Rosa I. Sáez Díaz,^a Jasmine Regourd,^a Paul V. Santacroce,^b

Jeffery T. Davis,^b David L. Jakeman^c and Alison Thompson^{a*}

^aDepartment of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 Canada;

E-mail:alison.thompson@dal.ca; Fax: 902-494-1310; Tel: 902-494-6421

^bDepartment of Chemistry and Biochemistry, University of Maryland, College Park, MD

20742, USA

^cCollege of Pharmacy, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada

Supplementary information

Tables of Contents

Figure S1	2
Materials and methods	
Chloride transport experiments	
DNA cleavage experiments	
Relaxation of supercoiled plasmid DNA by Cu-prodigiosene mixtures ⁵	
EC ₅₀ curve for prodigiosene 8 :	5
Electrophoresis gels after 30 min (A) and 90 min (B):	6
Prodigiosin (1)	6
Prodigiosene 2	6
Prodigiosene 3	7
Prodigiosene 4	7
Prodigiosene 5	8
Prodigiosene 6	
Prodigiosene 7	9
Prodigiosene 8	9
Prodigiosene 9	
Prodigiosene 10	
Prodigiosene 11	11
References	

Figure S1

Fig. S1 Chloride transport across EYPC liposomes (25 °C) containing lucigenin in a 100 mM NaNO₃ – 10 mM sodium phosphate buffer (pH 6.4). Compounds **2-11** were added to give a 1:1000 ligand:lipid ratio. At t=0 s, NaCl was added to give an external Cl⁻ concentration of 25 mM. Lucigenin fluorescence was converted to [Cl⁻]. The traces shown are the average of 3 trials.

Materials and methods

The samples of all prodigiosenes were synthesized and characterized as previously reported.¹ All reagents, unless stated otherwise, were obtained commercially and used without further purification.

Chloride transport experiments

EYPC lipid (60 mg) was dissolved in 5 mL of a chloroform/methanol mixture (5 % MeOH). The resulting solution was evaporated under reduced pressure to produce a thin film that was dried in vacuo for 2 h. The lipid film was hydrated with 1 mL of a solution of 10 mM sodium phosphate (pH 6.4) containing 100 mM NaNO₃ and 1 mM lucigenin.² After 10 freeze/thaw cycles, the liposomes were extruded through a 100 nm polycarbonate membrane 21 times at room temperature. The liposome solution was passed through a Sephadex (G-25) column to remove excess dye (eluant = sodium phosphate buffer, pH 6.4, 100 mM NaNO₃). The isolated liposomes were diluted in 10 mM sodium phosphate (pH 6.4, 100 mM NaNO₃) to give a concentration of 25 mM in EYPC, assuming 100 % retention of lipid during the gel filtration process. In a typical experiment, 50 µL of the stock EYPC liposomes were diluted into 2 mL of 10 mM sodium phosphate (pH 6.4, 100 mM NaNO₃) to give a solution 0.5 mM in lipid. Compounds 1-11 were added to give a $9.0E^{-4}$:100 ligand:lipid ratio (2.2x10⁻⁴ mM final concentration of 1-11). To the cuvette containing the EYPC-transporter mixture was added 20 µL of 2.5 M NaCl solution through an injection port to give an external chloride concentration of ~25 mM. The fluorescence of the intravesicular chloride concentration was monitored at excitation 372 nm and emission at 504 nm for 500 s. After 470 s, 0.04 mL of 10 % Triton-X detergent was added to lyze the liposomes. The internal liposome chloride concentration was determined in accordance to previous literature reports.³ All transport experiments were done in triplicate.

