Monomeric, two-coordinate Mn, Fe and Co(II) complexes featuring 2,6-(2,4,6-trimethylphenyl)phenyl ligands

Deborah L. Kays (née Coombs)* and Andrew R. Cowley

Supporting information (16 pages)

Synthetic, Spectroscopic and Crystallographic Data for 1, 2 and 3

Supporting information	
Preparative, spectroscopic and crystallographic data for 1	2
Preparative, spectroscopic and crystallographic data for 2	6
Preparative, spectroscopic and crystallographic data for 3	11

This journal is (c) The Royal Society of Chemistry 2007

Preparative, spectroscopic and crystallographic data for 1

Synthesis of $(2, 6-Mes_2C_6H_3)_2Mn$ (1)

A solution of [2,6-Mes₂C₆H₃Li]₂ (0.250 g, 0.37 mmol) in toluene (10 cm³) was added dropwise to a suspension of MnCl₂ (0.046 g, 0.37 mmol) in a mixture of toluene (10 cm³) and THF (2 cm³) at -78 °C and the resulting mixture warmed slowly to room temperature and stirred overnight. The solution was filtered and volatiles were removed *in vacuo*. The resultant solid was extracted into hexanes (15 cm³) and cooled to -35 °C for several days, whereupon colourless crystals of **1** suitable for X-ray diffraction were formed (0.157 g, 62%). Mp: 240–250 °C (from hexane, melts and turns black). ¹H NMR (300 MHz, C₆D₆, Me₄Si) δ 10.5 (s, br, obscured by benzene peak), 16.9 (s, br, $\Delta v_{1/2} = 904$ Hz), 27.4 (s, v br, $\Delta v_{1/2} = 2000$ Hz). $\mu_{eff} = 5.894(4) \mu_{B}$. UV/vis (hexane): strong absorption between 200 and 400 nm ($\epsilon > 1 \times 10^5$ dm³ mol⁻¹ cm⁻¹). EI-MS: M⁺ = 681 (10%), fragment ion peaks at *m*/*z* 368 [(2,6-Mes₂C₆H₃Mn)⁺, 25], 313 [(2,6-Mes₂C₆H₃)⁺, 20], 298 [(2,6-Mes₂C₆H₃ – Me)⁺, 20], 283 [(2,6-Mes₂C₆H₃ – 3Me)⁺, 15], 253 [(2,6-Mes₂C₆H₃ – 4Me)⁺, 10]; exact mass: calcd for 681.3288 measd 681.3283.

Figure S1. Thermal ellipsoid plot at 40% probability of one of the two crystallographically-distinct molecules of **1**. Hydrogen atoms have been omitted.

Crystals of 1 were grown by controlled cooling of a saturated hexane solution to -35 °C. A single crystal having dimensions approximately 0.03 x 0.28 x 0.30 mm was mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 150K in a stream of cold N₂ using an Oxford Cryosystems CRYOSTREAM unit. Diffraction data were measured using an Enraf-Nonius KappaCCD diffractometer (graphite-monochromated MoK_{α} radiation, $\lambda = 0.71073$ Å). Intensity data were processed using the DENZO-SMN package¹.

Examination of the systematic absences of the intensity data showed the space group to be $P 2_1/c$. The structure was solved using the direct-methods program SIR92², which located all non-hydrogen atoms. Subsequent full-matrix least-squares

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

refinement was carried out using the CRYSTALS program suite³. Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. Hydrogen atoms were positioned geometrically after each cycle of refinement. A 3-term Chebychev polynomial weighting scheme was applied. Refinement converged satisfactorily to give R = 0.0575, wR = 0.0641.

A summary of crystallographic data is given below, as are full lists of atomic coordinates, anisotropic thermal parameters and those bond lengths and angles not concerning H atoms.

The asymmetric unit contains two crystallographically-distinct molecules, neither of which have any crystallographic symmetry. The geometries of these are similar but differ slightly in the orientation of the mesityl groups. Both are significantly distorted from the idealised $\overline{42m}$ (D_{2d}) point symmetry, as shown by the C-Mn-C and Mn-C-C angles listed in Table S6 below.

Crystal identification	1
Chemical formula	$C_{48}H_{50}Mn$
Formula weight	681.85
Temperature (K)	150
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	$P 2_1/c$
<i>a</i> (Å)	10.5378(2)
b (Å)	38.4153(7)
<i>c</i> (Å)	19.0976(4)
α (°)	90
β (°)	91.6501(8)
γ (°)	90
Cell volume ($Å^3$)	7727.7(3)
Ζ	8
Calculated density (Mg/m ³)	1.172
Absorption coefficient (mm ⁻¹)	0.373
F ₀₀₀	2904
Crystal size (mm)	0.03 x 0.28 x 0.30
Description of crystal	Colourless plate
Absorption correction	Semi-empirical from equivalent
	reflections
Transmission coefficients (min,max)	0.89, 0.99
θ range for data collection (°)	$5.0 \le \theta \le 27.5$
Index ranges	$-13 \le h \le 13, 0 \le k \le 49, 0 \le l \le 24$
Reflections measured	53601
Unique reflections	15914
R _{int}	0.066
Observed reflections (I > $2\sigma(I)$)	8184
Refinement method	Full-matrix least-squares on F
Parameters refined	883
Weighting scheme	Chebychev 3-term polynomial

 Table S1.: Crystal data and refinement details for 1

 Goodness of fit
 1.1057

 R
 0.0575

 wR
 0.0641

 Residual electron density (min,max) (eÅ⁻³)
 -0.28, 0.39

Table S2. Bond	l lengths	(Å) for 1.
----------------	-----------	------------

Mn(1) $C(1)$	2.008(3)	$M_{n}(2) = C(40)$	2 002(3)
$\frac{Mn(1) - C(1)}{Mn(1) - C(25)}$	2.098(3) 2.093(3)	$\frac{Mn(2) - C(49)}{Mn(2) - C(73)}$	2.092(3) 2.096(3)
C(1) = C(2)	1.410(5)	C(49) = C(50)	1.406(5)
C(1) - C(2)	1.410(5)	C(4) = C(50)	1.400(3)
C(1) - C(0)	1.410(5)	C(49) - C(54)	1.414(5)
C(2) - C(3)	1.394(5)	C(50) - C(51)	1.404(5)
C(2) - C(7)	1.499(5)	C(50) - C(55)	1.493(5)
C(3) - C(4)	1.384(5)	C(51) - C(52)	1.380(6)
C(4) - C(5)	1.381(5)	C(52) - C(53)	1.379(6)
C(5) - C(6)	1.403(5)	C(53) - C(54)	1.388(5)
C(6) - C(16)	1.502(5)	C(54) - C(64)	1.499(5)
C(7) - C(8)	1.397(6)	C(55) - C(56)	1.407(5)
C(7) - C(12)	1.419(5)	C(55) - C(60)	1.408(5)
C(8) - C(9)	1.393(6)	C(56) - C(57)	1.392(5)
C(8) - C(13)	1.496(6)	C(56) - C(61)	1.519(5)
C(9) - C(10)	1.388(7)	C(57) - C(58)	1.387(6)
C(10) - C(11)	1.386(6)	C(58) - C(59)	1.382(6)
C(10) - C(14)	1.518(6)	C(58) - C(62)	1.513(6)
C(11) - C(12)	1.394(5)	C(59) - C(60)	1.391(6)
C(12) - C(15)	1.505(6)	C(60) - C(63)	1.506(6)
C(16) - C(17)	1.402(5)	C(64) - C(65)	1.404(5)
C(16) - C(21)	1.398(5)	C(64) - C(69)	1.403(5)
C(17) - C(18)	1.399(5)	C(65) - C(66)	1.388(5)
C(17) - C(22)	1.509(5)	C(65) - C(70)	1.506(5)
C(18) - C(19)	1.389(5)	C(66) - C(67)	1.384(5)
C(19) - C(20)	1.391(5)	C(67) - C(68)	1.388(5)
C(19) - C(23)	1.508(5)	C(67) - C(71)	1.508(5)
C(20) - C(21)	1.394(5)	C(68) - C(69)	1.393(5)
C(21) - C(24)	1.511(5)	C(69) - C(72)	1.516(5)
C(25) - C(26)	1.418(5)	C(73) - C(74)	1.402(5)
C(25) - C(30)	1.408(5)	C(73) - C(78)	1.407(5)
C(26) - C(27)	1.402(5)	C(74) - C(75)	1.399(5)
C(26) - C(31)	1.495(5)	C(74) - C(79)	1.496(5)
C(27) - C(28)	1.382(6)	C(75) - C(76)	1.389(5)
C(28) - C(29)	1.381(6)	C(76) - C(77)	1.380(5)
C(29) - C(30)	1.401(5)	C(77) - C(78)	1.392(5)
C(30) - C(40)	1.501(5)	C(78) - C(88)	1.500(5)
C(31) - C(32)	1.408(5)	C(79) - C(80)	1.415(5)
C(31) - C(36)	1.412(5)	C(79) - C(84)	1.396(5)
C(32) - C(33)	1.388(5)	C(80) - C(81)	1.396(5)
C(32) - C(37)	1.507(5)	C(80) - C(85)	1.504(5)
C(33) - C(34)	1.389(6)	C(81) - C(82)	1.382(5)
			/

