 \mathrm{mmol}, 32 \%$ yield), and trans- $\mathbf{4 c}(9 \mathrm{mg}, 0.030 \mathrm{mmol}, 4 \%$ yield). Selected data for trans-2-(triethylsilyl)tetrahydrofuran-3-yl benzoate (trans-4c): $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $8.01(2 \mathrm{H}, \mathrm{d}, J 7.6), 7.55(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.42(2 \mathrm{H}, \mathrm{t}, J 7.6), 5.52(1 \mathrm{H}, \mathrm{ddd}, J 6.2,4.1$ and 2.1), $4.01(1 \mathrm{H}$, td, $J 8.2$ and 2.1), $3.75(1 \mathrm{H}$, ddd, $J 11.0,8.2$ and 5.5$), 3.71(1 \mathrm{H}, \mathrm{d}, J 4.1), 2.13(1 \mathrm{H}, \mathrm{dddd}, J 13.7,11.0$, 8.2 and 6.2$), 2.07(1 \mathrm{H}, \operatorname{ddt}, J 13.7,5.5$ and 2.1$), 0.98(9 \mathrm{H}, \mathrm{t}, J 8.2), 0.65(3 \mathrm{H}, \mathrm{dq}, J 15.2$ and 8.2$)$ and $0.64(3 \mathrm{H}, \mathrm{dq}, J 15.2$ and 8.2$) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.15,133.00,130.31,129.56,128.37,77.17$, $75.84,67.67,35.22,7.37$ and $1.89 ; v_{\max }(f i l m) / \mathrm{cm}^{-1} 2954,2875,1718,1273,1113$ and $712 ; \mathrm{m} / \mathrm{z}$ (ESI+) $329.1526\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}\right.$ requires 329.1549), 329 (100%).

Key HMBC Correlations of trans-4c

Position	$\delta \mathrm{H}(\mathrm{ppm})$	carbon no. (ppm)
5	4.01	$\mathrm{C}-3(77.17), \mathrm{C}-2(75.84), \mathrm{C}-4(35.22)$
3	5.52	$\mathrm{C}-2(75.84), \mathrm{C}-5(67.67)$
2	3.71	$\mathrm{C}-3(77.17)$
4	2.13	$\mathrm{C}-5(67.67)$
4	2.07	$\mathrm{C}-3(77.17)$
$\mathrm{SiCH}_{2} \mathrm{Me}$	$0.65,0.64$	$\mathrm{C}-2(75.84), \mathrm{SiCH}_{2} \mathrm{Me}(7.37)$

Key NOE of trans-4c

Position	$\delta \mathrm{H}(\mathrm{ppm})$	proton no. (ppm)
5	4.01	$\mathrm{H}-4(2.13), \mathrm{H}-5{ }^{\prime}(3.75)$
5	3.75	$\mathrm{H}-4{ }^{\prime}(2.07), \mathrm{H}-5(4.01)$
3	5.52	$\mathrm{H}-4(2.13), \mathrm{SiCH} \mathrm{Se}_{2} \mathrm{Me}(0.65,0.64)$
2	3.71	$\mathrm{SiCH}_{2} \mathrm{Me}(0.65,0.64)$