S3

DNA cleavage experiments

Supercoiled plasmid pDesR3 DNA was prepared from Nova Blue cells using Qiagen QIA prep Spin Miniprep Kit (Qiagen, Hiden, Germany).⁴ The concentration of DNA was determined by OD_{260} . Deionized water (18 Ω) was used for all aqueous solutions and manipulations. Agarose gel loading buffer = 40 mM Tris-OAc (pH 8.0), 5 mM EDTA, 40% glycerol, 0.3% bromophenol blue. Electrophoresis 1 x T.A.E. solution buffer = 40 mM Tris-acetic acid (pH 7.7), 2 mM EDTA.

*Relaxation of supercoiled plasmid DNA by Cu-prodigiosene mixtures*⁵

Reaction mixtures (20 μ L total volume) contained 450 ng of supercoiled DNA, 10 mM MOPS (pH 7.4), 100 mM NaCl and the following concentrations of 1:1 Cu(OAc)₂:prodigiosene 0.5, 2, 5, 10, 15, 20, 25, 30 and 50 μ M, generally in an acetonitrile/water (1/1) solution (exceptions are prodigiosene **3** in water/2-propanol (4/1), and prodigiosene **4** in methanol/water (1/1)). Fresh stock solutions of the Cu-prodigiosene mixture were prepared for each assay. Reaction mixtures were incubated for 30 min at 37 °C, and then 10 μ L were quenched by the addition of 2 μ L of loading buffer. The remaining reaction mixture (10 μ L) was incubated for one more hour and after that quenched (again with 2 μ L of loading buffer). Samples were loaded onto a 0.8 % agarose gel containing ethidium bromide (0.4 μ g/mL). The gels were run in 1 x T.A.E. at 100 V for 30 min and photographed under UV light. DNA bands were quantified with image analysis software (Doc-itLS Version 5.5.5) and the EC₃₀ values were obtained using the data analysis software (GraFit version 5.0.4).

 EC_{50} curve for prodigiosene 8:

Parameter	Value	Std. Error
Y Range	88.1952	1.4514
EC ₅₀	11.0631	0.1681
Slope factor	-5.2020	0.3928
Background	12.9417	0.9702

Electrophoresis gels after 30 min (A) and 90 min (B):

Prodigiosin (1)

(concentrations used for the assay = 0.5μ M, 1μ M, 2μ M, 5μ M, 10μ M, 15μ M, 25μ M, 30μ M, 10μ M, 15μ M, 25μ M, 30μ M, 10μ M, 15μ M, 25μ M, 30μ M, 10μ M, 15μ M, 25μ M, 30μ M, 10μ M, 15μ M, 25μ M, 30μ M, 10μ M, 15μ M, 10μ M, 15μ M, 10μ M, 10 μ M and 50 μ M)

A)

B)

Prodigiosene 2

(concentrations used for the assay = 0.5μ M, 2μ M, 5μ M, 10μ M, 15μ M and 20μ M)

A)

Prodigiosene 3

A)

B)

Prodigiosene 4

A)

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

Chloride anion transport and copper-mediated DNA cleavage by C-ring functionalized prodigiosenes

Prodigiosene 5

A)

Prodigiosene 6

A)

Prodigiosene 7

A)

B)

Prodigiosene 8

A)

Prodigiosene 9

A)

B)

Prodigiosene 10

A)

Prodigiosene 11

A)

References

- (1) Regourd, J.; Al-Sheikh-Ali, A.; Thompson, A. J. Med. Chem. 2007, in press.
- McNally, B. A.; Koulov, A. V.; Smith, B. D.; Joos, J. B.; Davis, A. P. Chem.
 Commun. 2005, 1087-1089.
- (3) Seganish, J. L.; Davis, J. T. Chem. Commun. 2005, 5781-5783.
- (4) Zhao, L.; Beyer, N. J.; Borisova, S. A.; Liu, H.-W. *Biochemistry* 2003, *42*, 14794-14804.
- Melvin, M. S.; Tomlinson, J. T.; Saluta, G. R.; Kucera, G. L.; Lindquist, N.;
 Manderville, R. A. J. Am. Chem. Soc. 2000, 122, 6333-6334.