Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

Nucleophilic Aromatic Substitution Using Et₃SiH/ cat. *t*-Bu-P4 as a System for Nucleophile Activation

Masahiro Ueno, Misato Yonemoto, Masahiro Hashimoto, Andrew E. H. Wheatley, Hiroshi Naka and Yoshinori Kondo

General comment

1H-NMR spectra were recorded on a JEOL AL-400 using tetramethylsilane as an internal standard. Chemical shifts are expressed in d(ppm) values, and coupling constants are expressed in herts (Hz). The following abbreviations are used: s = singlet, d = doublet, m = multiplet, t = triplet, brs = broad # This journal is (c) The Royal Society of Chemistry 2007

singlet, dd = double-doublet, dt = double-triplet and ddd = double-doublet-doublet. Mass spectra were recorded on JEOL JMS-DX303 or JEOL JMS-AX500 spectrometer. IR spectra were measured with SensIR ATR FT-IR. All the reactions dealing with air or moisture sensitive compounds were carried out in a dry reaction vessel under argon atmosphere unless otherwise noted. Flash column chromatography was carried out using Kanto Chemical Silica gel 60N (70-230 mesh). Triethylsilane was purchased from ACROS. Dry DMSO and dry DMF were purchased from Kanto Chemical Company and used as supplied. *tert*-Butyl P4 base 1.0 *M* solution in *n*-hexane was purchased from Fulka Chemie and used as supplied.

General procedure for the S_NAr reaction of alcohols using Et₃SiH/cat. *t*-Bu-P4

A mixture of aryl fluoride (0.50 mmol), alcohol (1.20 mmol), triethylsilane (120 mg, 1.03 mmol) and dry DMSO (1 mL) was placed in a 20-mL flask equipped with a magnetic stirring bar under argon atmosphere. *t*-Bu-P4 base, *1.0 M* solution in *n*-hexane (50 mL, 0.05 mmol) was added to the solution. The reaction mixture was stirred for 2 h at 100 °C. The mixture was quenched with MeOH (2.0 mL) and stirred for several hours (Table 1). Brine was added to the solution and extracted with AcOEt. The combined organic extracts were dried over MgSO₄, filtrated, and concentrated under reduced pressure. The crude product was purified with SiO₂ column chromatography.

1-Hexyloxy-2-nitrobenzene

Yield: 100 %, yellow oil.

¹H-NMR(CDCl₃) δ (ppm): 0.90 (t, 3 H, J = 7.4 Hz), 1.31-1.36 (m, 4 H), 1.44-1.56 (m, 2 H), 1.83 (td, 2 H, J = 6.8Hz, 7.4 Hz), 4.09 (t, 2 H, J = 6.8 Hz), 6.99 (dt, 1 H, J = 1.0 Hz, 7.8 Hz), 7.05 (dd, 1 H, J = 1.0 Hz, 7.8 Hz), 7.49 (dt, 1 H, J = 1.6 Hz, 7.8 Hz), 7.8 Hz (dd, 1 H, J = 1.6 Hz, 7.8 Hz); IR(neat) 2929, 1607, 1351, 1277, 1254, 1005 cm⁻¹; LRMS(EI) m/z: 223 (M⁺) HRMS: calcd for C₁₂H₁₇NO₃ 223.1208, found 223.1190.

1-Butoxy-2-nitrobenzene

Yield: 97 %, yellow oil.

¹H-NMR(CDCl₃)δ(ppm): 0.97 (t, 3 H, J = 7.5 Hz), 1.46-1.59 (m, 2 H), 1.78-1.87 (m, 2 H), 4.11 (t, 2 H, J = 6.5 Hz), 7.00 (t, 1 H, J = 8.0 Hz), 7.07 (d, 1 H, J = 8.0 Hz), 7.51 (dt, 1 H, J = 1.9 Hz, 8.0 Hz), 7.82 (dd, 1 H, J = 1.9 Hz, 8.0 Hz); IR(neat) 2960, 1607, 1522, 1351, 1279, 1254, 1165 cm⁻¹; MS(EI) m/z: 243 (M⁺); HRMS calcd for C₁₀H₁₃NO₃ 195.0895, found 195.0878.

1-Nitro-2-(1-phenylethoxy)benzene

Yield: 92 %, yellow oil.

¹H-NMR(CDCl₃) δ (ppm): 1.68 (d, 3 H, J = 6.6 Hz), 5.45 (q, 1 H, J = 6.6 Hz), 6.90 (d, 1 H, J = 8.1 Hz), 6.94 (t, 1 H, J = 8.1 Hz), 7.23-7.42 (m, 6 H), 7.77 (dd, 1 H, J = 1.6 Hz, 8.1 Hz) IR(neat) 2981, 1605, 1520, 1449, 1351, 1275, 1252, 1065, 853 cm⁻¹; MS(EI) m/z: 243 (M⁺); HRMS calcd for C₁₄H₁₃NO₃ 243.0895, found 243.0911.

