Electronic Supporting Information

Page 2-3. Experimental details for potentiometric titrations, steady-state and time resolved fluorescence measurements and ¹H NMR measurements

Page 4. Protonation constants of ligand L and pK_a of the substrates

Page 5. Stability constants of the Zn(II) complexes.

Page 6, Figure S1. Fluorescence emission spectra recorded on solutions containing UpU and complex 1 at selected pH values

Page 6, Figure S2. Fluorescence spectra recorded on solutions containing U and complex 1 at selected pH values

Page 7, Figure S3. ¹H NMR spectra of uridine, deprotonated uridine, complex 1 and complex 1 in the presence of 2 eq. of uridine at different pH values.

Page 8, Figure S4. Fluorescence emission spectra recorded on solutions containing 1 and increasing amounts of UpA

Page 8, Figure S5. Fluorescence emission spectra recorded on solutions containing UpA and complex 1 at selected pH values.

Page 9, Figure S6. Emission intensity at 440 nm (\bullet , right y axis) as a function of pH compared to the distribution curves of the complexes (solid curves, left y axis) for a system containing 1 and UpA ([1] = 2.5 10-5 M, [UpA] = 1.25 10^{-4} M, \lambda exc = 290 nm, 298.1 K).

Page 10, Figure S7. Fluorescence emission spectra of **1** in the presence of increasing amounts of 5'-AAUUAA-3' (0.25 eq each addition) at pH 8.5. ([**1**] = $2.5.10^{-5}$ M, $\lambda_{exc} = 290$ nm, 298.1 K).

Potentiometric measurements. All the pH metric measurements ($pH = -log [H^+]$) were performed by using a water-thermostatted 5 ml titration vessel; the potentiometric titrations were carried out in degassed 0.1 mol dm⁻³ NMe₄NO₃ solutions, at 298.1 K by using the procedure which have been already described.¹ The combinated Ingold 405 S7/120 electrode was calibrated as a hydrogen concentration probe by titrating known amounts of HCl with CO2-free NMe4OH solutions and determining the equivalent point by the Gran's method² which allows to determine the standard potential E^o, and the ionic product of water ($pK_w = 13.83(1)$ at 298.1 K in 0.1 mol dm⁻³ NMe₄NO₃). All equilibria involved in the studied systems were determined under the present experimental conditions in order to obtain a consistent set of data. Protonation constants of L ligands and substrates, formation constants of dinuclear Zn(II) complexes with L and formation constant of the UpU, UpA and U ternary complexes are supplied in Tables S1 and S2. The formation constants of the binary Zn(II) complexes with L have been previously determined in 0.1 M NMe₄Cl at 298.1 K.¹ The low solubility of the UpU complexes in this ionic medium lead us to study Zn(II) complexation in a different ionic medium (NMe₄NO₃ 0.1 M, 298.1 K). The stability of the Zn(II) complexes with L, however, are very similar to that previously reported.¹ In the experiments to determine the stability of the Zn(II) complexes with L the ligand concentration was 5×10^{-4} mol dm⁻³, while the Zn(II) concentration was varied in the range $5x10^{-4}$ - $1x10^{-3}$ mol dm⁻³. In the experiments to determine the formation constants of the complexes with nucleosides or ribodinucleotides, L and Zn(II) concentrations were 5×10^{-4} and 1×10^{-3} , respectively, while the concentration of the substrates was varied from 5×10^{-4} to 5×10^{-3} . At least three measurements (about 150 data points each one) were performed for each system in the pH range 2.5-10.5 and the relevant e.m.f. data were treated by means of the computer program HYPERQUAD³ which furnished the relevant equilibrium constants reported in Table S1 and S2.

Spectrofluorimetric measurements. UV-vis and steady state fluorescence emission spectra were recorded respectively on a Perkin-Elmer Lambda 25 and LS-55 spectrometers at 298.1 K. 0.01 M HNO₃ and NMe₄OH solutions were used to adjust the pH, which was measured on a Metrohm 713 pH meter.

Measurements of the florescence decay lifetimes were carried out by utilizing ultrashort pulses (duration ≈ 100 fs at 1 KHz repetition rate) from a regenerative amplifier Ti:sapphire laser system equipped with an optical parametric generator and amplifier (OPG-OPA). Non-linear sum frequency and second harmonic generation in BBO crystals provide tunable light pulses in the 240 to 800 nm spectral range⁵. The fluorescence was collected by a quartz lens and focused onto the photocathode of a Hamamatsu R2809U-microchannel plate photomultiplier after passing through a

proper set of coloured filters. The selected spectral intervals are: 300-375nm, 410-470 nm and 500-575 (FWHH). The output of the photomultiplier was amplified and connected to the 50 Ω input of a digital oscilloscope (LeCroy Mod.9370M 1 GHz band pass). The very reproducible instrumental function, obtained by measuring the light scattering from a latex solution, resulted slightly asymmetric with a time duration (FWHH) of 950 ps. The experimental fluorescence signals are treated in a deconvolution/fitting process and are reproduced by a single or dual-exponential function.