C(34) - C(35)	1.376(6)	C(82) - C(83)	1.385(5)
C(34) - C(38)	1.526(6)	C(82) - C(86)	1.513(5)
C(35) - C(36)	1.402(6)	C(83) - C(84)	1.390(5)
C(36) - C(39)	1.512(6)	C(84) - C(87)	1.518(5)
C(40) - C(41)	1.402(5)	C(88) - C(89)	1.411(5)
C(40) - C(45)	1.401(5)	C(88) - C(93)	1.389(5)
C(41) - C(42)	1.387(6)	C(89) - C(90)	1.400(5)
C(41) - C(46)	1.518(6)	C(89) - C(94)	1.505(6)
C(42) - C(43)	1.378(6)	C(90) - C(91)	1.385(6)
C(43) - C(44)	1.392(6)	C(91) - C(92)	1.385(5)
C(43) - C(47)	1.516(6)	C(91) - C(95)	1.512(6)
C(44) - C(45)	1.395(6)	C(92) - C(93)	1.391(5)
C(45) - C(48)	1.514(5)	C(93) - C(96)	1.523(5)

Note – H atoms have been excluded

 Table S3. Bond angles (°) for 1.

C(1) - Mn(1) - C(25)	166.41(13)	C(49) - Mn(2) - C(73)	173.00(13)
Mn(1) - C(1) - C(2)	108.1(2)	Mn(2) - C(49) - C(50)	109.3(2)
Mn(1) - C(1) - C(6)	134.9(3)	Mn(2) - C(49) - C(54)	133.5(3)
C(2) - C(1) - C(6)	116.8(3)	C(50) - C(49) - C(54)	117.1(3)
C(1) - C(2) - C(3)	122.2(3)	C(49) - C(50) - C(51)	121.5(3)
C(1) - C(2) - C(7)	115.0(3)	C(49) - C(50) - C(55)	116.4(3)
C(3) - C(2) - C(7)	122.7(3)	C(51) - C(50) - C(55)	122.1(3)
C(2) - C(3) - C(4)	119.4(3)	C(50) - C(51) - C(52)	119.7(3)
C(3) - C(4) - C(5)	120.1(3)	C(51) - C(52) - C(53)	119.8(3)
C(4) - C(5) - C(6)	120.7(3)	C(52) - C(53) - C(54)	121.2(4)
C(1) - C(6) - C(5)	120.7(3)	C(49) - C(54) - C(53)	120.7(3)
C(1) - C(6) - C(16)	118.8(3)	C(49) - C(54) - C(64)	119.9(3)
C(5) - C(6) - C(16)	120.6(3)	C(53) - C(54) - C(64)	119.4(3)
C(2) - C(7) - C(8)	119.8(3)	C(50) - C(55) - C(56)	120.5(3)
C(2) - C(7) - C(12)	119.3(3)	C(50) - C(55) - C(60)	120.3(3)
C(8) - C(7) - C(12)	120.6(3)	C(56) - C(55) - C(60)	119.2(3)
C(7) - C(8) - C(9)	118.5(4)	C(55) - C(56) - C(57)	119.4(3)
C(7) - C(8) - C(13)	120.6(3)	C(55) - C(56) - C(61)	119.7(3)
C(9) - C(8) - C(13)	120.9(4)	C(57) - C(56) - C(61)	120.9(3)
C(8) - C(9) - C(10)	122.2(4)	C(56) - C(57) - C(58)	121.9(4)
C(9) - C(10) - C(11)	118.4(4)	C(57) - C(58) - C(59)	117.9(4)
C(9) - C(10) - C(14)	120.0(5)	C(57) - C(58) - C(62)	120.7(4)
C(11) - C(10) - C(14)	121.6(5)	C(59) - C(58) - C(62)	121.4(4)
C(10) - C(11) - C(12)	122.0(4)	C(58) - C(59) - C(60)	122.4(4)
C(7) - C(12) - C(11)	118.2(4)	C(55) - C(60) - C(59)	119.0(4)
C(7) - C(12) - C(15)	120.8(3)	C(55) - C(60) - C(63)	120.7(3)
C(11) - C(12) - C(15)	120.9(4)	C(59) - C(60) - C(63)	120.3(3)
C(6) - C(16) - C(17)	119.4(3)	C(54) - C(64) - C(65)	120.2(3)
C(6) - C(16) - C(21)	121.0(3)	C(54) - C(64) - C(69)	120.0(3)
C(17) - C(16) - C(21)	119.6(3)	C(65) - C(64) - C(69)	119.7(3)
C(16) - C(17) - C(18)	119.5(3)	C(64) - C(65) - C(66)	118.9(3)
C(16) - C(17) - C(22)	121.1(3)	C(64) - C(65) - C(70)	120.4(3)
C(18) - C(17) - C(22)	119.4(3)	C(66) - C(65) - C(70)	120.7(3)
C(17) - C(18) - C(19)	121.4(3)	C(65) - C(66) - C(67)	122.5(3)
C(18) - C(19) - C(20)	118.4(3)	C(66) - C(67) - C(68)	117.8(3)
C(18) - C(19) - C(23)	121.1(4)	C(66) - C(67) - C(71)	121.4(3)

# Supplementary Material	(ESI) for	Chemical C	communications
--------------------------	-----------	------------	----------------

# This journal is (c)	The Royal Society	of Chemistry 2007
-----------------------	-------------------	-------------------