1-sec-Butoxy-2-nitrobenzene

Yield: 71 %, yellow oil.

¹H-NMR(CDCl₃)δ(ppm): 1.00 (t, 3 H, J = 7.5 Hz), 1.35 (d, 3 H, J = 6.0 Hz), 1.62-1.88 (m, 2 H), 4.45 (sext, 1 H, J = 6.0 Hz), 6.98 (t, 1 H, J = 8.1 Hz), 7.06 (d, 1 H, J = 8.1 Hz), 7.48 (dt, 1 H, J = 1.5 Hz, 8.1 Hz), 7.77 (dd, 1 H, J = 1.5 Hz, 8.1 Hz); IR(neat) 2975, 1605, 1522, 1351, 1277, 1252, 922, 854 cm⁻¹; MS(EI) m/z: 243 (M⁺); HRMS calcd for C₁₀H₁₃NO₃ 195.0895, found 195.0883.

4-Butoxybenzonitrile

Yield: 98 %, colorless oil.

¹H-NMR(CDCl₃)δ(ppm): 0.98 (t, 3 H, J = 7.1 Hz), 1.49 (sext, 2 H, J = 7.1 Hz), 1.75-1.82 (m, 2 H), 4.00 (t, 2 H, J = 7.1 Hz), 6.93 (d, 2 H, J = 9.2 Hz), 7.57 (d, 2 H, J = 9.2 Hz); IR(neat) 2958, 2223, 1605, 1507, 1256, 1171, 834 cm⁻¹; MS(EI) m/z: 175 (M⁺), HRMS calcd for C₁₁H₁₃NO 175.0997, found 175.0991

1-Butoxy-4-(trifluoromethyl)benzene

Yield: 58 %, colorless oil.

¹H-NMR(CDCl₃)δ(ppm): 0.92 (t, 3 H, J = 7.6 Hz), 1.45-1.54 (m, 2 H), 1.74-1.82 (m, 2 H), 3.99 (t, 2 H, J = 6.6 Hz), 6.94 (d, 2 H, 8.8 Hz), 7.52 (d, 2 H, J = 8.8 Hz) IR(neat) 2937, 1617, 1520, 1328, 1256, 1119, 1067, 1009, 836 cm⁻¹ MS(EI) m/z: 218 (M⁺). HRMS: calcd. for C₁₁H₁₃F₃O 218.0918, found 218.0900

2-(4-Methoxyphenoxy)nitrobenzene

Yield: 76 %, yellow crystal

m.p. 73-75°C; ¹H-NMR(CDCl₃) δ (ppm): 3.81 (s, 3 H), 6.88-6.93 (m, 3 H), 7.02 (d, 2H, J = 9.3 Hz), 7.09-7.15 (m, 1 H), 7.44 (ddd, 1 H, J = 1.7 Hz, J = 7.5 Hz, J = 8.3 Hz), 7.91 (dd, 1 H, J = 1.7 Hz, J = 8.3 Hz); IR (crystal) 3;101, 3012, 2840, 1600, 1497, 1345, 1229 cm⁻¹; MS(EI) m/s: 245 (M⁺); HRMS calcd for C₁₃H₁₁NO₄ 245.0688, found 245.0688.

General procedure for silvlation of alcohols using Et₃SiH/cat. t-Bu-P4

A mixture of an alcohol (2 mmol), triethylsilane (2.4 mmol), DMF (2 mL), *t*-Bu-P4 base 1.0 *M* solution in *n*-hexane (0.02 mmol) was stirred using the conditions listed in Table 2. The mixture

was treated with saturated aq. NH_4Cl and H_2O and the mixture was extracted with AcOEt. The extract was washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and afforded the crude product, which was purified by SiO₂ column chromatography using n-hexane-AcOEt as an eluent. The silvl ethers were obtained as colorless oils or white solids.

