Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(III) complexes

Lidia Armelao,^{*a} Gregorio Bottaro,^a Silvio Quici,^{*b} Marco Cavazzini^b Maria Concetta Raffo^b Francesco Barigelletti,^c and Gianluca Accorsi^{*c}

^aIstituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche (CNR) e Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Dipartimento di Scienze Chimiche, Universita` di Padova, Via Marzolo 1, 35131 Padova, Italy. E-mail: lidia.armelao@unipd.it ^bIstituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche (CNR), Via C. Golgi 19, 20133 Milano, Italy. E-mail: silvio.quici@istm.cnr.it ^cIstituto per la Sintesi Organica e Fotoreattivita` (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy. E-mail: accorsi@isof.cnr.it

*Authors to whom correspondence should be addressed.

E-mail: accorsi@isof.cnr.it (G.A.); lidia.armelao@unipd.it (L.A); silvio.quici@istm.cnr.it (S.Q.)

Supplementary informations

Film preparation: The molar composition of the solution employed for the silica layer deposition was: $1TEOS : 15EtOH : 0.1HCl : 3H_2O$. Film deposition was carried out in air at room temperature with a controlled withdrawal speed of about 10 cm min⁻¹ using Herasil1 silica slides (Heraeus, Quarzschmelze, Hanau, Germany) as a substrate. Coatings were obtained by means of a multi-dipping process, up to 3 depositions, without any thermal treatment between them.

Spectroscopic measurements. Absorption spectra were recorded with a Perkin-Elmer $\lambda 40$ spectrophotometer. Uncorrected emission spectra were obtained with an Edinburgh FLS920 spectrometer equipped with a peltier-cooled Hamamatsu R928 photomultiplayer tube (185-850 nm). An Edinburgh Xe900 450 W Xenon arc lamp was used as exciting light source. Corrected spectra were obtained via a calibration curve supplied with the instrument. Luminescence quantum yields (Φ_{em}) for liquid sample were obtained from spectra on a wavelength scale (nm) according to the approach described by Demas and Crosby^a using air-equilibrated [Ru (bpy) $_{3}Cl_{2}$ in water solution $\Phi_{em} = 0.028$]^b as standard. For solid samples Φ_{em} have been calculated by corrected emission spectra obtained from an apparatus consisting of a barium sulphate coated integrating sphere (6 inches), an He-Cd laser (λ_{exc} : 325 nm, 5mW) as light source and a CCD AVA-Spec2048 as signal detector, following the procedure described by De Mello et al.^c The luminescence lifetimes in the microsecondmillisecond scales were measured by using a Perkin-Elmer LS-50B spectrofluorometer equipped with a pulsed xenon lamp with variable repetition rate and elaborated with standard software fitting procedures (Origin 6.1). Experimental uncertainties are

estimated to be \pm 8% for lifetime determinations, \pm 20% for emission quantum yields, \pm 2 nm and \pm 5 nm for absorption and emission peaks respectively.

- a) Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991-1024.
- b) Nakamaru, K. Bull. Chem. Soc. Jpn. 1982, 55, 2967.
- c) J. C. deMello, H. F. Wittmann and R. H. Friend, Adv. Mater., 1997, 9, 230.