Stereospecific Construction of Substituted Piperidines. Synthesis of (-)-Paroxetine and (+)-Laccarin.

John F. Bower,^{*a*} Thomas Riis-Johannessen,^{*b*} Peter Szeto,^{*c*} Andrew J. Whitehead,^{*c*} and Timothy Gallagher^{*a**}

^aSchool of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom. ^bStructural Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom. ^cChemical Development, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, United Kingdom.

Electronic Supporting Information – 26 pages

(A) General experimental details

Starting materials sourced from commercial suppliers were used as received. Dry solvents, where necessary, were obtained by distillation using standard procedures or by passage through a column of anhydrous alumina using equipment from Anhydrous Engineering based on the Grubbs' design. Petrol refers to the fraction of petroleum ether boiling in the range of 40-60 °C. The removal of solvents in vacuo was achieved using both a Büchi rotary evaporator (bath temperatures up to 40 °C) at a pressure of either 15 mmHg (diaphragm pump) or 0.1 mmHg (oil pump), as appropriate, and a high vacuum line at room temperature. Reactions requiring anhydrous conditions were run under an atmosphere of dry nitrogen; glassware, syringes and needles were either flame dried immediately prior to use or placed in an oven (150 °C) for at least 2 h and allowed to cool either in a desiccator or under an atmosphere of dry nitrogen; liquid reagents, solutions or solvents were added *via* syringe through rubber septa; solid reagents were added via Schlenk type adapters. Commercially available Merck Kieselgel 60F₂₅₄ aluminium backed plates were used for TLC analysis. Visualisation was achieved by either UV fluorescence, acidic KMnO₄ solution and heat, ninhydrin stain and heat, ammonium molybdate solution and heat or iodine vapour. Flash column chromatography (FCC) was performed using Fluorochem 60 silica: 230-400 mesh (40-63 µm). The crude material was applied to the column as a solution in CH₂Cl₂ or by pre-adsorption onto silica, as appropriate. Melting points were determined using a Reichert melting point table and temperature controller and are uncorrected. Optical rotations were measured using a Perkin-Elmer 241 polarimeter. Elemental analysis was performed by the University of Bristol microanalytical

service. Infra-red spectra were recorded in the range 4000-600 cm⁻¹ on a Perkin Elmer Spectrum either as neat films or solids compressed onto a diamond window. Abbreviations used are: w (weak), m (medium), s (strong) and br (broad). NMR spectra were recorded on a JEOL GX270, JEOL GX400, JEOL Lambda 300, JEOL Eclipse 400, JEOL Eclipse 300 or JEOL Alpha 500 spectrometer. Chemical shifts are quoted in parts per million (ppm); ¹H NMR spectra are referenced to TMS or residual protium of the deuterated solvent; ¹³C NMR are referenced to TMS or the deuterated solvent. Coupling constants (J) are quoted to the nearest 0.5 Hz. Other abbreviations used are: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Assignments of ¹H NMR and ¹³C NMR signals were made where possible, using COSY, DEPT, HMQC and HMBC experiments. Where mixtures of isomers (e.g. diastereomers) have been characterised together, they are referred to as A and B. Mass spectra were determined by the University of Bristol mass spectrometry service by either electron impact (EI) or chemical ionisation (CI) using a Fisons VG Analytical Autospec spectrometer, or by electrospray ionisation (ESI) using a Brüker Daltonics Apex IV spectrometer. Chiral HPLC was performed using either the racemate or the antipode as a standard on an Agilent 1100 LC system equipped with a quaternary pump, diode array detector and column thermostat under the conditions specified in each case. Chiral GC was performed using the racemate as a standard on a Hewlett-Packard 5890 Series II GC system equipped with a flame ionisation detector (FID) under the conditions noted. N.B. Compound numbers used in the Supplementary Information correspond to those used in the main paper.

(B) Experimental Procedures for the Synthesis of (-)-Paroxetine

(*R*)-3-(4-Fluorophenyl)-3-hydroxypropionic acid methyl ester (6): In an Aldrich Atmosbag ® (N₂ atmosphere), MeOH (20 mL, deoxygenated by passage of N₂ for 2 h) was added to a 50 mL r.b. flask containing β -keto ester 5 (4.00 g, 20.4 mmol) and [((*S*)-Cl-MeO-BIPHEP)Ru(*p*-cymene)Cl]Cl·CH₂Cl₂ (98 mg, 0.5 mol %) and the reaction vessel was sealed inside a hydrogenation bomb. The system was then purged

with H_2 (6 purge cycles at a pressure of 8 bar) and stirred vigorously at 60 $^{\circ}$ C for 37 h. The mixture was then cooled, depressurised, and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (50 mL), DMSO (200 µL) was added and the mixture was stirred at r.t. for 12 h. Concentration onto SiO₂ (60) and purification by FCC (EtOAchexanes 1:1) afforded alcohol 6 (3.84 g, 95 %, 97 % e.e.) as a pale yellow oil which darkened on standing due to traces of ruthenium derived impurities; $[\alpha]_D^{20} + 32.7$ (c = 1.0, CHCl₃); v_{max} /cm⁻¹ (film) 3455 (br s). 2956 (m), 1724 (s), 1605 (m), 1509 (s), 1217 (s), 1156 (s), 1032 (m), 835 (s); δ_H (400 MHz, CDCl₃) 2.69-2.81 (2H, m, C2-H), 3.29 (1H, br s, C3-OH), 3.75 (3H, s, CO₂CH₃), 5.11-5.18 (1H, m, C3-H), 6.97-7.10 (2H, m, ArCH), 7.38 (2H, dd, J = 8.5 and 5.5, ArCH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 43.2 (C-2), 52.1 (CO₂<u>C</u>H₃), 69.8 (<u>C</u>-3), 115.5 (d, ${}^{2}J_{FC} = 21.5$) and 127.5 (d, ${}^{3}J_{FC} = 7.5$) (Ar<u>C</u>H × 4), 138.3 (d, ${}^{4}J_{FC}$ = 3.0) and 162.4 (d, ${}^{1}J_{FC}$ = 244.5) (ArC × 2), 172.8 (C-1); HRMS: (ESI^+) Found: $[M+Na]^+$ 221.0593, $C_{10}H_{11}O_3FNa$ requires 221.0584. The enantiomeric purity of this compound was determined by chiral GC (J & W Scientific, HP-Chiral, $30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ }\mu\text{m}$, isothermal, $150 \text{ }^{\circ}\text{C}$) prepared by NaBH₄ reduction of β keto ester 5; t_R (minor) = 29.2 min and t_R (major) = 29.9 min.

(*R*)-*N*-Benzyl-3-(4-fluorophenyl)-3-hydroxypropionamide: To an ice/salt cooled (-5 °C) solution of AlMe₃ in toluene (2.0 M, 5.05 mL) was added a solution of benzylamine (1.10 mL, 10.1 mmol) in anhydrous toluene (1 mL) dropwise, *via* syringe, over 8 minutes. During this addition the internal temperature was maintained below 10 °C. The mixture was then stirred at 10 °C for 1 h and subsequently at r.t. for a further 50 minutes before being re-cooled to -5 °C. A solution of alcohol **6** (1.00 g, 5.05 mmol) in anhydrous toluene (1 mL) was then added dropwise, *via* syringe, over 5 minutes. The mixture was stirred at -5 °C for 0.5 h and subsequently at r.t. for 14 h and then cooled to 0 °C. Water (7 mL) was added dropwise (**caution:** exotherm and vigorous gas evolution) to form a thick, colourless suspension which was adjusted to pH 5 by addition of aq. 5 M HCl. The mixture was then diluted with water (20 mL) and extracted with EtOAc (4 × 50 mL). The combined organic extracts were washed with aq. 1 M HCl (50 mL) and brine (50 mL), dried (Na₂SO₄) and concentrated *in vacuo* to afford the amide (1.38 g, 100 %) as a colourless solid; m.p. 104.5-106 °C (CHCl₃); $[\alpha]_D^{20}$ +14.5 (c = 1.1, CHCl₃); v_{max} /cm⁻¹ (solid) 3300 (br s), 2926 (m), 1638 (s), 1562 (m), 1510 (s), 1222 (s), 1061 (s), 1029 (s), 836 (s), 731 (s); δ_H (400 MHz, CDCl₃) 2.52-2.64 (2H, m, C2-<u>H</u>), 4.29 (1H, br s, C3-O<u>H</u>), 4.42-4.48 (2H, m, NC<u>H</u>₂Ph), 5.11 (1H, dd, *J* = 7.5 and 4.5, C3-<u>H</u>), 6.17 (1H, br s, CON<u>H</u>CH₂Ph), 6.95-7.09 (2H, m, ArC<u>H</u>), 7.17-7.38 (7H, m, ArC<u>H</u>); δ_C (100 MHz, CDCl₃) 43.6 (N<u>C</u>H₂Ph), 44.7 (<u>C</u>-2), 70.4 (<u>C</u>-3), 115.5 (d, ²*J*_{FC} = 20.5), 127.4 (d, ³*J*_{FC} = 8.5), 127.8 (2 signals) and 128.9 (Ar<u>C</u>H × 9), 137.8, 138.8 (d, ⁴*J*_{FC} = 3.0) and 162.4 (d, ¹*J*_{FC} = 244.0) (Ar<u>C</u> × 3), 171.6 (<u>C</u>-1); δ_F (283 MHz, CDCl₃) 114.9 (tt, *J* = 8.0 and 4.5); HRMS: (ESI⁺) Found: [M+Na]⁺ 296.1068, C₁₆H₁₆NO₂FNa requires 296.1057.