Triethylnon-8-enyloxysilane

Colorless oil 500mg (98%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 0.60 (q, *J* = 8.0 Hz, 6 H), 0.96 (t, *J* = 8.0 Hz, 9 H), 1.30-1.33 (m, 8 H), 1.49-1.56 (m, 2 H), 2.04 (dt, *J* = 6.4, 8.0 Hz, 2 H), 3.59 (t, *J* = 6.4 Hz, 2 H), 4.92 (ddt, *J* = 1.6, 2.0, 10.4 Hz, 1 H), 4.99 (dq, *J* = 1.6, 17.2 Hz, 1 H), 5.81 (ddt, *J* = 6.4, 10.4, 17.2 Hz, 1 H) IR(neat) 2927, 2346, 1640, 1459, 1414, 1239, 1098, 1005, 909, 745 LRMS (EI) m/z 227 (M-29)⁺ HRMS calcd for C₁₃H₂₇O Si 227.1830, found 227.1826.

Benzyloxytriethylsilane

Colorless oil 423 mg (95%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 0.65 (q, *J*= 7.6 Hz, 6 H), 0.98 (t, *J*= 7.6 Hz, 9 H), 4.73 (s, 2 H), 7.25 (m, 1 H), 7.32-7.33 (m, 4 H) IR(neat) 2954, 2875, 2360, 2117, 1740, 1495, 1455, 1414, 1376, 1239, 1206, 1096, 1069, 1007, 810, 799, 731, 697 LRMS (EI) m/z 222 (M⁺) HRMS calcd for C₁₃H₂₂OSi 222.1440, found 222.1455.

Triethyl(1-phenylethoxy)silane

Colorless oil 458 mg (97%)

¹H-NMR (400MHz, CDCl₃)δ(ppm): 0.57 (m, 6 H), 0.91 (t, *J*= 8.0 Hz, 9 H), 1.42 (d, *J*= 6.4 Hz, 3 H), 4.86 (q, *J*= 6.4 Hz, 1 H), 7.21 (m, 1 H), 7.23-7.35 (m, 4 H)

IR(neat) 2954, 2875, 2362, 2115, 1492, 1455, 1414, 1358, 1239, 1206, 1094, 1034, 955, 793, 743, 699

LRMS (EI) m/z 236 (M⁺)

HRMS calcd for $C_{14}H_{24}OSi$ 236.1596, found 236.1601.

Triethyl(1-propylheptyloxy)silane

Colorless oil 534 mg (98%)

¹H-NMR (400MHz, CDCl₃)δ(ppm): 0.59 (q, *J*= 8.0 Hz, 6 H), 0.88 (t, *J*= 6.8 Hz, 3 H), 0.90 (t, *J*= 6.8 Hz, 3 H), 0.96 (t, *J*= 8.0 Hz, 9 H), 1.27 (brs, 10 H), 1.40-1.41 (m, 4 H), 3.63 (quint, *J*= 6.0 Hz, 1 H)

Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2007

IR(neat) 2956, 2931, 2875, 1459, 1378, 1237, 1125, 1071, 1040, 1005, 724 LRMS (EI) m/z 243 (M-29)⁺ HRMS calcd for $C_{14}H_{31}OSi$ 243.2143, found 243.2153.

Triethyl(1-methyl-1-phenylethoxy)silane

Colorless oil 476 mg (95%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 0.59 (q, *J*= 8.0 Hz, 6 H), 0.94 (t, *J*= 8.0 Hz, 9 H), 1.57 (s, 6 H), 7.19 (tt, *J*=1.6, 7.6 Hz, 1 H), 7.30 (t, *J*= 7.6 Hz, 2 H), 7.46 (dd, *J*= 1.6, 7.6 Hz, 2 H) IR(neat) 2954, 2875, 2362, 2117, 1737, 1493, 1459, 1380, 1258, 1173, 1040, 741, 699 LRMS (EI) m/z 221 (M-29)⁺ HRMS calcd for C₁₃H₂₁OSi 221.1361, found 221.1350.

Triethyltrityloxysilane

White solid 653 mg (87%) ¹H-NMR (400MHz, CDCl₃)δ(ppm): 0.29 (q, *J*= 8.0 Hz, 6 H), 0.83 (t, *J*= 8.0 Hz, 9H), 7.20-7.29 (m, 9 H), 7.41-7.44 (m, 6 H) IR(neat) 2954, 2904, 2871, 1488, 1445, 1241, 1158, 1088, 1061, 1001, 905, 851, 741, 724,695, 673 LRMS (EI) m/z 374 (M⁺) HRMS calcd for C₂₄H₂₂O₃Si 374.2066, found 374.2048.

General procedure for the S_NAr reaction of C-nucleophiles using Et₃SiH/cat. *t*-Bu-P4

A mixture of aryl fluoride (0.50 mmol), C-nucleophiles (0.75 mmol), triethylsilane (87 mg, 0.75 mmol) and dry DMF (0.5 mL) was placed in a 10-mL flask equipped with a magnetic stirring bar under argon atmosphere. *t*-Bu-P4 base, *1.0 M* solution in *n*-hexane (50 μ L, 0.05 mmol) was added to the solution. The reaction mixture was stirred for 1-24 h at 80 °C. The mixture was treated with saturated aq. NH₄Cl and H₂O and the mixture was extracted with AcOEt. The extract was washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and afforded the crude product, which was purified by SiO₂ column chromatography using n-hexane-AcOEt as an eluent.