C(20) - C(19) - C(23)	120.5(4)	C(68) - C(67) - C(71)	120.7(3)
C(19) - C(20) - C(21)	121.4(3)	C(67) - C(68) - C(69)	121.9(3)
C(16) - C(21) - C(20)	119.7(3)	C(64) - C(69) - C(68)	119.2(3)
C(16) - C(21) - C(24)	120.6(3)	C(64) - C(69) - C(72)	120.5(3)
C(20) - C(21) - C(24)	119.7(3)	C(68) - C(69) - C(72)	120.3(3)
Mn(1) - C(25) - C(26)	112.2(2)	Mn(2) - C(73) - C(74)	113.7(2)
Mn(1) - C(25) - C(30)	130.8(3)	Mn(2) - C(73) - C(78)	128.6(3)
C(26) - C(25) - C(30)	116.9(3)	C(74) - C(73) - C(78)	117.6(3)
C(25) - C(26) - C(27)	121.6(3)	C(73) - C(74) - C(75)	121.6(3)
C(25) - C(26) - C(31)	116.5(3)	C(73) - C(74) - C(79)	118.0(3)
C(27) - C(26) - C(31)	121.8(3)	C(75) - C(74) - C(79)	120.3(3)
C(26) - C(27) - C(28)	119.7(3)	C(74) - C(75) - C(76)	119.6(3)
C(27) - C(28) - C(29)	120.1(3)	C(75) - C(76) - C(77)	119.6(3)
C(28) - C(29) - C(30)	120.7(3)	C(76) - C(77) - C(78)	121.2(3)
C(25) - C(30) - C(29)	120.9(3)	C(73) - C(78) - C(77)	120.4(3)
C(25) - C(30) - C(40)	118.6(3)	C(73) - C(78) - C(88)	119.7(3)
C(29) - C(30) - C(40)	120.5(3)	C(77) - C(78) - C(88)	119.9(3)
C(26) - C(31) - C(32)	119.0(3)	C(74) - C(79) - C(80)	119.7(3)
C(26) - C(31) - C(36)	121.7(3)	C(74) - C(79) - C(84)	120.1(3)
C(32) - C(31) - C(36)	119.2(3)	C(80) - C(79) - C(84)	120.1(3)
C(31) - C(32) - C(33)	119.8(3)	C(79) - C(80) - C(81)	118.3(3)
C(31) - C(32) - C(37)	120.5(3)	C(79) - C(80) - C(85)	121.3(3)
C(33) - C(32) - C(37)	119.7(4)	C(81) - C(80) - C(85)	120.4(3)
C(32) - C(33) - C(34)	121.4(4)	C(80) - C(81) - C(82)	122.3(3)
C(33) - C(34) - C(35)	118.8(4)	C(81) - C(82) - C(83)	118.2(3)
C(33) - C(34) - C(38)	119.7(4)	C(81) - C(82) - C(86)	121.5(3)
C(35) - C(34) - C(38)	121.5(4)	C(83) - C(82) - C(86)	120.4(4)
C(34) - C(35) - C(36)	121.8(4)	C(82) - C(83) - C(84)	122.1(3)
C(31) - C(36) - C(35)	119.0(4)	C(79) - C(84) - C(83)	119.0(3)
C(31) - C(36) - C(39)	120.4(4)	C(79) - C(84) - C(87)	121.1(3)
C(35) - C(36) - C(39)	120.5(4)	C(83) - C(84) - C(87)	119.9(3)
C(30) - C(40) - C(41)	120.8(3)	C(78) - C(88) - C(89)	119.1(3)
C(30) - C(40) - C(45)	119.4(3)	C(78) - C(88) - C(93)	121.3(3)
C(41) - C(40) - C(45)	119.8(4)	C(89) - C(88) - C(93)	119.6(3)
C(40) - C(41) - C(42)	118.9(4)	C(88) - C(89) - C(90)	118.9(3)
C(40) - C(41) - C(46)	120.2(4)	C(88) - C(89) - C(94)	121.2(3)
C(42) - C(41) - C(46)	120.9(3)	C(90) - C(89) - C(94)	119.9(3)
C(41) - C(42) - C(43)	122.7(4)	C(89) - C(90) - C(91)	121.8(3)
C(42) - C(43) - C(44)	117.6(4)	C(90) - C(91) - C(92)	118.2(3)
C(42) - C(43) - C(47)	122.0(4)	C(90) - C(91) - C(95)	120.8(4)
C(44) - C(43) - C(47)	120.4(4)	C(92) - C(91) - C(95)	121.0(4)
C(43) - C(44) - C(45)	121.9(4)	C(91) - C(92) - C(93)	121.8(3)
C(40) - C(45) - C(44)	119.0(3)	C(88) - C(93) - C(92)	119.8(3)
C(40) - C(45) - C(48)	121.1(3)	C(88) - C(93) - C(96)	120.8(3)
C(44) - C(45) - C(48)	119.9(4)	C(92) - C(93) - C(96)	119.4(3)

M.	тт	- 4	1	1	
Note –	н	atoms	nave	been	excluded

Preparative, spectroscopic and crystallographic data for 2

Synthesis of $(2, 6-Mes_2C_6H_3)_2Fe(2)$

A solution of $[2,6-\text{Mes}_2\text{C}_6\text{H}_3\text{Li}]_2$ (0.300 g, 0.49 mmol) in toluene (10 cm³) was added dropwise to a suspension of FeCl₂(THF)_{1.5} (0.108 g, 0.49 mmol) in a mixture of toluene (10 cm³) and THF (2 cm³) at -78 °C and the resulting mixture warmed slowly to room temperature and stirred overnight. The solution was filtered and volatiles removed *in vacuo*. The resultant solid was extracted into hexanes (15 cm³) and cooled

to -35 °C for several days, whereupon yellow-green crystals of **2** suitable for X-ray diffraction were formed (0.184 g, 56%). Mp: 200–210°C (from hexane, melts and turns black, darkens at 140 °C). ¹H NMR (300 MHz, C₆D₆, Me₄Si) δ –56.2 (s, br, $\Delta v_{\frac{1}{2}}$ = 205 Hz, 8H, *m*-H of Mes), -36.2 (s, br, $\Delta v_{\frac{1}{2}}$ = 1242 Hz, 24H, *o*-CH₃ of Mes), -11.6 (s, $\Delta v_{\frac{1}{2}}$ = 38 Hz, 12H, *p*-CH₃ of Mes), 33.7 (s, br, $\Delta v_{\frac{1}{2}}$ = 269 Hz, 2H, *p*-H of C₆H₃), 139.0 (s, br, $\Delta v_{\frac{1}{2}}$ = 950 Hz, 4H, *m*-H of C₆H₃). μ_{eff} = 4.900(4) μ_{B} . UV/vis (hexane): strong absorption between 200 and 400 nm; λ_{max} /nm (ϵ dm³ mol⁻¹ cm⁻¹) 353 (1313) sh, 366 (1107) sh, 382 (738) sh, 411 (517). EI-MS: M⁺ = 682 (95%), fragment ion peaks at *m*/z 369 [(2,6-Mes₂C₆H₃Fe)⁺, 10], 313 [(2,6-Mes₂C₆H₃)⁺, 60], 298 [(2,6-Mes₂C₆H₃ - 4Me)⁺, 35]; exact mass: calcd for 682.3256 measd 682.3251.

Figure S2. Thermal ellipsoid plot at 40% probability of one of the two crystallographically-distinct molecules of **2**. Hydrogen atoms have been omitted.

Crystals of **2** were grown by the controlled cooling of a saturated hexane solution to -35 °C. A single crystal having dimensions approximately 0.03 x 0.30 x 0.30 mm was mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 150K in a stream of cold N₂ using an Oxford Cryosystems CRYOSTREAM unit. Diffraction data were measured using an Enraf-Nonius KappaCCD diffractometer (graphite-monochromated MoK_a radiation, $\lambda = 0.71073$ Å). Intensity data were processed using the DENZO-SMN package¹.