(R)-3-Benzylamino-1-(4-fluorophenyl)propan-1-ol (7): To a solution of amide (3.00 g, 11.0 mmol) in anhydrous THF (18 mL) was added dropwise, via syringe, over 10 minutes a solution of LiAlH₄ in THF (1.0 M, 22.0 mmol) (caution: exotherm). The resulting mixture was heated at reflux for 15 h and then cooled to 0 °C. Water (0.83 mL), aq. 4 M NaOH (0.83 mL) and water (2.50 mL) were then sequentially added dropwise (caution: exotherm and vigorous gas evolution). The resulting colourless suspension was filtered through Celite [®], washing copiously with CH₂Cl₂ (ca. 100 mL), and then concentrated in vacuo to afford amino alcohol 7 (2.93 g, 100 %) as a colourless oil; $[\alpha]_D^{20}$ +47.6 (c = 1.3, CHCl₃); v_{max} /cm⁻¹ (film) 3290 (br s), 2918 (m), 2842 (m), 1603 (m), 1508 (s), 1453 (m), 1218 (s), 1075 (s), 1014 (m), 834 (s), 735 (s); δ_H (400 MHz, CDCl₃) 1.67-1.93 (2H, m, C2-H), 2.82-3.02 (2H, m, C3-H), 3.71-3.87 (2H, m, NCH₂Ph), 4.91 (1H, dd, J = 8.5 and 2.0, C1-H), 6.94-7.03 (2H, m, ArCH), 7.23-7.38 (7H, m, ArCH), signals attributable to C1-OH and NHCH₂Ph were not observed; δ_{C} (100 MHz, CDCl₃) 37.5 (C-2), 47.9 (C-3), 54.0 (NCH₂Ph), 75.3 (C-1), 115.0 (d, ${}^{2}J_{FC} = 21.5$), 127.2 (d, ${}^{3}J_{FC} = 8.5$), 127.5, 128.4 and 128.7 (Ar<u>C</u>H × 9), 139.3, 140.0 (d, ${}^{4}J_{FC} = 3.5$) and 162.0 (d, ${}^{1}J_{FC} = 243.0$) (Ar<u>C</u> × 3);

 $\delta_{\rm F}$ (283 MHz, CDCl₃) 116.2 (tt, J = 9.0 and 5.5); HRMS: (ESI⁺) Found: [M+H]⁺ 260.1453, C₁₆H₁₉NOF requires 260.1445.

(R)-3-Benzyl-6-(4-fluorophenyl)[1,2,3]oxathiazinane-2,2-dioxide (1): To a solution of Et₃N (2.16 mL, 15.5 mmol), imidazole (1.98 g, 28.9 mmol), and amino alcohol 7 (2.00 g, 7.72 mmol) in anhydrous CH₂Cl₂ (80 mL) at -20 °C was added, via syringe pump, a solution of SOCl₂ (600 µL, 8.15 mmol) in anhydrous CH₂Cl₂ (12.5 mL) dropwise over 30 minutes. The mixture was stirred at -20 °C for a further 30 minutes and subsequently at 0 °C for 5 h. Water (100 mL) was added and the organic portion was isolated, washed with aq. 1 M HCl (100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated in vacuo to afford a brown oil. The residue was filtered through a pad of SiO₂ (60, eluting with EtOAc) and the eluent was concentrated in vacuo to afford intermediate sulfamidite (2.12 g, 96 %, 3:2 d.r.) as a pale yellow oil which solidified on standing; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.53-1.62 (1H, m), 1.72-1.80 (1H, m), 2.11-2.35 (2H, m), 2.81 (1H, ddd, J = 12.5, 4.5 and 3.5), 3.35 (1H, ddd, J = 12.5, 4.0 and 2.0), 3.53 (1H, ddd, J = 13.0, 12.5 and 3.5), 3.76 (1H, d, J = 14.0), 3.84 (1H, ddd, J = 13.0, 13.0 and 3.0), 3.93 (1H, d, J = 14.0), 4.19 (1H, d, J = 14.0), 4.77 (1H, d, J = 14.0) 14.0), 5.31 (1H, dd, J = 11.5 and 2.0), 5.82 (1H, d, J = 12.0 and 2.0), 7.01-7.11 (4H, m), 7.24-7.42 (14H, m). To an ice cooled (0 °C) solution of sulfamidite (76 mg, 0.25 mmol) in MeCN (4.5 mL) was added sequentially (NaIO₄ (84 mg, 0.40 mmol), RuCl₃ (0.2 mg, 0.25 mol %) and water (6 mL). The resulting mixture was vigorously stirred at 0 °C for 1 h after which time, careful TLC analysis showed full consumption of starting material to a slightly more polar species. The mixture was extracted with Et_2O $(2 \times 20 \text{ mL})$ and the combined organic portions were dried (Na₂SO₄) and concentrated in vacuo to afford a pale brown oil. This residue was filtered through a pad of SiO_2 (60, eluting with EtOAc) and the eluent was concentrated in vacuo to afford sulfamidate 1 (70 mg, 87 %, 97 % e.e.) as a pale yellow, crystalline solid; m.p. 118-119 °C (Et₂O-hexanes); $[\alpha]_D^{20}$ -16.5 (c = 1.2, CHCl₃); v_{max} /cm⁻¹ (solid) 2951 (w), 1607 (m), 1516 (s), 1372 (s), 1230 (m), 1174 (s), 1003 (m), 864 (s), 823 (s), 781 (m);

 $δ_{\rm H}$ (400 MHz, CDCl₃) 1.72-1.81 (1H, m, C5-<u>H</u>), 2.09-2.22 (1H, m, C5-<u>H</u>), 3.27 (1H, ddd, J = 14.0, 4.5 and 2.0, C4-<u>H</u>), 3.78 (1H, ddd, J = 14.0, 13.5 and 2.5, C4-<u>H</u>), 4.40 (1H, d, $J = 14.0, \text{NCH}_2\text{Ph}$), 4.48 (1H, d, $J = 14.0, \text{NCH}_2\text{Ph}$), 5.79 (1H, dd, J = 12.0 and 2.0, C6-<u>H</u>), 7.07-7.16 (2H, m, ArC<u>H</u>), 7.32-7.46 (7H, m, ArC<u>H</u>); $δ_{\rm C}$ (100 MHz, CDCl₃) 28.1 (<u>C</u>-5), 46.6 (<u>C</u>-4), 52.6 (N<u>C</u>H₂Ph), 85.5 (C-6), 115.9 (d, ² $J_{\rm FC} = 21.5$), 128.3 (d, ³ $J_{\rm FC} = 8.5$), 128.5, 128.9 and 129.0 (Ar<u>C</u>H × 9), 133.3 (d, ⁴ $J_{\rm FC} = 4.0$), 135.0 and 163.2 (d, ¹ $J_{\rm FC} = 247.0$) (Ar<u>C</u> × 3); $δ_{\rm F}$ (283 MHz, CDCl₃) 116.0 (tt, J = 9.0 and 5.5); m/z (CI⁺) 322 ([M+H]⁺, 10 %), 91 (100); HRMS: (CI⁺) Found: [M+H]⁺ 322.0907, C₁₆H₁₇NO₃FS requires 322.0913. The enantiomeric purity of this compound was determined by chiral HPLC (Chiralpak AD-H, isocratic hexane - *i*-PrOH 85:15, 0.5 mL/min, 35 °C); $t_{\rm R}$ (major) = 21.4 min and $t_{\rm R}$ (minor) = 22.3 min.

(3S,4R)-1-Benzyl-4-(4-fluorophenyl)-2-oxopiperidine-3-carboxylic acid methyl ester (8): To a solution of dimethyl malonate (242 µL, 2.12 mmol) in anhydrous DMF (12 mL) was added NaH (60 % dispersion in mineral oil, 85 mg, 2.12 mmol) and the resulting mixture was stirred at r.t. for 25 minutes. Sulfamidate 1 (340 mg, 1.06 mmol) was added and the mixture was heated at 60 °C for 64 h. After cooling to r.t., aq. 5 M HCl (1.06 mL) was added and the mixture was stirred at r.t. for 2.5 h. The mixture was then neutralised with saturated aq. NaHCO₃ and extracted with CH₂Cl₂ $(3 \times 40 \text{ mL})$. The combined organic extracts were dried (Na₂SO₄) and concentrated *in* vacuo to afford a brown residue which was dissolved in toluene (10 mL) and heated at reflux for 16.5 h. The mixture was then cooled to r.t. and concentrated in vacuo to leave a brown residue which was purified by FCC (hexanes-EtOAc 3:2) to afford lactam 8 (250 mg, 70 %, 97 % e.e.) as a colourless, crystalline solid; m.p. 97-99 °C (Et₂O-hexanes); $[\alpha]_D^{20}$ -8.8 (c = 0.9, CHCl₃); v_{max} /cm⁻¹ (film) 2952 (m), 1740 (s), 1642 (s), 1511 (s), 1494 (m), 1435 (m), 1225 (s), 1161 (s), 837 (m), 736 (m); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.94-2.12 (2H, m, C5-H), 3.28-3.35 (1H, m, C6-H), 3.38-3.51 (2H, m, C4-<u>H</u> and C6-<u>H</u>), 3.62 (1H, d, J = 11.0, C3-<u>H</u>), 3.67 (3H, s, CO₂C<u>H₃</u>), 4.50 (1H, d, J

= 14.5, NC<u>H</u>₂Ph), 4.83 (1H, d, J = 14.5, NC<u>H</u>₂Ph), 6.98-7.06 (2H, m, ArC<u>H</u>), 7.13-7.21 (2H, m, ArC<u>H</u>), 7.26-7.42 (5H, m, ArC<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 29.5 (<u>C</u>-5), 41.9 (<u>C</u>-4), 46.3 (<u>C</u>-6), 50.6 (N<u>C</u>H₂Ph), 52.5 (CO₂<u>C</u>H₃), 115.9 (d, ² $J_{\rm FC} = 21.5$), 127.8, 128.3, 128.4 (d, ³ $J_{\rm FC} = 9.0$), and 128.9 (Ar<u>C</u>H × 9), 136.7, 137.2 (d, ⁴ $J_{\rm FC} = 4.0$) and 162.1 (d, ¹ $J_{\rm FC} = 244.0$) (Ar<u>C</u> × 3), 165.8 and 170.6 (<u>C</u>-2 and <u>CO</u>₂CH₃); $\delta_{\rm F}$ (283 MHz, CDCl₃) 115.1 (tt, J = 8.0 and 5.5); HRMS: (ESI⁺) Found: [M+Na]⁺ 364.1328, C₂₀H₂₀NO₃FNa requires 364.1319. The enantiomeric purity of this compound was determined by chiral HPLC (Chiralpak AD-H, isocratic hexane - *i*-PrOH 80:20, 1.0 mL/min, 20 °C); t_R (major) = 12.7 min and t_R (minor) = 17.0 min.