¹**H NMR measurements.** ¹H NMR spectra in D₂O solutions at different pH values were recorded at 298 K in a Varian 300 MHz spectrometer. In the NMR titrations small amounts of 0.01 M NaOD or DCl solutions were used to adjust the pD. The pH was calculated from the measured pD values using the relationship: $pH = pD - 0.40^4$

- Lodeiro, C.; Parola, A. J.; Pina, F.; Bazzicalupi C.; Bencini, A.; Bianchi A.; Masotti, A.; Giorgi, C.; Valtancoli B. *Inorg. Chem.*, 2001, 40, 2968-2975.
- (2) Gran, G. Analyst (London), 1952, 77, 661. Rossotti F. J.; H. Rossotti, J. Chem. Educ. 1965, 42, 375.
- (3) Gans, P.; Sabatini, A.; Vacca, A. Talanta, 1996, 43, 807-812.
- (4) Covington, A. K.; Paabo, M.; Robinson R. A.; Bates, R. G. Anal. Chem. 1968, 40, 700
- (5) Neuwahl, F.V.R.; Bussotti, L.; Foggi, P. Res. Adv. In Photochem & photobiol.; 2000, 1, 77-93.

Table S1. Protonation constants of ligand L and pK_a of the substrates (NMe₄NO₃ 0.1 M, 298.1 K)

Equilibrium	Log K
$\Gamma + H_{+} = [H\Gamma]_{+}$	9.40(1) ^a
$[HL]^{+} + H^{+} = [H_2L]^{2+}$	8.6(1)
$\left[H_{2}L\right]^{2+} + H^{+} = \left[H_{3}L\right]^{3+}$	7.43(1)
$[H_3L]^{3+} + H^+ = [H_4L]^{4+}$	4.12(1)
$[H_4L]^{4+} + H^+ = [H_5L]^{5+}$	2.19(2)

substrate	pK ^b
Uridine (U)	9.29(1) ^c
Guanidine (G)	9.19(1) ^c
Adenosine (A)	3.60(1) ^c
Citidine (C)	4.22(1) ^c

Substrate	pK_{a1}^{d}	pK_{a2}^{d}
UpU	9.62(1) ^e	9.31(1)
GpG	9.59(1) ^e	9.27(1)
ApA	3.78(1) ^e	3.10(1)
СрС	4.53(1) ^e	3.71(1)
UpA	9.4(1)	4.6(1)

^a: the values are very similar to those previously determined in 0.1 M NMe₄Cl (see Lodeiro, C.; Parola, A. J.; Pina, F.; Bazzicalupi C.; Bencini, A.; Bianchi A.; Masotti, A.; Giorgi, C.; Valtancoli B. *Inorg. Chem.*, **2001**, *40*, 2968-2975. ^b: in the case of U and G the pK_a values are referred to deprotonation of the substrate, i. e, to the equilibria $X(H_{-1})^- + H^+ = X$ (X = U or G), while in the case of cytidine and adenosine are related to protonation of the substrate, i. e. to equilibria of the type $X + H^+ = XH^+$ (X = A or C) ^c: the values are in good agreement with those previously reported (for uridine see: Nagy, Z; Sovago, I, *Dalton Trans*, **2001**, 2467; for guanosine, cytidine and adenosine see: Taylor, S.; Buncel, E.; Norris, A.; *J. Inorg. Biochem.*, **1981**, *15*, 131). ^d in the case of UpU and GpG the pK_{a1} and pK_{a2} values are referred to deprotonation of the substrate, i. e, to the equilibria $X(H_{-2})^{3-} + H^+ = X(H_{-1})^{2-}$ and $X(H_{-1})^{2-} + H^+ = X^-$ (X = UpU or GpG), while in the case of CpC and ApA are related to protonation of the substrate, i. e to equilibria of the type $X + H^+ = XH^+$ and $XH^+ + H^+ = XH^{2+}$ (X = ApA or CpC). In the case of UpA the pK_{a1} value is related to deprotonation of the substrate, while the pK_{a2} value refers to protonation of the substrate. ^e: the values are in good agreement with those previously reported by Ogasawara N; Inoue, Y, *J. Am. Chem. Soc.*, **1976**, *98*, 7048.