Diethyl methyl(2-nitrophenyl)malonate

Yellow oil 146 mg (99%) ¹H-NMR (400MHz, CDCl₃)δ(ppm): 1.23 (t, *J*= 7.2 Hz, 6 H), 1.56 (s, 3H), 4.15-4.30 (m, 4H), 7.33 (dd, *J*= 1.2 Hz, 8.0 Hz, 1H), 7.48 (dt, *J*= 1.2 Hz, 8.0 Hz, 1H), 7.59 (dt, *J*= 1.2 Hz, 8.0 Hz, 1H), 8.02 (dd, *J*= 1.2 Hz, 8.0 Hz, 1H) (dd, *J*= 1.2 Hz, 8.0 Hz, 1H) IR(neat) 2983, 1746, 1528, 1355, 1260, 1204, 1106, 1015, 856, 748 # Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2007

LRMS (EI) m/z 296 (M+1)⁺

HRMS calcd for $C_{14}H_{18}NO_6$ 296.1134, found 296.1122.

Diethyl 2-nitrophenylmalonate

Colorless oil 79 mg (56%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 1.29 (t, *J*= 7.1 Hz, 6 H), 4.27 (q, *J*= 7.1 Hz, 4H), 5.30 (s, 1H), 7.48-7.58 (m, 2H), 7.66 (t, *J*= 7.3 Hz, 1H), 8.08 (d, *J*= 7.3 Hz, 1H) IR(neat) 2983, 1748, 1530, 1349, 1223, 1030, 856, 787 LRMS (EI) m/z 282 (M+1)⁺ HRMS calcd for C₁₃H₁₆NO₆ 282.0978, found 282.0939.

Diethyl n-hexyl(2-nitrophenyl)malonate

Orange oil 139 mg (76%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 0.86 (t, *J*= 6.8Hz, 3H), 1.19-1.55 (m, 14H), 2.44-2.49 (m, 2H), 7.34 (dd, *J*= 1.2 Hz, 7.8 Hz, 1H), 7.47 (dt, *J*= 1.2 Hz, 7.8 Hz, 1H), 7.60 (dt, *J*= 1.5 Hz, 7.8 Hz, 1H), 8.01 (dd, *J*= 1.5 Hz, 7.8 Hz, 1H) ¹³C-NMR (100MHz, CDCl₃) δ (ppm): 13.69, 13.83, 22.40, 25.37, 29.33, 31.31, 35.41, 61.82, 62.75, 125.53, 128.26, 130.35, 132.41 (2C), 149.47, 169.10 IR(neat) 2931, 1748, 1735, 1530, 1355, 1246, 1196, 1023, 857, 714 LRMS (EI) m/z 365 (M)⁺ HRMS calcd for C₁₉H₂₇NO₆ 365.1838, found 365.1869.

Diethyl 2-nitrophenyl(2-propenyl)malonate

Yellow oil 152 mg (95%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 1.22 (t, *J*= 7.2 Hz, 6 H), 3.27 (dt, *J*= 1.6 Hz, 7.2 Hz, 2H), 4.17-4.28 (m, 4H), 4.98 (d, *J*= 10.4 Hz, 1H), 5.00 (dd, *J*= 1.2 Hz, 17.6 Hz, 1H), 5.70-5.81 (m, 1H), 7.32 (dd, *J*= 1.2 Hz, 8.0 Hz, 1H), 7.46 (dt, *J*= 1.2 Hz, 8.0 Hz, 1H), 7.57 (dt, *J*= 1.2 Hz, 8.0 Hz, 1H), 8.01 (dd, *J*= 1.2 Hz, 8.0 Hz, 1H) ¹³C-NMR (100MHz, CDCl₃) δ (ppm): 13.86, 39.75, 62.15, 63.07, 119.01, 125.60, 128.39, 130.87, 132.01, 132.35, 133.01, 149.17, 168.62 IR(neat) 2983, 1733, 1530, 1356, 1241, 1202, 1027, 857, 717 LRMS (EI) m/z 322 (M+1)⁺ HRMS calcd for C₁₆H₂₀NO₆ 322.1291, found 322.1286.