(3S,4R)-[1-Benzyl-4-(4-fluorophenyl)piperidin-3-yl]-methanol: To a solution of lactam 8 (210 mg, 0.62 mmol) in anhydrous THF (4 mL) was added dropwise, via syringe, over 5 minutes a solution of LiAlH₄ in THF (1.0 M, 2 mmol) (caution: exotherm) and the resulting mixture was heated at reflux for 20 h. The mixture was cooled to 0 °C and water (80 µL), aq. 4 M NaOH (80 µL) and water (240 µL) were added sequentially (caution: exotherm and vigorous gas evolution). The resulting colourless suspension was filtered through Celite ®, washing with CH₂Cl₂ (40 mL), and concentrated in vacuo to afford the alcohol (186 mg, 100 %) as a colourless oil. This material was used in the next stage without further purification. An analytical sample was purified by FCC (CH₂Cl₂-MeOH-Et₃N 97:3:2): $[\alpha]_D^{20}$ -16.0 (c = 0.8, CHCl₃), [lit.¹ -15.8 (c = 1.1, CHCl₃)]; $\delta_{\rm H}$ (300 MHz, CDCl₃) 1.45-1.91 (3H, m, C5-H and C3-CH₂OH), 1.92-2.10 (3H, m, C2-H, C3-H and C6-H), 2.26-2.39 (1H, m, C4-H), 2.92-3.01 (1H, m, C6-H), 3.15-3.26 (2H, m, C2-H and C3-CH₂OH), 3.38 (1H, dd, J = 11.0 and 2.5, C3-C<u>H</u>₂OH), 3.54 (1H, d, J = 13.0, NC<u>H</u>₂Ph), 3.63 (1H, d, J = 13.0, NCH₂Ph), 6.94-7.02 (2H, m, ArCH), 7.12-7.39 (7H, m, ArCH); δ_C (75 MHz, CDCl₃) 29.7 (<u>C</u>-5), 44.2 (<u>C</u>-3), 44.3 (<u>C</u>-4), 53.9 (<u>C</u>-6), 57.3 (<u>C</u>-2), 63.5 (N<u>C</u>H₂Ph), 64.3 (C3-<u>CH</u>₂OH), 115.3 (d, ${}^{2}J_{FC} = 21.0$), 127.1, 128.2, 128.8 (d, ${}^{3}J_{FC} = 8.0$), and 129.3 (Ar<u>C</u>H × 9), 138.1, 140.1 (d, ${}^{4}J_{FC}$ = 3.0) and 162.4 (d, ${}^{1}J_{FC}$ = 242.0) (Ar<u>C</u> × 3); δ_{F} (283 MHz,

CDCl₃) 116.7 (tt, J = 9.5 and 5.5). The spectroscopic properties of this compound were consistent with the data available in the literature.¹

(-)-N-Benzyl paroxetine (9): To an ice-cooled (0 °C) solution of crude alcohol (161 mg, 0.54 mmol) in anhydrous CH₂Cl₂ (0.80 mL) was added sequentially, via syringe, Et₃N (109 µL, 0.78 mmol) and MsCl (60 µL, 0.78 mmol) resulting in the immediate formation of a colourless precipitate. The mixture was stirred at r.t. for 20 minutes, diluted with water (20 mL) and saturated aq. NaHCO₃ (20 mL) and extracted with CH_2Cl_2 (2 × 20 mL). The combined organic portions were dried (Na₂SO₄) and concentrated in vacuo to afford intermediate mesylate (210 mg, ca. 100 %) as a yellow solid; δ_H (270 MHz, CDCl₃) 1.67-1.78 (1H, m), 1.90-2.04 (1H, m), 2.07-2.23 (1H, m), 2.24-2.37 (1H, m), 2.74 (3H, s), 2.85-2.97 (3H, m), 3.02-3.12 (1H, m), 3.76 (1H, d, J = 13.0), 3.55 (1H, d, J = 13.0), 3.71 (1H, dd, J = 10.0 and 6.5), 3.83 (1H, dd, J = 10.0 and 3.0), 6.87-6.98 (2H, m), 7.03-7.33 (7H, m). To a solution of sesamol (429 mg, 3.11 mmol) in anhydrous DMF (13 mL) was added NaH (60 % dispersion in mineral oil, 124 mg, 3.11 mmol) and the resulting mixture was stirred at r.t. for 20 minutes. Mesylate (587 mg, 1.55 mmol) was then added and the mixture was heated at 90 °C for 14 h. The mixture was then cooled to r.t., diluted with EtOAc (50 mL) and washed sequentially with water (25 mL), aq. 1 M NaOH (2×25 mL) and brine (25 mL). The organic portion was dried (Na₂SO₄) and concentrated in vacuo to afford a residue which was purified by FCC (hexanes-EtOAc 3:1-0:1) to yield N-benzyl paroxetine 9 (338 mg, 52 %) as a pale yellow oil; $\left[\alpha\right]_{D}^{20}$ -49.1 (c = 0.6, CHCl₃); δ_{H} (400 MHz, CDCl₃) 1.73-1.91 (2H, m, C5-<u>H</u>), 2.04-2.14 (2H, m, C2-<u>H</u> and C6-<u>H</u>), 2.15-2.26 (1H, m, C3-H), 2.47 (1H, ddd, J = 11.0, 11.0 and 4.5, C4-H), 2.95-3.03 (1H, m, C6-H), 3.21-3.28 (1H, ddd, J = 11.0, 3.5 and 2.0, C2-H), 3.43 (1H, dd, J = 9.5 and 7.0, C3-CH₂OAr), 3.51-3.57 (2H, m, C3-CH₂OAr and NCH₂Ph), 3.64 (1H, d, J = 13.0, NCH₂Ph), 5.87 (2H, s, OCH₂O), 6.10 (1H, dd, J = 8.5 and 2.5, ArCH), 6.31 (1H, d, J = 2.5, ArCH), 6.61 (1H, d, J = 8.5, ArCH), 6.92-6.99 (2H, m, ArCH), 7.117.19 (2H, m, ArC<u>H</u>), 7.24-7.38 (5H, m, ArC<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 34.4 (<u>C</u>-5), 42.3 (<u>C</u>-4), 44.2 (<u>C</u>-3), 53.9 (<u>C</u>-6), 57.7 (<u>C</u>-2), 63.5 (N<u>C</u>H₂Ph), 69.7 (C3-<u>C</u>H₂OAr), 98.1 (ArCH × 1), 101.2 (O<u>C</u>H₂O), 105.7, 107.9, 115.4 (d, ²*J*_{FC} = 20.5), 127.2, 128.4, 129.0 (d, ³*J*_{FC} = 8.0), and 129.4 (Ar<u>C</u>H × 11), 138.2, 139.9 (d, ⁴*J*_{FC} = 4.0), 141.6, 148.2, 154.5 and 161.6 (d, ¹*J*_{FC} = 243.0) (Ar<u>C</u> × 6). The spectroscopic properties of this compound were consistent with the data available in the literature.²

