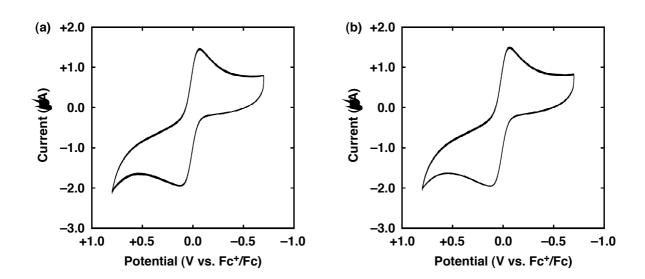
Supplementary Information

Reversible Operation of Chiral Molecular Scissors by Redox and UV Light

Takahiro Muraoka, Kazushi Kinbara*a, and Takuzo Aida*a

^a Department of Chemistry and Biotechnology, School of Engineering, and Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

^b PRESTO, Japan Science Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan

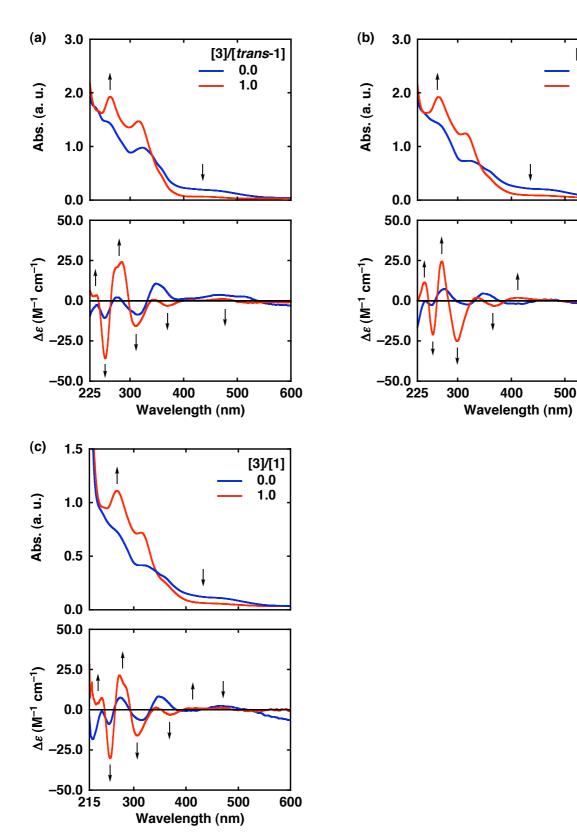

Table of Contents

- 1. Measurements
- 2. Cyclic Voltammetry of 1
- 3. Absorption and CD Spectral Changes of (1*S*,1'*S*)-1" upon Reduction
- 4. HPLC Analysis of (1*S*,1'*S*)-1

1. Measurements

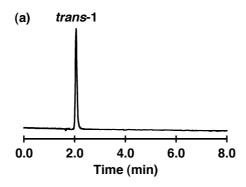
Electronic absorption and circular dichroism (CD) spectra were recorded on a JASCO type V-560 spectrometer and a JASCO type J-720 spectropolarimeter, respectively. Analytical HPLC was performed at 20 °C using a 4.6 mm- ϕ × 250 mm long silica gel column (Mightysil Si60) on a JASCO Type PU-980 HPLC pump, equipped with a JASCO Type UV-970 variable-wavelength UV-Vis detector. Cyclic voltammetry was carried out on an ALS/CHI619B Electro-chemical Analizer (BAS) using platinum-wire working and counter electrodes and a reference silver-wire electrode RE-5 (BAS). Scan rate was 0.1 V s⁻¹. Sample solutions (0.2 mM in CH₂Cl₂) containing Bu₄NPF₆ (0.1 M) as a supporting electrolyte were degassed by three freeze-to-thaw cycles before measurements.

2. Cyclic Voltammetry of 1


Fig. S1 Cyclic voltammograms of (a) *trans-***1** and (b) *cis-***1** (contaminated by 16% with *trans-***1**) in CH₂Cl₂ (0.2 mM) containing 0.1 M Bu₄NPF₆ at 20 °C.

[3]/[1] 0.0

1.0


600

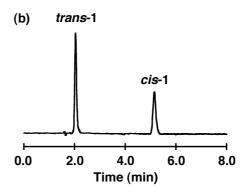

3. Absorption and CD Spectral Changes of (1*S*,1'*S*)-1" upon Reduction

Fig. S2 (a) Absorption (upper) and CD (lower) spectral changes at 20 °C of a CH₂Cl₂ solution of (1S,1'S)-trans- $\mathbf{1}^{III}$ (generated by oxidation of (1S,1'S)-trans- $\mathbf{1}^{II}$ (1.8×10^{-4} M) with a stoichiometric amount of $\mathbf{2}$) upon addition of a stoichiometric amount of reductant $\mathbf{3}$. (b) Absorption (upper) and CD (lower) spectral changes at 20 °C of a CH₂Cl₂ solution of (1S,1'S)- $\mathbf{1}^{III}$ (generated by oxidation of (1S,1'S)- $\mathbf{1}^{II}$ (2.1×10^{-4} M; trans/cis = 16/84) with a stoichiometric amount of $\mathbf{2}$) upon addition of a stoichiometric amount of reductant $\mathbf{3}$. (c) Absorption (upper) and CD (lower) spectral changes at 20 °C of a CH₂Cl₂ solution of (1S,1'S)- $\mathbf{1}^{III}$ (generated by oxidation of (1S,1'S)- $\mathbf{1}^{II}$ (1.1×10^{-4} M; trans/cis = 16/84) with a stoichiometric amount of $\mathbf{2}$, followed by UV (1.1×10^{-4} M; trans/cis = 16/84) with a stoichiometric amount of a stoichiometric amount of reductant $\mathbf{3}$. Arrows indicate directions of the spectral changes.

4. HPLC Analysis of (1 S,1'S)-1

Fig. S3 HPLC chromatograms of (a) (1S,1'S)-trans- $\mathbf{1}^{II}$ as a reference and (b) an isomer mixture of (1S,1'S)- $\mathbf{1}^{II}$, generated from (1S,1'S)- $\mathbf{1}^{III}$ (trans/cis = 16/84) by UV irradiation for 60 s, followed by addition of a stoichiometric amount of reductant 3. HPLC was performed at 20 °C with a Mightysil Si60 column using CH₂Cl₂/hexane (40/60) as an eluent at a flow rate of 2.0 mL min⁻¹, and the chromatograms were obtained by monitoring the absorbance at 369.0 nm, an isosbestic point for the photoisomerization of $\mathbf{1}^{II}$ in CH₂Cl₂/hexane (40/60).