Table S2. Stability constants of the Zn(II) complexes (log K) with L (NMe₄NO₃ 0.1M, 298.1 K)^a

Reaction

Log K

$L + Zn^{2+} = [ZnL]^{2+}$	12.12(1)
$[ZnL]^{2+} + H^{+} = [ZnLH]^{3+}$	6.91(1)
$[ZnLH]^{3+} + H^{+} = [ZnLH_2]^{4+}$	5.08(2)
$[ZnL]^{2+} + OH^{-} = [ZnL(OH)]^{+}$	2.94(1)
$\left[\operatorname{ZnL}(\operatorname{OH})\right]^{+} + \operatorname{OH}^{-} = \left[\operatorname{ZnL}(\operatorname{OH})_{2}\right]$	

$L + 2Zn^{2+} = [Zn_2L]^{4+}$	17.62(5)
$[Zn_2L]^{4+} + OH^{-} = [ZnL(OH)]^{3+}$	5.69(6)

 $[Zn_2L(OH)]^{3+} + OH^{-} = [Zn_2L(OH)_2]^{2+}$ 5.64(6)

$[Zn_{2}L]^{4+} + UpU(H_{-1})^{2-} = [Zn_{2}L UpU(H_{-1})]^{2+}$	8.0(1)
$[Zn_2L UpU(H_{-1})]^{2+} = [Zn_2L UpU(H_{-2})]^+ + H^+$	-8.1(1)

$$[Zn_2L]^{4+} + U(H_{-1})^{-} = [Zn_2L U(H_{-1})]^{3+}$$
8.1(1)

$$[Zn_2L^{\cdot}U(H_{-1})]^{3+} + U(H_{-1})^{-} = [Zn_2L^{\cdot}U(H_{-1})_2]^{2+}$$
 7.2(1)

$$[Zn_2L]^{4^+} + UpA(H_{-1})^{2^-} = [Zn_2L UpA(H_{-1})]^{2^+}$$

$$[Zn_2L UpA(H_{-1})]^{2^+} + UpA(H_{-1}) = [Zn_2L UpA(H_{-2})_2]^+ + H^+$$

$$4.9(1)$$

^a: the stability of the binary complexes between Zn(II) and L, previously determined in 0.1 M NMe₄Cl at 298.1 K (Lodeiro, C.; Parola, A. J.; Pina, F.; Bazzicalupi C.; Bencini, A.; Bianchi A.; Masotti, A.; Giorgi, C.; Valtancoli B. *Inorg. Chem.*, **2001**, *40*, 2968-2975), have been determined again in the course of the present study in a different ionic medium (0.1 M NMe₄NO₃, 298.1 K), due to the low solubility of the UpU complexes in 0.1 M NMe₄Cl. The constant values, however, are in good accord to that previously reported.

Figure S1. Fluorescence emission spectra recorded on solutions containing UpU and complex **1** at selected pH values ($[UpU] = [1] = 2.5 \times 10^{-5} \text{ M}$, $\lambda_{exc} = 290 \text{ nm}$, T = 298 K).

Figure S2. Fluorescence spectra recorded on solutions containing U and complex 1 at selected pH values ([1] = [U] = $2.5.10^{-5}$ M, [U] = $5\cdot10^{-5}$ M λ_{exc} = 290 nm, T = 298.1 K)

Figure S3. ¹H NMR spectra of uridine, deprotonated uridine, complex 1 and complex 1 in the presence of 2 eq. of uridine at different pH values at 318 K (the spectra of complex 1 in the presence of uridine display fluxionality at lower T values, avoiding a correct interpretation). The observed downfield shift of the ¹H signals of the nucleobase and dipyridine at pH 11.5 is due to hydroxide binding to complex 1, which leads to detachment of the nucleoside from the dimetal complex.

Figure S4. Fluorescence emission spectra of **1** in the presence of increasing amounts of UpA (0.2 eq each addition) at pH 9. ([1] = $2.5.10^{-5}$ M, $\lambda exc = 290$ nm, 298.1 K).

Figure S5. Fluorescence emission spectra recorded on solutions containing UpA and complex **1** at selected pH values ($[UpA] = 1,25 \times 10^{-4}$, $[1] = 2.5 \times 10^{-5}$ M, $\lambda_{exc} = 290$ nm, T = 298 K).

Figure S6. Emission intensity at 440 nm (•, right y axis) as a function of pH compared to the distribution curves of the complexes (solid curves, left y axis) for a system containing 1 and UpA ($[1] = 2.5 \cdot 10^{-5}$ M, $[UpA] = 1.25 \cdot 10^{-4}$ M, $\lambda_{exc} = 290$ nm, 298.1 K).

Figure S7. Fluorescence emission spectra of **1** in the presence of increasing amounts of 5'-AAUUAA-3' (0.25 eq each addition) at pH 8.5. ([**1**] = $2.5.10^{-5}$ M, $\lambda_{exc} = 290$ nm, 298.1 K).