(-)-Paroxetine (2): A suspension of 10 % Pd/C (100 mg) and N-benzyl paroxetine 9 (290 mg, 0.69 mmol) in AcOH (2 mL) and i-PrOH (5 mL) was sealed inside a hydrogenation bomb. The vessel was purged with hydrogen (6 purge cycles at 6 bar) and heated at 50 °C for 15 h. The mixture was cooled to r.t. and then depressurised, filtered through Celite ®, washing with AcOH (20 mL), MeOH (20 mL) and CH₂Cl₂ (20 mL), and concentrated in vacuo to afford a colourless oil. This was dissolved in saturated aq. Na₂CO₃ solution (20 mL) and extracted with CH₂Cl₂ (5 \times 25 mL). The organic extracts were dried (Na₂SO₄), concentrated in vacuo to afford free amine (219 mg, 96 %) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.65-1.76 (2H, m), 1.81 (1H, ddd, J = 13.0, 4.0, 2.5 and 2.5), 2.01-2.11 (1H, m), 2.58 (1H, ddd, J = 11.5, 11.5 and 4.0), 2.67 (1H, dd, J = 12.0 and 11.0), 2.74 (1H, ddd, J = 12.0, 12.0 and 3.0), 3.15-3.21 (1H, m), 3.39-3.46 (2H, m), 3.57 (1H, dd, J = 9.5 and 3.0), 5.87 (2H, s), 6.11(1H, dd, J = 8.5 and 2.5), 6.34 (1H, d, J = 2.5), 6.62 (1H, d, J = 8.5), 6.94-7.00 (2H, m), 7.13-7.19 (2H, m). This oil was dissolved in *i*-PrOH (10 mL), treated with aq. 5 M HCl (0.20 mL) and concentrated in vacuo (azeotroping with EtOH (2×25 mL)) to afford the title compound 2 (242 mg, 96 %) as a colourless foam. This material was crystallised from *i*-PrOH and then dried (60 °C, 15 mmHg, 12 h) to afford (-)paroxetine 2 (207 mg, 82 %) as colourless needles; m.p. 121-123 °C (*i*-PrOH), [lit.³ 128-132 °C (*i*-PrOH)]; $[\alpha]_D^{20}$ -78.1 (c = 1.0, MeOH), [lit.⁴ $[\alpha]_D^{20}$ -86.5 (c = 1.0, MeOH); lit.⁵ $[\alpha]_D^{22}$ -80.8 (c = 1.3, MeOH)]; δ_H (400 MHz, CDCl₃) 2.04 (1H, m, C5-H), 2.39 (1H, ddd, J = 13.0, 13.0 and 13.0, C5-H), 2.59-2.70 (1H, m, C3-H), 2.92

(1H, ddd, J = 13.0, 11.5 and 3.0, C4-<u>H</u>), 2.96-3.09 (1H, m, C6-H), 3.09-3.23 (1H, m, C2-<u>H</u>), 3.49 (1H, dd, J = 10.0 and 4.5, C3-OC<u>H</u>₂Ar), 3.60 (1H, dd, J = 10.0 and 2.5, C3-OC<u>H</u>₂Ar), 3.63-3.77 (2H, m, C2-<u>H</u> and C6-<u>H</u>), 5.89 (2H, s, OC<u>H</u>₂O), 6.12 (1H, dd, J = 8.5 and 2.5, ArC<u>H</u>), 6.34 (1H, d, J = 2.5, ArCH), 6.62 (1H, d, J = 8.5, ArCH), 7.00 (2H, dd, J = 8.5 and 8.5, ArC<u>H</u>), 7.21 (2H, dd, J = 8.5 and 5.5, ArC<u>H</u>), 9.23 (2H, br s, N<u>H</u>₂ δ_{C} (100 MHz, CDCl₃) 30.0 (<u>C</u>-5), 39.4 (<u>C</u>-4), 41.7 (<u>C</u>-3), 44.5 (<u>C</u>-6), 46.8 (<u>C</u>-2), 67.5 (C3-<u>C</u>H₂OAr), 97.9 (ArCH × 1), 101.2 (O<u>C</u>H₂O), 105.6, 107.9, 115.8 (d, ² $J_{\text{FC}} = 21.0$), 128.9 (d, ³ $J_{\text{FC}} = 8.0$) (ArCH × 6), 137.0 (d, ⁴ $J_{\text{FC}} = 4.0$), 142.1, 148.2, 153.7 and 162.0 (d, ¹ $J_{\text{FC}} = 245.0$) (Ar<u>C</u> × 5). The spectroscopic properties of this compound were consistent with the data available in the literature.⁴

(C) Experimental Procedures for the Synthesis of (+)-Laccarin

(R)-N-Benzyl-3-hydroxybutyramide (11): To an ice/salt cooled (-5 °C) solution of AlMe₃ in toluene (2.0 M, 34.1 mL) was added a solution of benzylamine (7.45 mL, 68.2 mmol) in anhydrous toluene (7 mL) dropwise, via syringe, over 10 minutes. During this addition the internal temperature was maintained below 10 °C. The mixture was then stirred at 10 °C for 1 h and subsequently at r.t. for a further 50 minutes before being re-cooled to -5 °C. A solution of alcohol 10 (4.50 g, 34.1 mmol) $\{ [\alpha]_D^{20} - 42.0 \ (c = 1.0, \ CHCl_3); \ lit.^6 \ [\alpha]_D^{20} - 44.4 \ (c = 1.4, \ CHCl_3) \}$ in anhydrous toluene (7 mL) was then added dropwise, via syringe, over 10 minutes. The mixture was stirred at -5 $^{\circ}$ C for 0.5 h and subsequently at r.t. for 15 h and then cooled to 0 $^{\circ}$ C. Water (40 mL) was added dropwise (caution: exotherm and vigorous gas evolution) to form a thick, colourless suspension which was adjusted to pH 5 by addition of aq. 5 M HCl. The mixture was then diluted with water (40 mL) and extracted with EtOAc $(4 \times 200 \text{ mL})$. The combined organic extracts were washed with aq. 1 M HCl (100 mL) and brine (100 mL), dried (Na₂SO₄) and concentrated in vacuo to afford amide 11 (5.81 g, 88 %) as a colourless, crystalline solid; m.p. 83-83 °C (CHCl₃); $\left[\alpha\right]_{D}^{20}$ -10.1 (c = 0.8, CHCl₃); v_{max} /cm⁻¹ (film) 3296 (br s). 2972 (m), 1634 (s), 1552 (s),

1426 (m), 1132 (m), 1082 (m), 947 (m), 847 (m); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.20 (3H, d, J = 6.5, C4-<u>H</u>), 2.24-2.39 (2H, m, C2-<u>H</u>), 3.90 (1H, br s, C3-O<u>H</u>), 4.13-4.23 (1H, m, C3-<u>H</u>), 4.42 (2H, *app*. d, J = 5.5, NC<u>H</u>₂Ph), 6.35 (1H, br s, CON<u>H</u>CH₂Ph), 7.21-7.37 (5H, m, ArC<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 22.8 (<u>C</u>-4), 43.4 (N<u>C</u>H₂Ph), 43.9 (<u>C</u>-2), 64.8 (<u>C</u>-3), 127.5, 127.7 and 128.7 (Ar<u>C</u>H × 5), 137.9 (Ar<u>C</u>), 172.2 (<u>C</u>-1); HRMS: (ESI⁺) Found: [M+H]⁺ 194.1179, C₁₁H₁₆NO₂ requires 194.1176.

(R)-4-Benzylaminobutan-2-ol; To a solution of amide 11 (5.70 g, 29.5 mmol) in anhydrous THF (57 mL) was added dropwise, via syringe, over 10 minutes a solution of LiAlH₄ in THF (1.0 M, 50.0 mmol) (caution: exotherm). The resulting mixture was heated at reflux for 15.5 h and then cooled to 0 °C. Water (1.90 mL), aq. 4 M NaOH (1.90 mL) and water (5.70 mL) were then sequentially added dropwise (caution: exotherm and vigorous gas evolution). The resulting colourless suspension was filtered through Celite \mathbb{B} , washing copiously with CH₂Cl₂ (*ca.* 100 mL), and then concentrated in vacuo to afford the amino alcohol (5.35 g, 98 %) as a colourless oil; $[\alpha]_{D}^{20}$ +21.1 (c = 0.6, CHCl₃); v_{max} /cm⁻¹ (film) 3295 (br s), 2843 (m), 1739 (m), 1453 (s), 1371 (s), 1103 (s); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.13 (3H, d, J = 6.0, C1-H), 1.41-1.66 (2H, m, C3-H), 2.74 (1H, ddd, J = 12.0, 10.5 and 3.5, C4-H), 2.96 (1H, ddd, J = 12.0, 4.0 and 3.5, C4-H), 3.55 (2H, br s, N<u>H</u>CH₂Ph and C2-O<u>H</u>), 3.70 (1H, d, J = 13.0, NCH₂Ph), 3.78 (1H, d, J = 13.0, NCH₂Ph), 3.90-3.99 (1H, m, C2-H), 7.18-7.33 (5H, m, ArCH); δ_C (100 MHz, CDCl₃) 23.4 (C-1), 36.6 (C-3), 48.1 (C-4), 53.6 (NCH₂Ph), 69.4 (<u>C</u>-2), 127.1, 128.1 and 128.4 (Ar<u>C</u>H \times 5), 139.1 (Ar<u>C</u>); m/z (CI⁺) 180 ([M+H]⁺, 73 %), 91 (100); HRMS: (CI⁺) Found: [M+H]⁺ 180.1381, C₁₁H₁₈NO requires 180.1388.

