Supporting Information

The outside knows the difference inside: trapping helium by immediate reduction of orifice size of an open-cage fullerene and the effect of encapsulated helium and hydrogen upon the NMR of proton directly attached to the outside

Shih-Ching Chuang,^a Yasujiro Murata,^{ab} Michihisa Murata,^a and Koichi Komatsu^{ac}
^aInstitute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan, ^bPRESTO, Japan Science and Technology Agency, ^cDepartment of Environmental and Biotechnological Frontier Engineering, Fukui University of Technology, Gakuen, Fukui, 910-8505 Japan

yasujiro@ scl.kyoto-u.ac.jp; komatsu@scl.kyoto-u.ac.jp

Content

	<u>Page</u>
Experimental Section	2–4
Spectral Data (S1–S11)	5–15
Calculations ¹	16–21
X-ray Crystallographic Data	22

¹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.

Experimental Section

General method.

Dry ODCB was distilled from CaH₂ and THF from Na/benzophenone under argon. Sodium Boronhydride (Aldrich) were used as received.

Synthesis of compound 2

To a solution of compound 1^2 (1.011 g, 0.9484 mmol) in 100 mL dry ODCB was added 15 equivalents of NaBH₄ (0.532 g, 0.0141 mmol) at room temperature. THF (20 mL) was added slowly to the solution and stirred at room temperature for 3 h. The whole solution was stirred and monitored by HPLC (Buckyprep column). An additional 10 mL of THF was added after 3 h and further stirred for 2 h. Upon completion of the reaction, the mixture was passed through a short pad of Al₂O₃ gel to remove insoluble materials and suspension of excess NaBH₄. 1 M HCl (20 mL) was slowly added to the filtrate. The organic layer was separated and dried with Na₂SO₄. Evaporation of solvents at reduced pressure formed some brown solids. The mixture was precipitated with pentane and centrifuged to give 874 mg compound **2**. Yield: 86%. ¹H NMR (CDCl₃/CS₂ = 1:1, 400 MHz) δ 5.27 (s, 1H), 6.45 (s, 1H), 6.88-6.97 (m, 2H), 7.04–7.07 (m, 1H), 7.18–7.28 (m, 4H), 7.52 (dt, *J* = 2.0, 7.9 Hz, 1H), 7.95 (br, 1H), 7.96–7.99 (m, 2H), 8.07 (d, J = 7.9 Hz, 1H), 8.36 (br, 1H), 8.43–8.45 (m, 1H); ¹³C NMR (ODCB- d_4 /CS₂ = 1:1, 100 MHz) δ 51.20, 69.71, 84.10, 94.44, 121.44, 122.15, 122.92, 125.66, 130.25, 130.69, 131.04, 131.59, 132.16, 132.43, 132.57, 132.88, 132.96, 133.15, 135.96, 136.12, 136.85, 137.04, 137.94, 138.00, 138.39, 138.67, 139.24, 139.34, 139.69, 139.81, 140.28, 140.40, 140.58, 140.96, 141.34, 141.57, 142.03, 142.32, 142.56, 144.18, 144.59, 145.33, 146.38, 146.61, 147.31, 147.51, 147.54, 147.56, 147.63, 147.65, 147.82, 148.10, 148.21, 148.24, 148.30, 148.32, 148.67, 148.70, 149.13, 149.73, 149.90, 149.98, 150.44, 151.54, 152.93, 155.00, 162.63, 198.62; FT-IR v (cm⁻¹) (C=O) 1707. UV-vis (CHCl₃, 5.0×10^{-5} M) λ_{max} (ε)

² Murata, Y.; Murata, M.; Komatsu, K. Chem. Eur. J. 2003, 9, 1600.

231 (38802), 262 (8687), 316 (3701, sh), 390 (1412, sh). HRMS (FAB-positive mode) calcd for $C_{80}H_{17}O_2N_2S$ (M + H⁺): 1069.1011; found: 1069.1005.

Synthesis of compound H₂@2

To a solution of compound H₂@1 (136 mg, 0.127 mmol), including 25% empty 1, in 45 mL dry ODCB was added 15 equiv of NaBH₄ (72.4 mg, 1.91 mmol) at ambient temperature. A total of 15 mL of THF was slowly added to the solution in 1.5 h. The whole solution was stirred and monitored by HPLC (Buckyprep column). Upon completion of the reaction, the mixture was passed through a short pad of Al₂O₃ gel to remove insoluble materials. Evaporation of solvents to about 5 mL at reduced pressure formed brown solids. The mixture was precipitated with pentane and centrifuged to give 113 mg compound H₂@2. Yield: 83%. ¹H NMR (ODCB-*d*₄, 300 MHz) δ –7.83 (s, 1.5H), 5.54 (s, 1H), 6.56 (s, 1H), 6.99–7.40 (m, 7H), 7.60 (dt, *J* = 1.8, 7.8 Hz, 1H), 8.11–8.15 (br, 1H), 8.17–8.20 (m, 2H), 8.22–8.25 (m, 1H), 8.54–8.56 (m, 1H), 8.58–8.66 (br, 1H); APCI-MS (positive mode): calcd for C₈₀H₁₈O₂N₂SNa (M + Na⁺): 1093.1; found: 1093.3.

