S1

Supporting Information for:

Above Room Temperature Spin Transition in a Metallosupramolecular Coordination Oligomer/Polymer

Chandrasekar Rajadurai, Olaf Fuhr, Robert Kruk, Mohamed Ghafari, Horst Hahn, Mario Ruben*

Institute of Nanotechnology, Research Centre, Karlsruhe, PB-3640, D- 76021, Germany Fax: :(+49) 724-782-6781; Tel: (+49) 724-782-6434 E-mail: Mario.Ruben@int.fzk.de

<i>S. No</i> .	Contents	Page No.
1	General experimental methods	<i>S2</i>
2	Magnetic susceptibility	<i>S2</i>
3	Single crystal X-ray diffraction studies	<i>S3</i>
4	Mössbauer studies	<i>S3</i>
5	<i>Figure S1</i> . <i>FTIR spectra of L and complex 1</i> .	<i>S3</i>
6	Figure S2. ¹ H-NMR spectrum of L.	<i>S4</i>
7	Figure S3. MALDI-TOF MS of L.	<i>S4</i>
8	Figure S4. FT-ICR MS of 1.	<i>S</i> 5

Table of Contents

S2

1. General experimental methods:

1,4-phenyldiboronicacid, and Pd(PPh₃)₄ were obtained from Aldrich. Fe(BF₄)₂ hydrate was purchased from Aldrich and used as received. 1,4-Dioxane, dichloromethane and methanol solvents were used as received without any further purification.¹H and ¹³C NMR spectroscopic data were recorded on a Bruker DPX 300 spectrometer with solvent proton as internal standard. Infrared spectra were recorded using KBr pressed pellets on Perkin Elmer Spectrum GX FT-IR spectrometer. MALDI-TOF MS data were acquired with a Voyager-DE PRO Bio spectrometry work station. Elemental analyses were carried out on a Vario MICRO cube. ESI-MS analyses were performed on a BRUKER - DALTONICS FT-ICR mass spectrometer.

2. Magnetic susceptibility:

Temperature dependent static susceptibilities of complex **1** were recorded using MPMS-5S (Quantum Design) SQUID magnetometer over a temperature range of 4.5 \leftrightarrow 380 K (both cooling and warming mode) in a homogeneous 1000 Oe external magnetic field. The magnetic field dependence of the molar magnetic susceptibility χ was not found. Gelatin capsules were used as sample containers for measurements taken in the temperature range of 4.5 \leftrightarrow 380 K. The very small diamagnetic contribution of the gelatin capsule had a negligible contribution to the overall magnetization, which was dominated by the sample. The magnetic measurement was performed in the temperature range of 4.5 \leftrightarrow 380 K at 2 K/min heating and cooling rate. The diamagnetic corrections of the molar magnetic susceptibilities were applied using well-known Pascal's constants. The high spin mol fraction [$n_{\text{HS}} = (\chi_{\text{M}}T)/(\chi T)_{\text{HS}}$] was calculated by taking the value of $(\chi T)_{\text{HS}}$ as 3.5 emu K mol⁻¹.

S3

3. Single Crystal X-ray diffraction:

X-ray data collection was performed on a STOE IPDS II diffractometer with graphite monochromated Mo K α radiation at 200 K. The structure was solved by direct methods (SHELX-97). Refinement was done with anisotropic temperature factors for all non-hydrogen atoms.

4. Mössbauer studies:

The Mössbauer spectral absorber contained ca. 50 mg/cm² of complex 1, and the spectra were measured between in the temperature range of 182–300 K on a constant-acceleration spectrometer that utilized a room-temperature rhodium matrix cobalt-57 source and was calibrated at room temperature with alpha-iron foil.

S4

Figure S2. ¹H-NMR Spectrum of L

Figure S3. MALDI-TOF MS data of L

S5

Figure S4. FT-ICR Spectrum of 1 in (MeOH/DMF/CH₃CN). Inset show the calculated spectra (blue line) and the experimentally observed doubly charged (black line) high molecular weight peaks.

S5

Figure S4. FT-ICR Spectrum of 1 in (MeOH/DMF/CH₃CN). Inset show the calculated spectra (blue line) and the experimentally observed doubly charged (black line) high molecular weight peaks.