Reaction of $(\boldsymbol{E}) \mathbf{- 1 d}$. To a solution of $(E) \mathbf{- 1 d}(293 \mathrm{mg}, 1.28 \mathrm{mmol})$ and iodosylbenzene $(339 \mathrm{mg}$, $1.54 \mathrm{mmol})$ in dichloromethane $(5.1 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.19 \mathrm{~mL}, 1.54 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 66 min at $-40^{\circ} \mathrm{C}$. The mixture was quenched by NaBF_{4} aqueous solution, and
extracted with dichloromethane. The organic extracts were concentrated in vacuo, and purified by the SiO_{2} column chromatography (eluent: $20 \% \mathrm{EtOAc}$ in hexane) to give $\mathbf{3 d}(67 \mathrm{mg}, 0.26 \mathrm{mmol}, 21 \%$ yield) and cis-4d (130 mg, $0.53 \mathrm{mmol}, 42 \%$ yield). Selected data for 4-(triethylsilyl)-3-oxobutyl acetate (3d): $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.26(2 \mathrm{H}, \mathrm{t}, J 6.2), 2.64(2 \mathrm{H}, \mathrm{t}, J 6.2), 2.18(2 \mathrm{H}, \mathrm{s}), 1.96(3 \mathrm{H}, \mathrm{s}), 0.92(9 \mathrm{H}, \mathrm{t}, J$ $8.2)$ and $0.58(6 \mathrm{H}, \mathrm{q}, J 8.2) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 206.23,170.76,59.45,42.75,33.48,20.74,7.00$ and 3.62; $v_{\max }(f i l m) / \mathrm{cm}^{-1} 2955,1742,1695,1241,1019$ and $730 ; \mathrm{m} / \mathrm{z}$ (ESI+) $267.1416(\mathrm{M}+\mathrm{Na}$. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}$ requires 267.1392), 267 (100\%). Selected data for cis-2-(triethylsilyl)-tetrahydrofuran-3-yl acetate (cis-4d): $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.41(1 \mathrm{H}$, ddd, J 5.5, 4.1 and 1.4), $3.91(1 \mathrm{H}, \mathrm{q}, J 8.2), 3.64(1 \mathrm{H}, \mathrm{td}, J 8.2$ and 5.5$), 3.33(1 \mathrm{H}, \mathrm{d}, J 4.1), 2.23(1 \mathrm{H}, \mathrm{m}), 2.00(3 \mathrm{H}$, s), $1.87(1 \mathrm{H}, \mathrm{m}), 0.94(9 \mathrm{H}, \mathrm{t}, J 7.6), 0.64(3 \mathrm{H}, \mathrm{dq}, J 15.2$ and 7.6$)$ and $0.59(3 \mathrm{H}, \mathrm{dq}, J 15.2$ and 7.6$)$; $\delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.47,78.25,74.65,67.67,35.44,21.25,7.39$ and $2.87 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2953$, 2876, 1739, 1243 and $1022 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 267.1421\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}\right.$ requires 267.1392), 267 (100\%).

Key HMBC Correlations of cis-4d

Position	$\delta \mathrm{H}(\mathrm{ppm})$	carbon no. (ppm)
3	5.41	$\mathrm{C}-2(74.65), \mathrm{C}-5(67.67), \mathrm{C}=\mathrm{O}(170.47)$
5	3.91	$\mathrm{C}-4(35.44), \mathrm{C}-2(74.65), \mathrm{C}-3(78.25)$
5	3.64	$\mathrm{C}-4(35.44), \mathrm{C}-2(74.65), \mathrm{C}-3(78.25)$
2	3.33	$\mathrm{SiCH} 2 \mathrm{Me}(2.87), \mathrm{C}-3(78.25)$,
4	2.23	$\mathrm{C}-5(67.67), \mathrm{C}-2(74.65)$
4	1.87	$\mathrm{C}-5(67.67), \mathrm{C}-2(74.65), \mathrm{C}-3(78.25)$
$\mathrm{SiCH}_{2} \mathrm{Me}$	$0.64,0.59$	$\mathrm{C}-2(74.65), \mathrm{SiCH}_{2} \mathrm{Me}(7.39)$

Key NOE of $\boldsymbol{c i s}$-4d

Position	$\delta \mathrm{H}(\mathrm{ppm})$	proton no. (ppm)
3	5.41	$\mathrm{H}-4(2.23), \mathrm{H}-2(3.33)$
5	3.91	$\mathrm{H}-4{ }^{\prime}(1.87), \mathrm{H}-5^{\prime}(3.64)$
5	3.64	$\mathrm{H}-4(2.23), \mathrm{H}-2(3.33), \mathrm{H}-5(3.91)$
2	3.33	$\mathrm{H}-3(5.41), \mathrm{H}-5^{\prime}(3.64), \mathrm{H}-4(2.23)$
4	2.23	$\mathrm{H}-4^{\prime}(1.87), \mathrm{H}-5^{\prime}(3.64), \mathrm{H}-3(5.41)$