Examination of the systematic absences of the intensity data showed the space group to be $P 2_1/c$. The structure was solved using the direct-methods program SIR92², which located all non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite³. Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. Hydrogen atoms were positioned geometrically after each cycle of refinement. A 3-term Chebychev polynomial weighting scheme was applied. Refinement converged satisfactorily to give R = 0.0463, wR = 0.0512.

A summary of crystallographic data is given below, as are full lists of atomic coordinates, anisotropic thermal parameters and those bond lengths and angles not concerning H atoms.

The asymmetric unit contains two crystallographically-distinct molecules, neither of which have any crystallographic symmetry. The geometries of these are similar but differ slightly in the orientation of the mesityl groups. Both are significantly distorted from the idealised $\overline{42m}$ (D_{2d}) point symmetry as shown by the C-Fe-C and Fe-C-C angles listed in Table S12 below.

Crystal identification	2
Chemical formula	$C_{48}H_{50}Fe$
Formula weight	682.77
Temperature (K)	150
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	$P 2_1/c$
a (Å)	10.4641(2)
<i>b</i> (Å)	38.4046(3)
<i>c</i> (Å)	19.1887(2)
α (°)	90
β (°)	92.1247(3)
γ (°)	90
Cell volume (Å ³)	7706.05(18)
Ζ	8
Calculated density (Mg/m ³)	1.177
Absorption coefficient (mm ⁻¹)	0.423
F ₀₀₀	2912
Crystal size (mm)	0.03 x 0.30 x 0.30
Description of crystal	Green-yellow plate
Absorption correction	Semi-empirical from equivalent
	reflections
Transmission coefficients (min,max)	0.88, 0.99
θ range for data collection (°)	$5.0 \le \theta \le 27.5$
Index ranges	$-13 \le h \le 13, 0 \le k \le 49, 0 \le l \le 24$
Reflections measured	84689
Unique reflections	17822
R _{int}	0.068
Observed reflections $(I > 3\sigma(I))$	8216
Refinement method	Full-matrix least-squares on F
Parameters refined	883
Weighting scheme	Chebychev 3-term polynomial
Goodness of fit	1.1098
R	0.0463
wR	0.0512
Residual electron density (min,max) (eÅ ⁻³)	-0.45, 0.38

Table S4. Ci	rystal data a	and refinement	details for 2
--------------	---------------	----------------	---------------

Table S5	Bond	lengths	(Å)	for	2
----------	------	---------	-----	-----	---

Fe(1) - C(1)	2.042(3)	Fe(2) - C(49)	2.037(3)
Fe(1) - C(25)	2.040(3)	Fe(2) - C(73)	2.040(3)
C(1) - C(2)	1.408(4)	C(49) - C(50)	1.409(4)
C(1) - C(6)	1.404(4)	C(49) - C(54)	1.408(4)
C(2) - C(3)	1.398(4)	C(50) - C(51)	1.392(4)
C(2) - C(7)	1.497(4)	C(50) - C(55)	1.499(4)
C(3) - C(4)	1.385(5)	C(51) - C(52)	1.388(5)
C(4) - C(5)	1.380(5)	C(52) - C(53)	1.383(5)
C(5) - C(6)	1.403(4)	C(53) - C(54)	1.394(4)
C(6) - C(16)	1.495(4)	C(54) - C(64)	1.499(4)
C(7) - C(8)	1.410(5)	C(55) - C(56)	1.403(4)
C(7) - C(12)	1.413(5)	C(55) - C(60)	1.412(4)
C(8) - C(9)	1.397(5)	C(56) - C(57)	1.387(5)
C(8) - C(13)	1.500(5)	C(56) - C(61)	1.519(5)
C(9) - C(10)	1.376(6)	C(57) - C(58)	1.394(5)
C(10) - C(11)	1.385(6)	C(58) - C(59)	1.380(5)
C(10) - C(14)	1.515(6)	C(58) - C(62)	1.513(5)
C(11) - C(12)	1.395(5)	C(59) - C(60)	1.391(5)
C(12) - C(15)	1.503(6)	C(60) - C(63)	1.508(5)
C(16) - C(17)	1.404(4)	C(64) - C(65)	1.397(5)
C(16) - C(21)	1.403(4)	C(64) - C(69)	1.407(4)
C(17) - C(18)	1.394(5)	C(65) - C(66)	1.389(4)
C(17) - C(22)	1.509(5)	C(65) - C(70)	1.516(5)
C(18) - C(19)	1.389(5)	C(66) - C(67)	1.390(5)
C(19) - C(20)	1.380(5)	C(67) - C(68)	1.394(5)
C(19) - C(23)	1.507(5)	C(67) - C(71)	1.506(5)
C(20) - C(21)	1.400(4)	C(68) - C(69)	1.391(5)
C(21) - C(24)	1.505(4)	C(69) - C(72)	1.513(5)
C(25) - C(26)	1.412(4)	C(73) - C(74)	1.406(4)
C(25) - C(30)	1.409(4)	C(73) - C(78)	1.404(4)
C(26) - C(27)	1.398(4)	C(74) - C(75)	1.395(4)
C(26) - C(31)	1.501(4)	C(74) - C(79)	1.499(4)
C(27) - C(28)	1.380(5)	C(75) - C(76)	1.388(5)
C(28) - C(29)	1.384(5)	C(76) - C(77)	1.383(5)
C(29) - C(30)	1.400(4)	C(77) - C(78)	1.399(4)
C(30) - C(40)	1.500(4)	C(78) - C(88)	1.497(4)
C(31) - C(32)	1.413(4)	C(79) - C(80)	1.415(4)
C(31) - C(36)	1.406(5)	C(79) - C(84)	1.401(4)
C(32) - C(33)	1.388(5)	C(80) - C(81)	1.389(4)
C(32) - C(37)	1.505(5)	C(80) - C(85)	1.499(5)
C(33) - C(34)	1.393(5)	C(81) - C(82)	1.387(5)
C(34) - C(35)	1.381(5)	C(82) - C(83)	1.381(5)
C(34) - C(38)	1.512(5)	C(82) - C(86)	1.512(5)
C(35) - C(36)	1.399(5)	C(83) - C(84)	1.396(5)
C(36) - C(39)	1.509(5)	C(84) - C(87)	1.511(5)
C(40) - C(41)	1.410(4)	C(88) - C(89)	1.406(4)
C(40) - C(43)	1.398(3)	C(88) - C(93)	1.400(4)
C(41) = C(42)	1.307(3)	C(89) = C(90)	1.392(3)
C(42) = C(40)	1 388(6)	C(99) = C(94)	1 301(5)
C(43) - C(44)	1 387(5)	C(91) - C(92)	1 386(5)
C(43) - C(47)	1.506(5)	C(91) - C(95)	1.507(5)
C(44) - C(45)	1.392(5)	C(92) - C(93)	1.395(5)
C(45) - C(48)	1.514(5)	C(93) - C(96)	1.509(5)
· · · · · · · ·			· · · /