(R)-3-Benzyl-6-methyl-[1,2,3]-oxathiazinane-2,2-dioxide (3); To a solution of Et₃N (7.72 mL, 55.4 mmol), imidazole (7.07 g, 103.9 mmol), and amino alcohol (4.97 g, 27.8 mmol) in anhydrous CH₂Cl₂ (280 mL) at -20 °C was added, via syringe pump, a solution of SOCl₂ (2.13 mL, 29.2 mmol) in anhydrous CH₂Cl₂ (40 mL) dropwise over 1 h. The mixture was stirred at -20 °C for a further 1 h and subsequently at 0 °C for 12 h. Water (200 mL) was added and the organic portion was isolated, washed with aq. 1 M HCl (200 mL), brine (200 mL), dried (Na₂SO₄) and concentrated in vacuo to afford a yellow oil. This residue was filtered through a pad of SiO_2 (60, eluting with EtOAc) and the eluent was concentrated in vacuo to afford intermediate sulfamidite (5.22 g, 84 %) as a pale yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.21 (3H, d, J = 6.5), 1.28-1.37 (4H, m), 1.46-1.54 (1H, m), 1.71 (1H, ddd, *J* = 14.0, 11.5 and 5.0), 1.86 (1H, ddd, *J* = 13.5, 12.5 and 4.5), 2.60 (1H, ddd, J = 12.5, 4.5 and 3.5), 3.17-3.31 (2H, m), 3.52-3.63 (2H, m), 3.73 (1H, d, J = 14.0), 4.06 (1H, d, J = 14.0), 4.39 (1H, dqd, J = 10.0, 6.5 and 3.0), 4.59 (1H, d, J = 14.0), 4.90 (1H, dqd, J = 11.5, 6.5 and 4.5), 7.16-7.32 (10H, m). To an ice cooled (0 °C) solution of sulfamidite (6.80 g, 30.2 mmol) in MeCN (545 mL) was added sequentially NaIO₄ (10.3 g, 48.3 mmol), RuCl₃ (30 mg, 0.25 mol %) and water (740 mL). The resulting mixture was vigorously stirred at 0 °C for 40 minutes after which time, careful TLC analysis showed full consumption of starting material to a slightly more polar species. The mixture was extracted with Et₂O (3 \times 500 mL) and the combined organic portions were washed with water (400 mL), brine (400 mL), dried (Na₂SO₄) and concentrated *in vacuo* to afford a pale brown oil. This residue was dissolved in CH2Cl2 (100 mL) and DMSO (300 µL) was added. After stirring at r.t. for 2 h the mixture was pre-adsorbed onto SiO₂ (60) and purified by short FCC (EtOAc-hexanes 1:1) to afford sulfamidate 3 (6.17 g, 85 %, > 98 % e.e.) as a pale yellow, crystalline solid; 96-97.5 °C (EtOAc-hexanes); $\left[\alpha\right]_{D}^{20}$ +16.8 (c = 1.0, CHCl₃); v_{max} /cm⁻¹ (film) 2971 (m), 1739 (s), 1455 (m), 1377 (s), 1183 (s), 1094 (m), 873 (s); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.45 (3H, d, J = 6.0, C6-CH₃), 1.54-1.63 (1H, m, C5-H), 1.79-1.93 (1H, m, C5-H), 3.15 (1H, ddd, J = 14.0, 4.5 and 2.0, C4-H), 3.60 (1H, ddd, J = 14.0, 14.0 and 3.0, C4-H), 4.29 (1H, d, J = 14.0, NCH₂Ph), 4.35 (1H, d, J = 14.0, NCH₂Ph), 4.98 (1H, dqd, J = 12.5, 6.0 and 2.0, C6-H), 7.31-7.44 (5H, m, ArCH); δ_C (100 MHz, CDCl₃) 21.2 (C6-CH₃), 27.7 (C-5), 46.4 (C-4), 52.2 (NCH₂Ph), 82.1 (C-6), 128.2, 128.6 and 128.7 (ArCH \times 5), 135.1 (ArC); HRMS: (ESI⁺) Found: $[M+H]^+$ 242.0851, $C_{11}H_{16}NO_3S$ requires 242.0845. The enantiomeric purity of this

compound was determined by chiral HPLC (Chiralcel OJ-H, isocratic hexane - *i*-PrOH 97:3, 1.0 mL/min, 20 °C); t_R (major) = 63.1 min and t_R (minor) = 49.4 min.

(S)-2-[3-(Benzyl-*tert*-butoxycarbonylamino)-1-methylpropyl]-malonic acid diethyl ester (13); To a solution of diethyl malonate (7.61 mL, 50.1 mmol) in anhydrous DMF (290 mL) was added in one portion NaH (60 % dispersion in mineral oil, 1.96 g, 48.9 mmol) and the mixture was stirred at r.t. for 30 minutes to form a clear solution. Sulfamidate 3 (6.04 g, 25.1 mmol) was then added and the mixture was heated at 110 °C for 30 h. The mixture was then cooled to r.t. and aq. 5 M HCl (25 mL) was added. After stirring at r.t. for 2 h the mixture was concentrated *in vacuo* to afford a brown oil. This residue was dissolved in aq. 0.1 M HCl (200 mL), washed with Et₂O (2 \times 200 mL) and then neutralised by addition of saturated aq. NaHCO₃. The mixture was then extracted with CH_2Cl_2 (3 × 200 mL) and the combined organic extracts were washed with brine (200 mL), dried (Na₂SO₄) and concentrated in vacuo to afford crude amine 12 (6.90 g, 21.5 mmol) as an orange oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.97 (3H, t, J = 7.0), 1.24 (6H, t, J = 7.0), 1.35-1.47 (1H, m), 1.58-1.69 (1H, m), 2.27-2.39 (1H, m), 2.58-2.73 (2H, m), 3.25 (1H, d, J = 8.0), 3.76 (2H, AB q, J = 13.0), 4.16 (4H, q, J = 7.0), 7.18-7.35 (5H, m), a signal attributable to N<u>H</u> was not observed. This material was then immediately dissolved in MeCN (100 mL) and NaHCO₃ (3.65 g, 43.5 mmol) and Boc₂O (4.50 g, 21.5 mmol) were sequentially added. After stirring at r.t. for 3 h the mixture was concentrated in vacuo. The residue was dissolved in EtOAc (100 mL), washed with water (100 mL) and then brine (100 mL), dried (Na₂SO₄) and concentrated in vacuo to afford an orange oil. Purification by short FCC (EtOAc-hexanes 1:1) afforded protected amine 13 (8.58 g, 81 %) as a colourless oil; $[\alpha]_{D}^{20}$ -4.3 (c = 0.9, CHCl₃); v_{max} /cm⁻¹ (film) 2979 (m), 1750 (m), 1730 (s), 1689 (s), 1367 (s), 1239 (s), 1162 (s), 1119 (s), 1029 (s); δ_H (400 MHz, CDCl₃) 0.92-1.03 (3H, m, C3-CH₃), 1.24 (6H, *app.* t, J = 7.0, CO₂CH₂CH₃), 1.36-1.55 (10H, m, NCO₂C(CH₃)₃ and C4-H), 1.59-1.73 (1H, m, C4-H), 2.11-2.27 (1H, m, C3-H), 3.05-3.39 (3H, m, C2-H and C5-H), 4.11-4.20 (4H, m, CO₂CH₂CH₃), 4.32-4.49 (2H, m,

NC<u>H</u>₂Ph), 7.15-7.34 (5H, m, ArC<u>H</u>); δ_{C} (100 MHz, CDCl₃) 14.1 (2 × CO₂CH₂C<u>H</u>₃), 17.0 (C3-<u>C</u>H₃), 28.5 (NCO₂C(<u>C</u>H₃)₃), 31.1 (<u>C</u>-3), *ca.* 32.3 (br, <u>C</u>-4), 44.2 (<u>C</u>-5), *ca.* 50.0 (br, N<u>C</u>H₂Ph), 57.5 (<u>C</u>-2), 61.1 and 61.2 (CO₂<u>C</u>H₂CH₃), 79.7 (NCO₂<u>C</u>(CH₃)₃), 127.2, *ca.* 127.5 (br) and 128.5 (Ar<u>C</u>H × 5), 138.6 (Ar<u>C</u>), *ca.* 155.8 (br, N<u>C</u>O₂C(CH₃)₃), 168.6 and 168.7 (<u>C</u>O₂CH₂CH₃); HRMS: (ESI⁺) Found: 444.2366 [M+Na]⁺, C₂₃H₃₅NO₆Na requires 444.2357. *NMR analysis of this compound was complicated due to N-Boc resonance.*

Preparation of anhydrous, ethereal monochloramine solution (*ca.* **0.15 M**);⁷ To a cooled (-5 $^{\circ}$ C) suspension of NH₄Cl (3.00 g) in Et₂O (100 mL) was added, in one portion, concentrated aq. ammonia solution (4.70 mL). Sodium hypochlorite solution (72 mL) was then added dropwise over 15 minutes, whilst maintaining an internal temperature of less then 5 $^{\circ}$ C, and the mixture was stirred at - 5 $^{\circ}$ C for a further 15 minutes. The organic portion was then isolated, washed with brine (50 mL) and then dried in a freezer over CaCl₂ for 2 h prior to use.

(*S*)-2-Amino-2-[3-(benzyl-*tert*-butoxycarbonylamino)-1-methylpropyl]-malonic acid diethyl ester (14); To a solution of protected amine 13 (282 mg, 0.67 mmol) in anhydrous THF (5 mL) was added *t*-BuOK (77 mg, 0.96 mmol) and the resulting suspension was stirred at r.t. for 10 minutes to form a colourless solution. The mixture was then cooled to 0 °C and NH₂Cl in Et₂O (*ca.* 0.15 M, 1.05 mmol) was added rapidly *via* syringe. The reaction mixture was stirred at 0 °C for 2 h and subsequently at r.t. for 30 minutes prior to the addition of saturated aq. NaHCO₃ (25 mL). The mixture was extracted with CH₂Cl₂ (2 × 25 mL) and the combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo* to afford a colourless oil. Purification by FCC (EtOAc-hexanes 8:3 – 1:0) afforded recovered starting material 13 (64 mg, 23 %) as a colourless oil and subsequently aminated adduct 14 (219 mg, 75 %) as a colourless oil; $[\alpha]_D^{20}$ +10.8 (c = 0.7, CHCl₃); v_{max} /cm⁻¹ (film) 3398 (w), 2977 (s), 1737 (s), 1691 (s), 1416 (m), 1366 (m), 1240 (s), 1169 (s); $\delta_{\rm H}$ (400 MHz, CDCl₃)