Reaction of $(\boldsymbol{Z}) \mathbf{- 1 d}$. A 67:33 mixture of (Z) - $\mathbf{1 d}: 3$-(triethylsilyl)but-3-enyl acetate (1d') was employed for the reaction with iodosylbenzene. To the mixture of $(Z) \mathbf{- 1 d}$ and $\mathbf{1 d}^{\prime}(210 \mathrm{mg}, 0.92 \mathrm{mmol})$
and iodosylbenzene $(243 \mathrm{mg}, 1.10 \mathrm{mmol})$ in dichloromethane $(3.7 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.14 \mathrm{~mL}$, 1.14 mmol) at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 70 min at $-40^{\circ} \mathrm{C}$. The mixture was quenched by NaBF_{4} aqueous solution, and extracted with dichloromethane. The organic extracts were concentrated in vacuo. Proton nmr analysis of the crude products indicated that ratio of (Z)-1d/1d'/2d/3d/cis-4d/trans-4d was 0/27/0/29/0/44. Thus, only the isomeric substrate $\mathbf{1 d}$ ' was recovered. The cured products were purified by the SiO_{2} column chromatography (eluent: $10 \% \mathrm{EtOAc}$ in hexane) to give 3d ($29 \mathrm{mg}, 0.12 \mathrm{mmol}, 13 \%$ yield) and trans $\mathbf{- 4 d}$ ($49 \mathrm{mg}, 0.20 \mathrm{mmol}, 22 \%$ yield). Selected data for trans-2-(triethylsilyl)tetrahydrofuran-3-yl acetate (trans-4d): $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $5.25(1 \mathrm{H}$, ddd, $J 6.2,4.1$ and 1.4), $3.93(1 \mathrm{H}, \mathrm{t}, J 8.2), 3.64(1 \mathrm{H}$, ddd, $J 11.0,8.2$ and 6.2$), 3.52(1 \mathrm{H}, \mathrm{d}$, $J 4.1), 2.01(3 \mathrm{H}, \mathrm{s}), 1.99(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{m}), 0.95(9 \mathrm{H}, \mathrm{t}, J 7.6), 0.60(3 \mathrm{H}, \mathrm{q}, J 7.6)$ and $0.59(3 \mathrm{H}$, $\mathrm{q}, J 7.6) ; \delta_{\mathrm{C}}\left(150 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.66,76.52,75.72,67.49,34.98,21.21,7.30$ and $1.84 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 2954, 2876, 1741, 1242 and 1017; m/z (ESI+) $267.1389\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}\right.$ requires 267.1392), 267 (100\%).

Key NOE of trans-4d

Position	$\delta \mathrm{H}(\mathrm{ppm})$	proton no. (ppm)
5	3.93	$\mathrm{H}-5^{\prime}(3.64), \mathrm{H}-4$ or $\mathrm{Ac}(1.99$ or 2.01$)$
5	3.64	$\mathrm{H}-5(3.93), \mathrm{H}-4^{\prime}(1.90)$
3	5.25	$\mathrm{H}-4$ or $\mathrm{Ac}(1.99$ or 2.01$), \mathrm{SiCH}_{2} \mathrm{Me}(0.60,0.59)$
2	3.52	$\mathrm{SiCH}_{2} \mathrm{Me}(0.60,0.59), \mathrm{SiCH}_{2} \mathrm{CH}_{3}(0.95)$

Reaction of $(\boldsymbol{E}) \mathbf{- 1 e}$. To a solution of $(E) \mathbf{- 1 e}(311 \mathrm{mg}, 1.28 \mathrm{mmol})$ and iodosylbenzene $(340 \mathrm{mg}, 1.54$ $\mathrm{mmol})$ in dichloromethane $(5.1 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.19 \mathrm{~mL}, 1.54 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 40 min at $-40^{\circ} \mathrm{C}$. The mixture was quenched by NaBF_{4} aqueous solution, and extracted with dichloromethane. The organic extracts were concentrated in vacuo, and purified by the SiO_{2} column chromatography (eluent: $20 \% \mathrm{EtOAc}$ in hexane) to give $\mathbf{3 e}$ ($119 \mathrm{mg}, 0.46 \mathrm{mmol}, 36 \%$ yield) and 5 e $(21 \mathrm{mg}, 0.14 \mathrm{mmol}, 11 \%$ yield $)$ Selected data for methyl 6-(triethylsilyl)-5-oxohexanoate (3e): $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.63(3 \mathrm{H} \mathrm{s}), 2.40(2 \mathrm{H}, \mathrm{t}, J 7.2), 2.31(2 \mathrm{H}, \mathrm{t}$, $J 7.2), 2.15(2 \mathrm{H}, \mathrm{s}), 1.84(2 \mathrm{H}$, quint, $J 7.2), 0.92(9 \mathrm{H}, \mathrm{t}, J 8.2)$ and $0.58(6 \mathrm{H}, \mathrm{q}, J 8.2) ; \delta_{\mathrm{C}}(150 \mathrm{MHz}$; CDCl_{3}) $208.77,173.64,51.44,43.12,33.10,33.02,19.16,7.06$ and $3.68 ; v_{\max }(f i l m) / \mathrm{cm}^{-1} 2953,2877$,