Note – H atoms have been excluded

C(1) - Fe(1) - C(25)	164.44(12)	C(49) - Fe(2) - C(73)	171.06(12)
Fe(1) - C(1) - C(2)	106.7(2)	Fe(2) - C(49) - C(50)	107.2(2)
Fe(1) - C(1) - C(6)	136.1(2)	Fe(2) - C(49) - C(54)	135.5(2)
C(2) - C(1) - C(6)	117.1(3)	C(50) - C(49) - C(54)	117.2(3)
C(1) - C(2) - C(3)	122.4(3)	C(49) - C(50) - C(51)	121.9(3)
C(1) - C(2) - C(7)	115.8(3)	C(49) - C(50) - C(55)	116 5(3)
C(3) - C(2) - C(7)	121.8(3)	$\frac{C(51) - C(50) - C(55)}{C(51) - C(50) - C(55)}$	121 5(3)
C(2) - C(3) - C(4)	118 9(3)	$\frac{C(51) - C(51) - C(52)}{C(50) - C(51) - C(52)}$	119 6(3)
C(2) = C(3) = C(4) = C(5)	120 3(3)	C(51) = C(52) = C(53)	119.6(3)
C(4) = C(5) = C(6)	120.9(3)	C(51) = C(52) = C(53)	121 1(3)
C(1) = C(6) = C(6)	120.3(3)	$\frac{C(32) - C(53) - C(54)}{C(49) - C(54) - C(53)}$	121.1(3) 120 5(3)
C(1) - C(0) - C(3)	120.3(3) 110.7(3)	C(49) - C(54) - C(53)	120.5(3)
C(1) = C(0) = C(10)	110.0(3)	$\frac{C(47) - C(54) - C(64)}{C(53) - C(54) - C(64)}$	120.0(3)
C(3) - C(0) - C(10)	119.9(3)	$\frac{C(53) - C(54) - C(64)}{C(50) - C(55) - C(56)}$	118.9(3)
C(2) - C(7) - C(8)	119.4(3)	C(50) - C(55) - C(50)	120.3(3)
C(2) - C(7) - C(12)	119.9(3)	C(50) - C(55) - C(60)	119.9(3)
C(8) - C(7) - C(12)	120.5(3)	$\frac{C(56) - C(55) - C(60)}{C(55) - C(57)}$	119.6(3)
C(7) - C(8) - C(9)	117.9(3)	$\frac{C(55) - C(56) - C(57)}{C(55) - C(57)}$	119.3(3)
C(7) - C(8) - C(13)	120.3(3)	$\frac{C(55) - C(56) - C(61)}{C(57) - C(57) - C(5$	120.2(3)
C(9) - C(8) - C(13)	121.8(3)	$\frac{C(57) - C(56) - C(61)}{C(57) - C(57)}$	120.5(3)
C(8) - C(9) - C(10)	122.7(4)	C(56) - C(57) - C(58)	121.9(3)
C(9) - C(10) - C(11)	118.6(3)	C(57) - C(58) - C(59)	118.1(3)
C(9) - C(10) - C(14)	120.2(5)	C(57) - C(58) - C(62)	120.4(4)
C(11) - C(10) - C(14)	121.1(5)	C(59) - C(58) - C(62)	121.5(3)
C(10) - C(11) - C(12)	121.9(4)	C(58) - C(59) - C(60)	122.2(3)
C(7) - C(12) - C(11)	118.5(4)	C(55) - C(60) - C(59)	118.9(3)
C(7) - C(12) - C(15)	120.4(3)	C(55) - C(60) - C(63)	121.1(3)
C(11) - C(12) - C(15)	121.1(3)	C(59) - C(60) - C(63)	120.0(3)
C(6) - C(16) - C(17)	120.1(3)	C(54) - C(64) - C(65)	120.3(3)
C(6) - C(16) - C(21)	120.6(3)	C(54) - C(64) - C(69)	119.7(3)
C(17) - C(16) - C(21)	119.4(3)	C(65) - C(64) - C(69)	120.0(3)
C(16) - C(17) - C(18)	119.2(3)	C(64) - C(65) - C(66)	119.2(3)
C(16) - C(17) - C(22)	120.4(3)	C(64) - C(65) - C(70)	120.8(3)
C(18) - C(17) - C(22)	120.4(3)	C(66) - C(65) - C(70)	120.0(3)
C(17) - C(18) - C(19)	122.1(3)	C(65) - C(66) - C(67)	122.2(3)
C(18) - C(19) - C(20)	118.1(3)	C(66) - C(67) - C(68)	117.7(3)
C(18) - C(19) - C(23)	120.9(3)	C(66) - C(67) - C(71)	121.6(3)
C(20) - C(19) - C(23)	121.0(3)	C(68) - C(67) - C(71)	120.7(3)
C(19) - C(20) - C(21)	121.8(3)	C(67) - C(68) - C(69)	122.0(3)
C(16) - C(21) - C(20)	119.4(3)	C(64) - C(69) - C(68)	119.0(3)
C(16) - C(21) - C(24)	120.5(3)	C(64) - C(69) - C(72)	120.7(3)
C(20) - C(21) - C(24)	120.1(3)	C(68) - C(69) - C(72)	120.3(3)
Fe(1) - C(25) - C(26)	111.8(2)	Fe(2) - C(73) - C(74)	114.5(2)
Fe(1) - C(25) - C(30)	130.8(2)	Fe(2) - C(73) - C(78)	128.0(2)
C(26) - C(25) - C(30)	117.3(3)	C(74) - C(73) - C(78)	117.4(3)
C(25) - C(26) - C(27)	121.5(3)	C(73) - C(74) - C(75)	121.8(3)
C(25) - C(26) - C(31)	116 7(3)	$\frac{C(73)}{C(73)} - C(74) - C(79)$	118.0(3)
C(27) - C(26) - C(31)	121.6(3)	C(75) - C(74) - C(79)	120 2(3)
C(26) - C(27) - C(28)	119 9(3)	C(74) - C(75) - C(76)	119 7(3)
C(27) = C(28) = C(20)	110 8(3)	C(75) - C(76) - C(77)	110.7(3)
C(28) = C(20) = C(29)	121 0(3)	C(76) - C(77) - C(78)	120 0(3)
C(25) = C(25) = C(30)	121.0(3) 120 $A(3)$	C(73) = C(78) = C(77)	120.9(3)
C(25) = C(50) = C(29) C(25) = C(20) = C(40)	120.4(3) 110.7(2)	$\frac{C(73) - C(70) - C(71)}{C(72) - C(70) - C(90)}$	120.0(3)
C(23) = C(30) = C(40) C(20) = C(40)	119./(3)	$\frac{C(73) - C(78) - C(88)}{C(77) - C(78) - C(88)}$	120.0(3) 110 $4(2)$
C(29) = C(30) = C(40)	119.0(3)	$\frac{C(74) - C(70) - C(80)}{C(70) - C(80)}$	119.4(3)
U(20) - U(31) - U(32)	118.4(5)	U(74) - U(79) - U(80)	120.3(3)