0.83-0.94 (3H, m, C3-C<u>H</u>₃), 1.20-1.28 (6H, m, CO₂CH₂C<u>H</u>₃), 1.36-1.66 (11H, m, NCO₂C(C<u>H</u>₃)₃ and C4-<u>H</u>), 1.87 (2H, s, N<u>H</u>₂), 2.27-2.39 (1H, m, C3-<u>H</u>), 3.05-3.36 (2H, m, C5-<u>H</u>), 4.13-4.24 (4H, m, CO₂C<u>H</u>₂CH₃), 4.29-4.58 (2H, m, NC<u>H</u>₂Ph), 7.14-7.34 (5H, m, ArC<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.1 (2 signals) (C3-<u>C</u>H₃ and CO₂CH₂C<u>H</u>₃), 28.5 (NCO₂C(<u>C</u>H₃)₃), *ca.* 30.1 (br, <u>C</u>-4), 35.7 (<u>C</u>-3), 44.6 (<u>C</u>-5), *ca.* 49.6 (br, N<u>C</u>H₂Ph), 61.9 (CO₂<u>C</u>H₂CH₃), 70.2 (<u>C</u>-2), 79.6 (NCO₂<u>C</u>(CH₃)₃), 127.2, *ca.* 127.5 (br) and 128.5 (Ar<u>C</u>H × 5), 138.5 (br, Ar<u>C</u>), *ca.* 155.8 (br, N<u>C</u>O₂C(CH₃)₃), 171.1 and 171.2 (<u>CO</u>₂CH₂CH₃); *m*/*z* (CI⁺) 437 ([M+H]⁺, 5 %), 337 (100); HRMS: (CI⁺) Found: [M+H]⁺ 437.2644, C₂₃H₃₇N₂O₆ requires 437.2651. *NMR analysis of this compound was complicated due to N-Boc resonance.*

N-Benzyl laccarin (18a) and 5-*epi-N*-benzyl laccarin (18b); To a solution of amine 14 (1.96 g, 4.49 mmol) in anhydrous THF (50 mL) was added diketene (419 μ L, 5.50 mmol) and then DMAP (35 mg, 0.29 mmol) and the mixture was heated at 60 °C for 1 h. The mixture was then cooled to r.t., concentrated *in vacuo* and filtered through a pad of SiO₂ (eluting with EtOAc) and concentrated *in vacuo* to afford acylated intermediate 15 as a yellow oil. This residue was then dissolved in anhydrous 0.3 M NaOEt in EtOH (70 mL) and heated at 60 °C for 1.5 h. Water (14 mL) was added and heating was continued for a further 1 h. Aq. 5 M HCl (14 mL) was then added, the mixture was immediately cooled to r.t. and then extracted with CH₂Cl₂ (2 × 150 mL). The combined organic extracts were washed with brine (150 mL), dried (Na₂SO₄) and concentrated *in vacuo* to afford crude intermediate 17 (1.77 g) as an orange foam. This residue was dissolved in CH₂Cl₂ (20 mL), TFA (20 mL) was added and the

mixture was stirred at r.t. for 35 minutes. The mixture was then concentrated *in vacuo* and residual TFA was removed by azeotroping with CHCl₃ (2 × 20 mL). The mixture was then re-dissolved in CHCl₃ (20 mL), Et₃N (1.87 mL, 13.5 mmol) was added and the resulting solution was concentrated *in vacuo*. The brown residue thus obtained was suspended in toluene (120 mL) and heated at 80 °C for 12 h. The mixture was then cooled to r.t., diluted with EtOAc (200 mL) and washed with aq. 1 M HCl (2 × 150 mL). The aqueous extracts were then back extracted with CH₂Cl₂ (4 × 100 mL). The organic extracts were combined, washed with brine (300 mL), dried (Na₂SO₄) and concentrated *in vacuo* to afford a brown oil. Purification by FCC (EtOAc-MeOH 14:1 - 9:1) afforded *N*-benzyl laccarin **18a** (682 mg, 53 %) and subsequently 5-*epi-N*-benzyl laccarin **18b** (195 mg, 15 %) as brown foams which were homogeneous by TLC and NMR and suitable for use in the next step without further purification. Repeated FCC failed to yield colourless material but analytical samples could be obtained by recrystallisation (EtOAc-hexanes).

Data for *N*-Benzyl laccarin **18a**; 138-139 °C (EtOAc-hexanes); $[\alpha]_D^{20}$ +131.2 (c = 1.3, CHCl₃); v_{max} /cm⁻¹ (film) 3192 (m), 2926 (m), 1668 (s), 1633 (s), 1557 (s), 1453 (m), 1342 (m), 1261 (m), 1091 (m); δ_H (400 MHz, CDCl₃) 1.18 (3H, d, *J* = 7.0, C10-<u>H</u>), 1.26-1.36 (1H, m, C4-<u>H</u>), 1.52-1.64 (1H, m, C3-<u>H</u>), 1.81-1.91 (1H, m, C3-<u>H</u>), 2.50 (3H, s, C12-<u>H</u>), 3.27-3.42 (2H, m, C2-<u>H</u>), 3.64 (1H, d, *J* = 10.5, C5-<u>H</u>), 4.97 (1H, d, *J* = 15.0, NC<u>H</u>₂Ph), 5.23 (1H, d, *J* = 15.0, NC<u>H</u>₂Ph), 6.06 (1H, br s, N<u>H</u>), 7.14-7.18 (2H, m, ArC<u>H</u>), 7.24-7.35 (3H, m, ArC<u>H</u>); δ_C (100 MHz, CDCl₃) 19.9 (C-10), 27.2 (C-3), 30.2 (C-12), 31.7 (C-4), 47.8 (C-2), 58.6 (NCH₂Ph), 59.2 (C-5), 101.5 (C-7), 127.7 (2 signals) and 128.7 (ArCH × 5), 136.5 (ArC), 168.1 (C-6), 174.2 (C-8), 195.6 (C-11); HRMS: (ESI⁺) Found: [M+H]⁺ 285.1609, C₁₇H₂₁N₂O₂ requires 285.1598.

Crystal data for **18a**: C₁₇H₂₀N₂O₂, M = 284.35, monoclinic, a = 9.6357(16), b = 14.869(3), c = 10.9996(17) Å, $\beta = 103.461(5)^\circ$, V = 1532.6(5) Å³, T = 100 K, space group $P2_1$, Z = 4, $\mu = 0.651$ mm⁻¹, $R_{int} = 0.0646$ (for 8214 measured reflections), $R_1 = 0.0647$ [for 3459 unique reflections with $>2\sigma(I)$], $wR_2 = 0.1783$ (for all 3909 unique reflections). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif (CCDC 621099).

The relative stereochemistry of 18a was unambiguously characterised by an X-ray diffraction study. The asymmetric unit of the structure contains two molecules of identical stereochemistry that differ slightly (in the region associated with the *N*-benzyl group) due to packing forces. It was not possible to determine the absolute stereochemistry of 18a from the diffraction data and the absolute structure was assigned based on the use of ethyl (3*R*)-hydroxybutyrate 10 (Scheme 3).

Figure 1 Molecular structure of <u>one</u> of the two crystallographically independent molecules of **18a** present in its crystal structure. Atomic displacement ellipsoids are drawn at the 50% probability level.

Data for 5-*epi-N*-benzyl laccarin **18b**; 148-151 °C (EtOAc-hexanes); $[\alpha]_D^{20}$ -83.3 (c = 0.7, CHCl₃); v_{max} /cm⁻¹ (film) 3238 (m), 1669 (s), 1636 (s), 1561 (s), 1454 (m); δ_H (400 MHz, CDCl₃) 0.79 (3H, d, *J* = 7.0, C10-<u>H</u>), 1.22-1.33 (1H, m, C3-<u>H</u>), 2.03-2.12

(1H, m, C3-<u>H</u>), 2.38-2.49 (1H, m, C4-<u>H</u>), 2.55 (3H, s, C12-<u>H</u>), 3.22-3.34 (2H, m, C2-<u>H</u>), 4.10 (1H, dd, J = 7.0 and 1.0, C5-<u>H</u>), 5.06 (1H, d, J = 15.0, NC<u>H</u>₂Ph), 5.20 (1H, d, J = 15.0, NC<u>H</u>₂Ph), 5.92 (1H, br s, N<u>H</u>), 7.18-7.23 (2H, m, ArC<u>H</u>), 7.25-7.35 (3H, m, ArC<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.5 (<u>C</u>-10), 27.0 (<u>C</u>-4), 27.4 (<u>C</u>-3), 30.2 (<u>C</u>-12), 47.2 <u>C</u>-2), 55.9 (C-5), 58.4 (N<u>C</u>H₂Ph), 102.3 (<u>C</u>-7), 127.6, 128.0 and 128.6 (Ar<u>C</u>H × 5), 136.6 (Ar<u>C</u>), 167.1 (<u>C</u>-6), 174.7 (<u>C</u>-8), 194.9 (<u>C</u>-11); m/z (CI⁺) 285 ([M+H]⁺, 100 %); HRMS: (CI⁺) Found: [M+H]⁺ 285.1596, C₁₇H₂₁N₂O₂ requires 285.1603.