1740, 1692, 1199, 1017 and 731; m / z (ESI+) $281.1564\left(\mathrm{M}+\mathrm{Na} . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}\right.$ requires 281.1549), 281 (100\%).

Reaction of (\boldsymbol{E})-1c with iodosylbenzene in the presence of $\mathbf{H}_{2}{ }^{18} \mathbf{O}$. Labeled water $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ (99 atom \%) (0.05 mL) was added to iodosylbenzene ($182 \mathrm{mg}, 0.83 \mathrm{mmol}$), and the sample was dried overnight under reduced pressure. To the sample of iodosylbenzene were added $(E)-\mathbf{1 c}(200 \mathrm{mg}, 0.69$ $\mathrm{mmol}), \mathrm{H}_{2}{ }^{18} \mathrm{O}(99$ atom \%) (0.10 mL), and dichloromethane (2.8 mL). The suspension was cooled at $-40^{\circ} \mathrm{C}$, and then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.20 \mathrm{~mL}, 1.63 \mathrm{mmol})$ was added to the suspension. After stirring for 2 h at $-40^{\circ} \mathrm{C}$, the mixture was quenched by normal water, and extracted with dichloromethane. The organic extracts were concentrated in vacuo, and purified by the SiO_{2} column chromatography (eluent: 10% EtOAc in hexane) to give $\mathbf{3 c}$ ($30.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 14 \%$ yield) and cis -4 c ($103 \mathrm{mg}, 0.34 \mathrm{mmol}, 49 \%$ yield).

In ESI-MS analysis, 3c has $m / z=329(\mathrm{M}+\mathrm{Na})$ and 331 peaks in 50 and 100% relative intensities in comparison with 100 and 7% for those of the normal product. The ${ }^{18} \mathrm{O}$ content is roughly estimated to be $60 \%(=100 /(50+100)-7 /(100+7))$. For ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz})$ measurement of the labeled $\mathbf{3 c}$, a strong signal at 166.40 ppm and a weak signal at 166.44 ppm were observed in comparison with single signal at 166.45 ppm for the normal 3c as shown in Fig. S1 and S2. The other carbon signals were the same as those for the normal 3c. These results indicate that the ${ }^{18} \mathrm{O}$ atom is incorporated at the ester carbonyl group.

In ESI-MS analysis, cis-4c has $m / z=329(\mathrm{M}+\mathrm{Na})$ and 331 peaks in 48 and 100% relative intensities in comparison with 100 and 3% for those of the normal product. The ${ }^{18} \mathrm{O}$ content is roughly estimated to be $65 \%(=100 /(48+100)-3 /(100+3))$. For ${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz})$ measurement of the labeled 4 c , a strong signal at 166.31 ppm and a weak signal at 166.35 ppm were observed in comparison with single signal at 166.36 ppm for the normal cis- $\mathbf{4 c}$. The other carbon signals were the same as those for the normal cis-4c as shown in Fig. S3 and S4. These results indicate that the ${ }^{18} \mathrm{O}$ atom is incorporated at the ester carbonyl group.

References

(S1) H. Saltzmann and J. G. Sharefkin, Org. Synth., 1973, Coll. 5, 658.

Fig. $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR (150 MHz in CDCl_{3}) signals of the ester carbonyl carbons in $\mathbf{3 c}$ and ${ }^{18} \mathrm{O}-\mathbf{3 c}$

Fig. $\mathbf{S 3}{ }^{13} \mathrm{C}$ NMR (150 MHz in CDCl_{3}) signals of ${ }^{18} \mathrm{O}-\mathbf{4 c}$