Table S6. Bond angles (°) for 2

C(26) - C(31) - C(36)	121.8(3)	C(74) - C(79) - C(84)	119.6(3)
C(32) - C(31) - C(36)	119.8(3)	C(80) - C(79) - C(84)	120.0(3)
C(31) - C(32) - C(33)	119.0(3)	C(79) - C(80) - C(81)	118.6(3)
C(31) - C(32) - C(37)	120.8(3)	C(79) - C(80) - C(85)	120.4(3)
C(33) - C(32) - C(37)	120.2(3)	C(81) - C(80) - C(85)	121.0(3)
C(32) - C(33) - C(34)	122.2(3)	C(80) - C(81) - C(82)	122.4(3)
C(33) - C(34) - C(35)	117.8(3)	C(81) - C(82) - C(83)	118.0(3)
C(33) - C(34) - C(38)	120.2(3)	C(81) - C(82) - C(86)	121.3(3)
C(35) - C(34) - C(38)	121.9(3)	C(83) - C(82) - C(86)	120.7(3)
C(34) - C(35) - C(36)	122.5(3)	C(82) - C(83) - C(84)	122.4(3)
C(31) - C(36) - C(35)	118.7(3)	C(79) - C(84) - C(83)	118.6(3)
C(31) - C(36) - C(39)	120.3(3)	C(79) - C(84) - C(87)	121.1(3)
C(35) - C(36) - C(39)	121.0(3)	C(83) - C(84) - C(87)	120.2(3)
C(30) - C(40) - C(41)	120.1(3)	C(78) - C(88) - C(89)	120.0(3)
C(30) - C(40) - C(45)	120.2(3)	C(78) - C(88) - C(93)	120.4(3)
C(41) - C(40) - C(45)	119.7(3)	C(89) - C(88) - C(93)	119.6(3)
C(40) - C(41) - C(42)	118.8(3)	C(88) - C(89) - C(90)	119.6(3)
C(40) - C(41) - C(46)	120.2(3)	C(88) - C(89) - C(94)	120.9(3)
C(42) - C(41) - C(46)	121.0(3)	C(90) - C(89) - C(94)	119.5(3)
C(41) - C(42) - C(43)	122.6(3)	C(89) - C(90) - C(91)	121.6(3)
C(42) - C(43) - C(44)	117.5(3)	C(90) - C(91) - C(92)	118.1(3)
C(42) - C(43) - C(47)	121.6(4)	C(90) - C(91) - C(95)	120.7(3)
C(44) - C(43) - C(47)	120.9(4)	C(92) - C(91) - C(95)	121.2(3)
C(43) - C(44) - C(45)	122.3(3)	C(91) - C(92) - C(93)	122.3(3)
C(40) - C(45) - C(44)	119.1(3)	C(88) - C(93) - C(92)	118.9(3)
C(40) - C(45) - C(48)	120.3(3)	C(88) - C(93) - C(96)	121.3(3)
C(44) - C(45) - C(48)	120.6(3)	C(92) - C(93) - C(96)	119.9(3)

# Supplementary Material (ESI)	for Chemical Communications
--------------------------------	-----------------------------

This journal is (c) The Royal Society of Chemistry 2007

Note –	Н	atoms	have	heen	exc	hud	ed	Ĺ
	11	atoms	nave	Deen	CXU.	iuu	.cu	Ļ

Preparative, spectroscopic and crystallographic data for 3

Synthesis of $(2, 6-Mes_2C_6H_3)_2Co(3)$

A solution of $[2,6-Mes_2C_6H_3Li]_2$ (0.225 g, 0.33 mmol) in toluene (10 cm³) was added dropwise to a suspension of CoBr₂(DME) (0.108 g, 0.33 mmol) in a mixture of toluene (10 cm³) and THF (2 cm³) at -78 °C and the resulting mixture warmed slowly to room temperature and stirred overnight. The solution was filtered and volatiles were removed *in vacuo*. The resultant solid was extracted into hexanes (15 cm³) and cooled to -35 °C for several days, whereupon dark purple crystals of 3 suitable for Xray diffraction were formed (0.110 g, 48%). Mp: 148-155 °C (from hexane, melts and turns black). ¹H NMR (300 MHz, C₆D₆, Me₄Si) δ –100.2 (s, br, $\Delta v_{\frac{1}{2}}$ = 320 Hz, 8H, *m*-H of Mes), -74.3 (s, br, $\Delta v_{\frac{1}{2}} = 1535$ Hz, 24H, o-CH₃ of Mes), -29.6 (s, br, $\Delta v_{\frac{1}{2}} = 109$ Hz, 12H, *p*-CH₃ of Mes), 142.6 (s, br, $\Delta v_{\frac{1}{2}} = 889$ Hz, 2H, *m*-H of C₆H₃), *p*-H of C₆H₃ not observed. $\mu_{eff} = 3.814(9) \mu_{B}$. UV/vis (hexane): strong absorption between 200 and 400 nm; $\lambda_{\text{max}}/\text{nm}$ (ϵ dm³ mol⁻¹ cm⁻¹) 385 (2017) sh, 521 (497). EI-MS: M⁺ = 685 (25%), fragment ion peaks at m/z 373 [(2,6-Mes₂C₆H₃Co)⁺, 20], 313 [(2,6- $Mes_2C_6H_3^+, 55], 298 [(2,6-Mes_2C_6H_3 - Me)^+, 80], 283 [(2,6-Mes_2C_6H_3 - 2Me)^+, 25],$ $268 [(2,6-Mes_2C_6H_3 - 3Me)^+, 20], 253 [(2,6-Mes_2C_6H_3 - 4Me)^+, 5];$ exact mass: calcd for 685.3239 measd 685.3239.

Supplementary Material (ESI) for Chemical Communications

This journ; 1 () The Delign of Col

Figure S3. Thermal ellipsoid plot at 40% probability of one of the two crystallographically-distinct molecules of **3**. Hydrogen atoms have been omitted.

Crystals of **3** were grown by the controlled cooling of a saturated hexane solution to -35 °C. A single crystal having dimensions approximately 0.03 x 0.26 x 0.26 mm was mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 150K in a stream of cold N₂ using an Oxford Cryosystems CRYOSTREAM unit. Diffraction data were measured using an Enraf-Nonius KappaCCD diffractometer (graphite-monochromated MoK_a radiation, $\lambda = 0.71073$ Å). Intensity data were processed using the DENZO-SMN package¹.

Examination of the systematic absences of the intensity data showed the space group to be $P 2_1/c$. The structure was solved using the direct-methods program SIR92², which located all non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite³. Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. Hydrogen atoms were positioned geometrically after each cycle of refinement. A 3-term Chebychev polynomial weighting scheme was applied. Refinement converged satisfactorily to give R = 0.0452, wR = 0.0510.

A summary of crystallographic data is given below, as are full lists of atomic coordinates, anisotropic thermal parameters and those bond lengths and angles not concerning H atoms.

Comment:

The complex is isomorphous with the Fe analogue and shows similar deviations from the idealised $42m (D_{2d})$ point symmetry.

Crystal identification	3
Chemical formula	C ₄₈ H ₅₀ Co
Formula weight	685.86
Temperature (K)	150

 Table S7. Crystal data and refinement details for 3

# Supplementary Material (I	ESI) for Chem	ical Commun	ications
-----------------------------	---------------	-------------	----------

This journal is (c) The Royal Society of Chemistry 2007

Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	$P 2_1/c$
a (Å)	10.4123(2)
$b(\mathbf{A})$	38.5032(6)
$c(\dot{A})$	19.1871(3)
α (°)	90
β (°)	92.4695
γ (°)	90
Cell volume (Å ³)	7685.1(2)
Ζ	8
Calculated density (Mg/m ³)	1.185
Absorption coefficient (mm ⁻¹)	0.478
F ₀₀₀	2920
Crystal size (mm)	0.03 x 0.26 x 0.26
Description of crystal	Dark-purple plate
Absorption correction	Semi-empirical from equivalent
	reflections
Transmission coefficients (min,max)	0.88, 0.99
θ range for data collection (°)	$5.0 \le \theta \le 27.5$
Index ranges	$-13 \le h \le 13, 0 \le k \le 49, 0 \le l \le 24$
Reflections measured	55484
Unique reflections	17289
R _{int}	0.047
Observed reflections (I > $3\sigma(I)$)	9572
Refinement method	Full-matrix least-squares on F
Parameters refined	883
Weighting scheme	Chebychev 3-term polynomial
Goodness of fit	1.1009
R	0.0452
wR	0.0510
Residual electron density (min,max) (eÅ ⁻³)	-0.32, 0.31