(+)-Laccarin (4); To a solution of N-benzyl laccarin 18a (105 mg, 0.37 mmol) in TFA (4 mL) was added 10 % Pd/C (67 mg) and the mixture was sealed inside a hydrogenation bomb. The vessel was then purged with H_2 (6 purge cycles at a pressure of 5.5 bar) and the mixture was stirred at r.t. for 7 h. The vessel was then depressurised, the mixture was filtered through Celite ® and the residue was washed sequentially with TFA (6 mL), MeOH (6 mL) and CH₂Cl₂ (6 mL). The filtrate was concentrated in vacuo and the residue was purified by FCC (EtOAc-MeOH, 10:1) to afford laccarin 4 (67 mg, 93 %) as a colourless powder; m.p. > 250 °C (EtOAc-MeOH); $\left[\alpha\right]_{D}^{20}$ +176.9 (c = 0.5, CHCl₃), [lit.⁸ $\left[\alpha\right]_{D}^{31}$ +188.0 (c = 0.5, CHCl₃)]; v_{max} /cm⁻¹ (film) 3251 (br m), 2957 (m), 1677 (s), 1626 (s), 1590 (s), 1493 (s), 1340 (s), 1205 (s), 1133 (s); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.17 (3H, d, J = 6.5, C10-H), 1.53-1.74 (2H, m, C3-H and C4-H), 1.97-2.07 (1H, m, C3-H), 2.46 (3H, s, C12-H), 3.43-3.54 (2H, m, C2-H), 3.63 (1H, d, J = 10.5, C5-H), 5.94 (1H, br s, NH), 8.96 (1H, br s, NH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 19.0 [19.1] (C-10), 27.4 [27.5] (C-12), 28.1 [28.1] (C-3), 31.9 [31.8] (C-4), 41.2 [41.2] (C-2), 58.0 [58.3] (C-5), 100.3 [100.2] (C-7), 172.5 [172.7] (C-6), 173.3 [173.5] (C-8), 196.3 [196.2] (C-11); $\delta_{\rm H}$ (400 MHz, MeOH-d₄) 1.17 (3H, d, J = 6.0, C10-H), 1.51-1.64 (2H, m, C3-H and C4-H), 1.93-2.05 (1H, m, C3-H), 2.37 (3H, s, C12-<u>H</u>), 3.42-3.57 (2H, m, C2-<u>H</u>), 3.75 (1H, d, J = 10.0, C5-<u>H</u>); δ_{C} (75 MHz, MeOH-D₄) 19.5 [19.9] (C-10), 27.2 [27.6] (C-12), 28.9 [29.2] (C-3), 33.4 [33.7] (<u>C</u>-4), 41.8 [42.2] (<u>C</u>-2), 59.5 [59.8] (<u>C</u>-5), 100.6 [100.9] (<u>C</u>-7), 175.1 [175.2]

(<u>C</u>-6), 176.0 [176.1] (<u>C</u>-8), 197.2 [197.2] (<u>C</u>-11); HRMS: (ESI⁺) Found: 195.1135 $[M+H]^+$, C₁₀H₁₅N₂O₂ requires 195.1128. *The spectroscopic properties of this compound were consistent with the data reported in the literature for laccarin*.^{8,9 13}C NMR literature values in both CDCl₃⁸ and MeOH-d₄⁹ are quoted in []. Please note that ¹H NMR data for laccarin reported by Yue *et al.* are incorrectly referenced (their MeOH signal comes at *ca.* 3.15 ppm instead of 3.31 ppm).

Figure 2 HPLC comparison of synthetic and natural laccarin. (HPLC conditions: Phenomenex Gemini 110 A, C18, 5μ , 150×4.6 mm column, gradient water - MeCN (+ 0.1 % TFA) 95:5 to 5:95 over 20 minutes, 1.0 mL/min, 20 °C).

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

Figure 3 Circular dichroism (CD) comparison of synthetic (—) and natural (-----) laccarin (EtOH, 20 °C). [θ] = molar ellipticity. Circular Dichroism was performed on a JASCO J-810 spectropolarimeter using step scanning at 8 second intervals in 0.5 nm increments over the range 200-265 nm. Samples were recorded at 0.1 mM using a quartz cell of 1 mm path length.

Synthetic Laccarin (400 MHz, MeOH-d₄):

Natural Laccarin (400 MHz, MeOH-d₄):

Synthetic Laccarin (400 MHz, CDCl₃):

(3*R*,4*S*)-1-Benzyl-4-methyl-2-oxopiperidine-3-carboxylic acid ethyl ester (19a) and (3*S*,4*S*)-1-Benzyl-4-methyl-2-oxopiperidine-3-carboxylic acid ethyl ester (19b); To a solution of diethyl malonate (1.26 mL, 8.30 mmol) in anhydrous DMF (48 mL) was added NaH (60 % dispersion in mineral oil, 324 mg, 8.09 mmol) and the resulting mixture was stirred at r.t. for 1 h. Sulfamidate **3** (1.00 g, 4.15 mmol) was added and the mixture was heated at 100 °C for 80 h. After cooling to r.t., aq. 5 M HCl (4.15 mL) was added and the mixture was stirred at r.t. for 3 h. The mixture was then neutralised with saturated aq. NaHCO₃ and extracted with CH₂Cl₂ (3 × 80 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo* to afford a brown residue which was dissolved in anhydrous 1 M NaOEt in EtOH (37

mL) 16 h. The mixture was then cooled to r.t. and concentrated *in vacuo* to leave a brown oil which was purified by FCC (hexanes-EtOAc 3:2) to afford lactam **19a/19b** (585 mg, 52 %, 13:2 d.r., > 98 % e.e.) as a colourless oil. Analytical samples of each diastereomer were isolated by careful FCC.

Data for *trans*-lactam **19a**: $[\alpha]_D^{20}$ -19.1 (c = 0.6, CHCl₃); v_{max} /cm⁻¹ (film) 2932 (m), 1734 (s), 1640 (s), 1494 (m), 1452 (m), 1158 (s), 1029 (m); δ_H (400 MHz, CDCl₃) 1.03 (3H, d, *J* = 7.0, C4-C<u>H</u>₃), 1.32 (3H, t, *J* = 7.0, CO₂CH₂C<u>H</u>₃), 1.42-1.55 (1H, m, C5-<u>H</u>), 1.82-1.91 (1H, m, C5-<u>H</u>), 2.26-2.38 (1H, m, C4-<u>H</u>), 3.08 (1H, d, *J* = 10.5, C3-<u>H</u>), 3.20 (1H, ddd, *J* = 12.0, 6.0 and 3.5, C6-<u>H</u>), 3.27 (1H, ddd, *J* = 12.0, 12.0 and 5.0, C6-<u>H</u>), 4.26 (2H, q, *J* = 7.0, CO₂C<u>H</u>₂CH₃), 4.52 (1H, d, *J* = 14.5, NC<u>H</u>₂Ph), 4.69 (1H, d, *J* = 14.5, NC<u>H</u>₂Ph), 7.22-7.36 (5H, m, ArC<u>H</u>); δ_C (100 MHz, CDCl₃) 14.1 (CO₂CH₂CH₃), 19.8 (C4-<u>C</u>H₃), 29.3 (<u>C</u>-5), 31.5 (<u>C</u>-4), 45.8 (<u>C</u>-6), 50.1 (N<u>C</u>H₂Ph), 57.3 (<u>C</u>-3), 61.1 (CO₂CH₂CH₃), 127.3, 127.9 and 128.5 (Ar<u>C</u>H × 5), 136.7 (Ar<u>C</u>), 165.9 and 170.6 (<u>C</u>-2 and <u>CO₂CH₂CH₃); *m*/*z* (CI⁺) 276 ([M+H]⁺, 100 %); HRMS: (CI⁺) Found: [M+H]⁺ 276.1594, C₁₆H₂₂NO₃ requires 276.1560. The enantiomeric purity of lactam **19a** was determined by chiral HPLC (Chiralcel OJ-H, isocratic hexane - *i*-PrOH 97:3, 1.0 mL/min, 20 °C); t_R (major) = 21.2 min and t_R (minor) = 25.9 min.</u>

Data for *cis*-lactam **19b**: $[\alpha]_D^{20}$ -24.5 (c = 0.5, CHCl₃); v_{max} /cm⁻¹ (film) 2932 (m), 1734 (s), 1639 (s), 1495 (m), 1453 (m), 1157 (s), 1029 (m); δ_H (400 MHz, CDCl₃) 1.03 (3H, d, *J* = 7.0, C4-C<u>H</u>₃), 1.28 (3H, t, *J* = 7.5, CO₂CH₂C<u>H</u>₃), 1.57-1.66 (1H, m, C5-<u>H</u>), 1.93-2.05 (1H, m, C5-<u>H</u>), 2.14-2.27 (1H, m, C4-<u>H</u>), 3.15-3.31 (2H, m, C6-<u>H</u>), 3.51 (1H, d, *J* = 6.0, C3-<u>H</u>), 4.14-4.25 (2H, m, CO₂C<u>H</u>₂CH₃), 4.30 (1H, d, *J* = 15.0, NC<u>H</u>₂Ph), 4.93 (1H, d, *J* = 15.0, NC<u>H</u>₂Ph), 7.21-7.34 (5H, m, ArC<u>H</u>); δ_C (100 MHz, CDCl₃) 14.2 (CO₂CH₂CH₃), 17.9 (C4-<u>C</u>H₃), 26.6 (<u>C</u>-5), 30.7 (<u>C</u>-4), 46.3 (<u>C</u>-6), 50.1 (N<u>C</u>H₂Ph), 54.1 (<u>C</u>-3), 61.0 (CO₂<u>C</u>H₂CH₃), 127.3, 127.8 and 128.5 (Ar<u>C</u>H × 5), 136.9 (Ar<u>C</u>), 166.0 and 169.8 (<u>C</u>-2 and <u>CO</u>₂CH₂CH₃); *m*/*z* (CI⁺) 276 ([M+H]⁺, 100 %); HRMS: (CI⁺) Found: [M+H]⁺ 276.1590, C₁₆H₂₂NO₃ requires 276.1560. Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