Ethyl 2-cyano-2-(2-nitrophenyl)-4-pentenoate

Yellow oil 122 mg (89%)

This journal is (c) The Royal Society of Chemistry 2007

¹H-NMR (400MHz, CDCl₃)δ(ppm): 1.30 (t, *J*= 7.3 Hz, 3 H), 3.19 (dd, *J*= 7.3 Hz, 14.4 Hz, 1H), 3.32 (dd, *J*= 7.3 Hz, 14.4 Hz, 1H), 4.29 (q, *J*= 7.3 Hz, 2H), 5.18-5.22 (m, 2H), 5.69-5.80 (m, 1H), 7.60 (d, *J*= 7.6 Hz, 1H), 7.72 (t, *J*= 7.6 Hz, 1H), 7.79 (d, *J*= 7.6 Hz, 1H), 8.13 (d, *J*= 7.6 Hz, 1H) IR(neat) 3085, 2985, 2248, 1742, 1530, 1351, 1219, 1027, 932, 853, 753, 731 LRMS (EI) m/z 274 (M)⁺ HRMS calcd for $C_{14}H_{14}N_2O_4$ 274.0945, found 296.0975.

2-Nitrophenyl(2-propenyl)malononitrile

Orange oil 101 mg (89%)

¹H-NMR (400MHz, CDCl₃)δ(ppm): 3.32 (d, *J*= 7.2 Hz, 2H), 5.44-5.49 (m, 2H), 5.87-5.98 (m, 1H), 7.69 (dt, *J*= 1.6 Hz, 7.2 Hz, 1H), 7.78 (dt, *J*= 1.6 Hz, 7.2 Hz, 1H), 7.87 (dd, *J*= 1.6 Hz, 7.2 Hz, 1H), 8.06 (dd, *J*= 1.6 Hz, 7.2 Hz, 1H) ¹³C-NMR (100MHz, CDCl₃)δ(ppm): 41.60, 43.64, 112.98, 124.15, 124.28, 126.67, 127.97, 129.66, 131.53, 133.93, 147.86 IR(neat) 2925, 2252, 1739, 1530, 1351, 940, 849, 745, 720 LRMS (EI) m/z 227 (M)⁺ HRMS calcd for $C_{12}H_9N_3O_2$ 227.0695, found 227.0675.

Diethyl methyl(4-nitrophenyl)malonate

Yellow oil 143 mg (97%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 1.27 (t, *J*= 6.8 Hz, 6 H), 1.90 (s, 3H), 4.25 (q, *J*= 6.8 Hz, 2H), 4.26 (q, *J*= 6.8 Hz, 2H), 7.57 (d, *J*= 9.2 Hz, 2H), 8.20 (d, *J*= 9.2 Hz, 2H) IR(neat) 2985, 1721, 1520, 1349, 1252, 1208, 1094, 1013, 855, 710 LRMS (EI) m/z 295 (M)⁺ HRMS calcd for C₁₄H₁₇NO₆ 295.1056, found 295.1043.

Diethyl methyl(2-cyanophenyl)malonate

Yellow oil 63 mg (46%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 1.32 (t, *J*= 7.2 Hz, 6 H), 1.97 (m, 3H), 4.24-4.39 (m, 4H), 7.28 (dd, *J*= 1.2 Hz, 7.6 Hz, 1H), 7.40 (dt, *J*= 1.2 Hz, 7.6 Hz, 1H), 7.56 (dt, *J*= 1.6 Hz, 7.6 Hz, 1H), 7.73 (dd, *J*= 1.6 Hz, 7.6 Hz, 1H) ¹³C-NMR (100MHz, CDCl₃) δ (ppm): 13.85, 22.74, 59.76, 62.38, 112.96, 117.93, 127.32, 127.66, 132.48, 132.52, 142.26, 169.74 IR(neat) 2985, 2225, 1727, 1258, 1214, 1110, 1015, 859, 760 LRMS (EI) m/z 275 (M)⁺ HRMS calcd for C₁₅H₁₇NO₄ 275.1158, found 275.1174. # Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

Diethyl methyl(4-cyanophenyl)malonate

Yellow oil 91 mg (66%) ¹H-NMR (400MHz, CDCl₃) δ (ppm): 1.26 (t, *J*= 7.1 Hz, 6H), 1.87 (s, 3H), 4.20-4.30 (m, 4H), 7.50 (d, *J*= 8.4 Hz, 2H), 7.64 (d, *J*= 8.4 Hz, 2H) IR(neat) 2985, 2229, 1727, 1250, 1208, 1094, 1017, 858, 841 LRMS (EI) m/z 275 (M)⁺ HRMS calcd for C₁₅H₁₇NO₄ 275.1158, found 275.1172.