Table S8. Bond lengths (Å) for 3

Co(1) - C(1)	2.003(3)	Co(2) - C(49)	2.000(2)
Co(1) - C(25)	2.000(3)	Co(2) - C(73)	1.999(2)
C(1) - C(2)	1.406(3)	C(49) - C(50)	1.402(4)
C(1) - C(6)	1.408(4)	C(49) - C(54)	1.406(4)
C(2) - C(3)	1.396(4)	C(50) - C(51)	1.390(4)
C(2) - C(7)	1.499(4)	C(50) - C(55)	1.508(4)
C(3) - C(4)	1.388(4)	C(51) - C(52)	1.389(4)
C(4) - C(5)	1.386(4)	C(52) - C(53)	1.387(4)
C(5) - C(6)	1.397(4)	C(53) - C(54)	1.398(4)
C(6) - C(16)	1.502(3)	C(54) - C(64)	1.499(4)
C(7) - C(8)	1.404(4)	C(55) - C(56)	1.410(4)
C(7) - C(12)	1.414(4)	C(55) - C(60)	1.402(4)
C(8) - C(9)	1.396(4)	C(56) - C(57)	1.387(4)
C(8) - C(13)	1.500(5)	C(56) - C(61)	1.514(4)
C(9) - C(10)	1.387(5)	C(57) - C(58)	1.386(4)

Supplementary Material (ESI) for Chemical Communications

# This journal is	(c) The I	Royal Society	of Chemistry 2007
-------------------	-----------	---------------	-------------------

C(10) - C(11)	1.375(5)	C(58) - C(59)	1.390(4)
C(10) - C(14)	1.517(5)	C(58) - C(62)	1.510(4)
C(11) - C(12)	1.388(4)	C(59) - C(60)	1.395(4)
C(12) - C(15)	1.511(5)	C(60) - C(63)	1.508(4)
C(16) - C(17)	1.407(4)	C(64) - C(65)	1.398(4)
C(16) - C(21)	1.391(4)	C(64) - C(69)	1.408(4)
C(17) - C(18)	1.396(4)	C(65) - C(66)	1.395(4)
C(17) - C(22)	1.506(4)	C(65) - C(70)	1.516(4)
C(18) - C(19)	1.390(4)	C(66) - C(67)	1.384(4)
C(19) - C(20)	1.383(4)	C(67) - C(68)	1.389(4)
C(19) - C(23)	1.511(4)	C(67) - C(71)	1.505(4)
C(20) - C(21)	1.396(4)	C(68) - C(69)	1.389(4)
C(21) - C(24)	1.511(4)	C(69) - C(72)	1.510(4)
C(25) - C(26)	1.411(4)	C(73) - C(74)	1.409(4)
C(25) - C(30)	1.411(4)	C(73) - C(78)	1.405(4)
C(26) - C(27)	1.398(4)	C(74) - C(75)	1.400(3)
C(26) - C(31)	1.499(4)	C(74) - C(79)	1.492(4)
C(27) - C(28)	1.384(4)	C(75) - C(76)	1.389(4)
C(28) - C(29)	1.382(4)	C(76) - C(77)	1.382(4)
C(29) - C(30)	1.399(4)	C(77) - C(78)	1.399(4)
C(30) - C(40)	1.499(4)	C(78) - C(88)	1.498(4)
C(31) - C(32)	1.416(4)	C(79) - C(80)	1.411(4)
C(31) - C(36)	1.406(4)	C(79) - C(84)	1.405(4)
C(32) - C(33)	1.391(4)	C(80) - C(81)	1.390(4)
C(32) - C(37)	1.499(4)	C(80) - C(85)	1.510(4)
C(33) - C(34)	1.389(4)	C(81) - C(82)	1.393(4)
C(34) - C(35)	1.390(4)	C(82) - C(83)	1.383(4)
C(34) - C(38)	1.512(4)	C(82) - C(86)	1.511(4)
C(35) - C(36)	1.401(4)	C(83) - C(84)	1.391(4)
C(36) - C(39)	1.514(4)	C(84) - C(87)	1.519(4)
C(40) - C(41)	1.401(4)	C(88) - C(89)	1.407(4)
C(40) - C(45)	1.400(4)	C(88) - C(93)	1.405(4)
C(41) - C(42)	1.396(4)	C(89) - C(90)	1.391(4)
C(41) - C(46)	1.510(5)	C(89) - C(94)	1.509(4)
C(42) - C(43)	1.380(5)	C(90) - C(91)	1.386(4)
C(43) - C(44)	1.384(5)	C(91) - C(92)	1.395(4)
C(43) - C(47)	1.514(5)	C(91) - C(95)	1.511(4)
C(44) - C(45)	1.395(4)	C(92) - C(93)	1.391(4)
C(45) - C(48)	1.518(4)	C(93) - C(96)	1.511(4)

Note – H atoms have been excluded

Table	S9 .	Bond	angles	(°)	for 3
1	\sim .	Dona	angres	\	101 0

C(1) - Co(1) - C(25)	162.84(10)	C(49) - Co(2) - C(73)	172.17(11)
Co(1) - C(1) - C(2)	106.62(18)	Co(2) - C(49) - C(50)	108.08(18)
Co(1) - C(1) - C(6)	136.37(19)	Co(2) - C(49) - C(54)	134.6(2)
C(2) - C(1) - C(6)	117.0(2)	C(50) - C(49) - C(54)	117.3(2)
C(1) - C(2) - C(3)	122.7(2)	C(49) - C(50) - C(51)	122.7(2)
C(1) - C(2) - C(7)	115.1(2)	C(49) - C(50) - C(55)	116.0(2)
C(3) - C(2) - C(7)	122.1(2)	C(51) - C(50) - C(55)	121.4(2)
C(2) - C(3) - C(4)	118.8(2)	C(50) - C(51) - C(52)	119.2(3)
C(3) - C(4) - C(5)	120.0(2)	C(51) - C(52) - C(53)	119.4(2)
C(4) - C(5) - C(6)	121.0(3)	C(52) - C(53) - C(54)	121.3(3)
C(1) - C(6) - C(5)	120.4(2)	C(49) - C(54) - C(53)	120.1(3)
C(1) - C(6) - C(16)	120.2(2)	C(49) - C(54) - C(64)	121.7(2)