(4S)-3-Amino-1-benzyl-4-methyl-2-oxopiperidine-3-carboxylic acid ethyl ester; To an ice-cooled (0 °C) solution of lactam 19a/19b (410 mg, 1.49 mmol) in anhydrous THF (10 mL) was added in one portion NaH (60 % dispersion in mineral oil, 60 mg, 1.49 mmol). After 20 minutes NH₂Cl in Et₂O (ca. 0.15 M, 2.27 mmol) was rapidly added via syringe and the resulting solution was stirred at 0 °C for 1 h and subsequently at r.t. for 2 h. The mixture was then concentrated *in vacuo*, dissolved in EtOAc (20 mL) and extracted with aq. 0.5 M HCl (3×20 mL). The organic portion was dried (Na₂SO₄), concentrated *in vacuo* and purified by FCC (hexanes-EtOAc 3:2) to afford recovered lactam 19a/b (123 mg, 30 %) as a colourless oil. The reserved aqueous extracts were then basified by addition of saturated aq. Na₂CO₃ and extracted with CH_2Cl_2 (3 × 40 mL). The organic extracts were dried (Na₂SO₄) and concentrated in vacuo to afford aminated adduct (271 mg, 63 %, 12:1 d.r.) as a colourless oil; NMR data is given for the major diastereomer only. v_{max} /cm⁻¹ (film) 3380 (w), 2936 (m), 1736 (s), 1642 (s), 1495 (m), 1454 (m), 1200 (s), 1020 (m); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.98 (3H, s, J = 7.0, C4-CH₃), 1.31 (3H, t, J = 7.5, CO₂CH₂CH₃), 1.61-1.68 (1H, m, C5-<u>H</u>), 1.98-2.17 (2H, m, C4-<u>H</u> and C5-<u>H</u>), 2.33 (2H, br s, N<u>H</u>₂), 3.23-3.40 (2H, m, C6-H), 4.15 (1H, d, J = 14.5, NCH₂Ph), 4.19-4.32 (2H, m, CO₂CH₂CH₃), 5.11 (1H, d, J = 14.5, NCH₂Ph), 7.23-7.37 (5H, m, ArCH); δ_{C} (100 MHz, CDCl₃) 14.2 (CO₂CH₂CH₃), 16.4 (C4-CH₃), 26.6 (C-5), 38.8 (C-4), 46.2 (C-6), 50.6 (NCH₂Ph), 61.8 (CO₂<u>C</u>H₂CH₃), 66.1 (<u>C</u>-3), 127.5, 127.8 and 128.6 (Ar<u>C</u>H \times 5), 138.9 (Ar<u>C</u>), 169.0 and 172.6 (C-2 and CO₂CH₂CH₃); m/z (CI⁺) 291 ([M+H]⁺, 100 %); HRMS: (CI⁺) Found: [M+H]⁺ 291.1708, C₁₆H₂₃N₂O₃ requires 291.1709.

(4*S*)-3-Amino-1-benzyl-4-methylpiperidin-2-one hydrochloride; To a solution of amino ester (529 mg, 1.82 mmol) in dioxane (6 mL) and water (10 mL) was added KOH (180 mg, 3.21 mmol) and the resulting mixture was heated at reflux (*ca.* 85 $^{\circ}$ C)

for 4 h. Aq. 5 M HCl (600 µL) was then added and heating was continued for a further 1 h. The solution was then cooled to r.t. and concentrated *in vacuo*. The residue was suspended in CH₂Cl₂ (20 mL), filtered through Celite (\circledast), and concentrated *in vacuo* to afford the amine hydrochloride (425 mg, 92 %, 2:1 d.r. *A:B*) as a colourless foam; $\delta_{\rm H}$ (400 MHz, MeOH-d₄) 0.98 (3H, d, J = 7.5, C4-CH₃ *of B*), 1.13 (3H, d, J = 6.5, C4-CH₃ *of A*), 1.56-1.95 (m), 2.01-2.22 (m) and 2.34-2.44 (m) (6H, C4-H and C5-H of A and B), 3.24-3.37 (m, C6-H of A and B and C3-H of A)^{*}, 3.87 (1H, d, J = 5.5, C3-H of B), 4.47 (1H, d, J = 14.5, NCH₂Ph of B), 4.54 (1H, d, J = 14.5, NCH₂Ph of A), 4.63 (1H, d, J = 14.5, NCH₂Ph of A), 4.70 (1H, d, J = 14.5, NCH₂Ph of B), 7.21-7.36 (10H, ArCH); ^{*}(integration of these signals was not possible due to overlap with residual MeOH/MeOD). *This material was used in the next stage without further purification*.

(4*S*)-*N*-(1-Benzyl-4-methyl-2-oxopiperidin-3-yl)-3-oxobutyramide (20); To a solution of amine hydrochloride (200 mg, 0.79 mmol) in THF (10 mL) was added Et₃N (120 μ L, 0.86 mmol) and then diketene (67 μ L, 0.86 mmol). The mixture was stirred at r.t. 4 h and then concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (30 mL), washed with aq. 1 M HCl (10 mL), dried (Na₂SO₄) and concentrated in vacuo to afford a pale yellow oil. This residue was purified by FCC (EtOAc-MeOH 9:1) to afford the title compound 20 (204 mg, 86 %, 2:1 d.r A:B) as a colourless powder; v_{max} /cm⁻¹ (film) 3297 (m), 2928 (m), 1716 (m), 1627 (s), 1546 (m), 1495 (m), 1453 (m), 1159 (m); $\delta_{\rm H}$ (270 MHz, CDCl₃) 0.86 (3H, d, J = 7.0, C4-CH₃ of B), 1.05 (3H, d, J = 6.5, C4-CH₃ of A), 1.54-1.70 (2H, m, C5-H of A and B), 1.82-1.93 (1H, m, C5-H of A), 1.94-2.18 (2H, m, C5-H of B and C4-H of A), 2.28 (3H, s, C11-H of B), 2.30 (3H, s, C11-H of A), 2.69-2.81 (1H, m, C4-H of B), 3.16-3.32 (4H, m, C6-H of A and B), 3.48 (2H, s, C9-H of B), 3.51 (2H, s, C9-H of A), 4.12 (1H, d, J = 7.5, C3-H of A), 4.16 (1H, d, J = 8.5, C3-H of B), 4.45 (1H, d, J = 14.5, NCH₂Ph of A), 4.54 (1H, d, *J* = 14.5, NCH₂Ph *of B*), 4.64 (1H, d, *J* = 14.5, NCH₂Ph *of B*), 4.70 (1H, d, J = 14.5, NCH₂Ph of A), 7.21-7.37 (10H, ArCH), 7.52 (1H, d, J = 8.5, NH), 7.67

(1H, d, J = 5.5, N<u>H</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.8 (C4-<u>C</u>H₃ of *B*), 19.0 (C4-<u>C</u>H₃ of *A*), 26.9 (<u>C</u>-5 of *B*), 28.9 (<u>C</u>-4 of *B*), 29.6 (<u>C</u>-5 of *A*), 30.4 and 30.5 (<u>C</u>-11), 33.6 (<u>C</u>-4 of *A*), 43.1 and 45.7 (<u>C</u>-6), 50.4 and 50.5 (2 × <u>C</u>-9 and NC<u>H₂Ph of *A*), 54.6 (NCH₂Ph of *B*), 56.6 (2 × <u>C</u>-3), 127.3, 127.5, 127.8, 127.9, 128.4 and 128.5 (Ar<u>C</u>H × 10), 136.5 and 136.6 (Ar<u>C</u>), 165.9, 166.5, 168.5 and 168.7 (<u>C</u>-2 and <u>C</u>-8), 203.1 and 203.9 (<u>C</u>-10); *m*/*z* (CI⁺) 303 ([M+H]⁺, 100 %); HRMS: (CI⁺) Found: [M+H]⁺ 303.1702, C₁₇H₂₃N₂O₃ requires 303.1709.</u>

(D) References relevant to Supporting Information

- J. Cossy, O. Mirguet, D. G. Pardo, J.-R. Desmurs, *Eur. J. Org. Chem.* 2002, 2002, 3543-3551.
- C. D. Gill, D. A. Greenhalgh, N. S. Simpkins, *Tetrahedron* 2003, 59, 9213-9230.
- R. D. B. Barnes, M. W. Wood-Kaczmar, I. R. B. Lynch, P. C. B. Buxton, A. D. B. Curzons, European Patent 0223403.
- L. Czibula, A. Nemes, F. Sebök, C. Szántay Jr., M. Mák, *Eur. J. Org. Chem.* 2004, 3336-3339.
- M. Amat, J. Bosch, J. Hidalgo, M. Cantó, M. Pérez, N. Llor, E. Molins, C. Miravitlles, M. Orozco, J. Luque, *J. Org. Chem.* 2000, 65, 3074-3084.
- 6. K. Nori, M. Miyake, *Tetrahedron* **1987**, *43*, 2229-2239.
- J. Hynes Jr., W. W. Doubleday, A. J. Dyckman, J. D. Godfrey Jr., J. A. Grosso, S. Kiau, K. Leftheris, *J. Org. Chem.* 2004, 69, 1368-1371.
- M. Matsuda, T. Kobayashi, S. Nagao, T. Ohta, S. Nozoe, *Heterocycles* 1996, 43, 685-690.
- 9. Y. Wang, S.-P. Yang, Y. Wu, J.-M.Yue, *Nat. Prod. Res.* 2004, 18, 159-162.