C(5) - C(6) - C(16)	119.4(2)	C(53) - C(54) - C(64)	118.2(2)
C(2) - C(7) - C(8)	119.4(3)	C(50) - C(55) - C(56)	120.1(2)
C(2) - C(7) - C(12)	119.9(3)	C(50) - C(55) - C(60)	119.9(2)
C(8) - C(7) - C(12)	120 5(3)	C(56) - C(55) - C(60)	120 0(2)
C(7) - C(8) - C(9)	118 0(3)	C(55) - C(56) - C(57)	118 9(3)
C(7) = C(8) = C(13)	120 7(3)	C(55) = C(56) = C(61)	120 5(2)
C(0) = C(0) = C(13)	120.7(3)	C(57) - C(56) - C(61)	120.5(2)
C(9) - C(8) - C(13)	121.4(3)	C(57) - C(50) - C(01)	120.0(5)
C(8) - C(9) - C(10)	122.4(3)	C(56) - C(57) - C(58)	122.2(3)
C(9) - C(10) - C(11)	118.3(3)	C(57) - C(58) - C(59)	118.2(3)
C(9) - C(10) - C(14)	119.9(4)	C(57) - C(58) - C(62)	121.2(3)
C(11) - C(10) - C(14)	121.8(4)	C(59) - C(58) - C(62)	120.6(3)
C(10) - C(11) - C(12)	122.4(3)	C(58) - C(59) - C(60)	121.8(3)
C(7) - C(12) - C(11)	118.4(3)	C(55) - C(60) - C(59)	119.0(3)
C(7) - C(12) - C(15)	120.0(3)	C(55) - C(60) - C(63)	121.3(3)
C(11) - C(12) - C(15)	121.4(3)	C(59) - C(60) - C(63)	119.7(3)
C(6) - C(16) - C(17)	119.3(2)	C(54) - C(64) - C(65)	120.1(2)
C(6) - C(16) - C(21)	120.9(2)	C(54) - C(64) - C(69)	119.8(2)
C(17) - C(16) - C(21)	119 9(2)	C(65) - C(64) - C(69)	120 0(3)
C(16) - C(17) - C(18)	118 7(3)	C(64) - C(65) - C(66)	118 9(2)
C(16) - C(17) - C(22)	120 9(2)	C(64) - C(65) - C(70)	120 7(3)
C(18) - C(17) - C(22)	120.9(2)	C(66) - C(65) - C(70)	120.7(3)
C(17) = C(12)	120.7(2)	C(65) = C(65) = C(70)	120.5(3)
C(17) = C(10) = C(19) C(18) = C(10) = C(20)	122.0(3) 110 1(2)	C(66) = C(67) = C(67)	122.0(3) 118 1(2)
C(18) - C(19) - C(20)	110.1(2)	C(00) - C(07) - C(08)	110.1(5)
C(18) - C(19) - C(23)	121.0(3)	C(66) - C(67) - C(71)	121.3(3)
C(20) - C(19) - C(23)	120.9(3)	C(68) - C(67) - C(71)	120.5(3)
C(19) - C(20) - C(21)	121./(3)	C(67) - C(68) - C(69)	122.0(3)
C(16) - C(21) - C(20)	119.6(2)	C(64) - C(69) - C(68)	118.9(3)
C(16) - C(21) - C(24)	120.9(2)	C(64) - C(69) - C(72)	120.5(3)
C(20) - C(21) - C(24)	119.5(2)	C(68) - C(69) - C(72)	120.6(3)
Co(1) - C(25) - C(26)	110.68(18)	Co(2) - C(73) - C(74)	113.75(18)
Co(1) - C(25) - C(30)	132.1(2)	Co(2) - C(73) - C(78)	128.85(19)
C(26) - C(25) - C(30)	117.0(2)	C(74) - C(73) - C(78)	117.3(2)
C(25) - C(26) - C(27)	122.0(2)	C(73) - C(74) - C(75)	121.7(2)
C(25) - C(26) - C(31)	116.6(2)	C(73) - C(74) - C(79)	118.2(2)
C(27) - C(26) - C(31)	121.3(2)	C(75) - C(74) - C(79)	120.1(2)
C(26) - C(27) - C(28)	119.6(3)	C(74) - C(75) - C(76)	119.7(2)
C(27) - C(28) - C(29)	119.8(2)	C(75) - C(76) - C(77)	119.6(2)
C(28) - C(29) - C(30)	121.1(3)	C(76) - C(77) - C(78)	121.1(2)
C(25) - C(30) - C(29)	120.4(3)	C(73) - C(78) - C(77)	120.6(2)
C(25) - C(30) - C(40)	120.1(2)	C(73) - C(78) - C(88)	120.1(2)
C(29) - C(30) - C(40)	119.5(2)	C(77) - C(78) - C(88)	119.3(2)
C(26) - C(31) - C(32)	118.8(2)	C(74) - C(79) - C(80)	120.8(2)
C(26) - C(31) - C(36)	121.8(2)	C(74) - C(79) - C(84)	119.6(2)
C(32) - C(31) - C(36)	119.4(2)	C(80) - C(79) - C(84)	119.6(2)
C(31) - C(32) - C(33)	119.0(3)	C(79) - C(80) - C(81)	119.1(2)
C(31) - C(32) - C(37)	120.6(2)	C(79) - C(80) - C(85)	120.6(2)
C(33) - C(32) - C(37)	120.4(3)	C(81) - C(80) - C(85)	120.2(2)
C(32) - C(33) - C(34)	122.3(3)	C(80) - C(81) - C(82)	121.9(3)
C(33) - C(34) - C(35)	118.1(3)	C(81) - C(82) - C(83)	118.1(3)
C(33) - C(34) - C(38)	120.2(3)	C(81) - C(82) - C(86)	121.2(3)
C(35) - C(34) - C(38)	121.7(3)	C(83) - C(82) - C(86)	120.7(3)
C(34) - C(35) - C(36)	121 7(3)	C(82) - C(83) - C(84)	122 3(3)
C(31) - C(36) - C(35)	119 3(3)	C(79) - C(84) - C(83)	119 0(3)
C(31) - C(36) - C(39)	120 3(3)	C(79) - C(84) - C(87)	120 7(2)
C(35) - C(36) - C(39)	120.3(3)	C(83) - C(84) - C(87)	120.7(2)
C(30) - C(40) - C(41)	120.2(3)	C(78) - C(88) - C(80)	110 9(2)
C(30) = C(40) = C(41)	110.1(2)	C(78) - C(88) - C(93)	119.9(2) 120 4(2)
エー シスラウエミ シスキワエミ シスキラナ	117.0(4)	-0.001 - 0.001 - 0.001	140.4(4)

C(41) - C(40) - C(45)	120.1(3)	C(89) - C(88) - C(93)	119.7(2)
C(40) - C(41) - C(42)	118.7(3)	C(88) - C(89) - C(90)	119.4(3)
C(40) - C(41) - C(46)	120.6(3)	C(88) - C(89) - C(94)	121.1(2)
C(42) - C(41) - C(46)	120.7(3)	C(90) - C(89) - C(94)	119.4(3)
C(41) - C(42) - C(43)	122.0(3)	C(89) - C(90) - C(91)	121.8(3)
C(42) - C(43) - C(44)	118.5(3)	C(90) - C(91) - C(92)	118.2(3)
C(42) - C(43) - C(47)	121.0(3)	C(90) - C(91) - C(95)	120.7(3)
C(44) - C(43) - C(47)	120.5(3)	C(92) - C(91) - C(95)	121.0(3)
C(43) - C(44) - C(45)	121.7(3)	C(91) - C(92) - C(93)	121.8(3)
C(40) - C(45) - C(44)	119.1(3)	C(88) - C(93) - C(92)	119.1(3)
C(40) - C(45) - C(48)	120.5(3)	C(88) - C(93) - C(96)	121.0(2)
C(44) - C(45) - C(48)	120.4(3)	C(92) - C(93) - C(96)	119.9(3)

Note – H atoms have been excluded

References

- Z. Otwinowski and W. Minor, *Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol.*, 1997, **276**, Eds C. W. Carter and R. M. Sweet, Academic Press.
- 2 A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi , M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.* 1994, **27**, 435.
- 3 CRYSTALS Issue 12, P. W. Betteridge, J. R. Cooper, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Cryst.*, 2003, **36**, 1487.