Synthesis of compound He@2

The insertion of He into **1** (101 mg, 0.095 mmol) was carried out at a relatively lower temperature at 90 $^{\circ}$ C (650 atm) with reaction time of 24 hr inside a stainless autoclave. Immediate cooling of the autoclave from 90 $^{\circ}$ C to room temperature (15 $^{\circ}$ C) and further down to $-78 \,^{\circ}$ C (dry ice/isopropanol) was carried out in 10 minutes long. The autoclave was kept at $-78 \,^{\circ}$ C for one additional hour and opened quickly to transfer sample in 30 ml of a pre-cooled ODCB at $-25 \,^{\circ}$ C. The whole mixture was sonicated for 5 min and added 15 equiv of NaBH₄ (54 mg, 1.43 mmol) in one portion at $-20 \,^{\circ}$ C. A total of 6 mL of THF was slowly added to the solution in 1 h. The whole solution was stirred, sonicated and monitored by HPLC (Buckyprep column). Upon completion of the reaction, the mixture was added 5 mL of 1 M HCl and passed through a short pad of Al₂O₃ gel to remove insoluble materials. Then 20 mL of saturated brine solution was added and the organic layer was separated. The organic layer was dried with Na₂SO₄ and solvents were evaporated under vacuum. CS₂/ODCB (1:1) was added to dissolve

solids and the solution was divided into four portions for silica gel chromatography. After chromatography using toluene/ethyl acetate (20/1 to 5/1), a total of 90.9 mg of He@**2** was collected. The product was determined to contain >35% He incorporation by APCI-MS (positive mode). Yield: 90%. ¹H NMR (ODCB- d_4 , 300 MHz) δ 5.54 (s, 1H), 6.56 (s, 1H), 6.90–7.40 (m, 7H), 7.60 (dt, J = 1.8, 7.8 Hz, 1H), 8.08–8.15 (br, 1H), 8.17–8.20 (m, 2H), 8.22–8.25 (m, 1H), 8.54–8.56 (m, 1H), 8.58–8.66 (br, 1H); APCI-MS (positive mode): calcd for C₈₀H₁₆O₂N₂SHeNa (M + Na+): 1095.1; found: 1095.3.

Figure S1. HPLC of compound 2.

O

Q

ZI

5

S

CHROMATOGRAM 1 MEMORIZED

5.153

CHROMATOPAC C-R6A SAMPLE NO 0 REPORT NO 7165

5

_

PKNO	TIME	AREA	MK	IDNO	CONC	NAME
1	2.967	1341			0.0350	3
2	3.163	10247	ų		8.273	3
3	3.683	12844			0.3438	2
4	4.442	16854	¥		0.4503	3
5	4.697	14337	Ŷ		0.383	
6	5.153	3657622	SV		97.721	
7	5.74	21558	Т		0.576	
8	7.39	3966	Т		0.105	9
9	7.982	2670	ΤV		0.071:	3
10	8.495	1484	Τ¥		0.039	6
						-
4	TOTAL	3742922			100	

Figure S7. IR spectrum of compound 2 (KBr)

Figure S8. ¹H NMR spectrum of compound H₂@2 (300 MHz, ODCB-*d*₄)

Optimized structure of compound 2

B3LYP/3-21G

60	3.550943	-0.124104	3.237879
60	2.122779	-0.026211	3.512519
60	1.467557	1.174291	3.344463
60	2.190329	2.344908	2.856436
60	3.534031	2.235424	2.514642
60	4.234974	0.974451	2.720341
60	1.477501	-1.263563	3.096484
60	0.133007	1.185188	2.787116
60	1.273814	3.084144	2.008355
60	4.004487	2.812628	1.257161
60	5.165357	0.783704	1.610656
60	3.809163	-1.457827	2.723153
60	3.104595	3.463881	0.419598
60	1.717018	3.632280	0.813131
60	3.108042	3.172959	-1.008505
60	0.881042	3.507672	-0.369944
60	0.214320	-1.266708	2.468812
60	-0.010650	2.413853	2.030497
60	1.743389	3.143261	-1.479164
60	-0.882826	2.449672	0.954383
60	-0.496625	0.011851	2.331103
60	4.994234	1.905009	0.690610
60	5.411365	-0.492366	1.117152
60	-0.064360	-2.305641	1.464203
60	4.741623	-1.649194	1.705494

6 0 2.539254	-2.173085	2.686684
6 0 5.503559	-0.718327	-0.322848
6 0 4.471237	-2.608049	0.642849
6 0 2.296755	-3.102167	1.697970
6 0 -0.420550	3.016025	-0.314435
6 0 5.023733	1.675301	-0.683768
6 0 -1.603104	0.163746	1.401133
6 0 4.942677	-2.032350	-0.612845
6 0 3.293923	-3.351091	0.658209
6 0 0.975664	-3.194850	1.112862
60 1.149189	-3.611195	-0.263718
60-1.137551	-2.069725	0.506346
6 0 -1.869225	1.405588	0.858045
6 0 -2.416639	2.083116	-1.522248
6 0 2.574523	-3.622776	-0.572545
6 0 3.021461	-3.066869	-1.772558
6 0 2.059040	-2.476145	-2.698102
6 0 4.210078	-2.232153	-1.778716
6 0 4.022262	2.292849	-1.543378
6 0 5.281888	0.342516	-1.198364
6 0 4.441769	0.151200	-2.374232
6 0 -0.948290	-2.478448	-0.792854
6 0 -0.982443	2.478178	-1.530774
6 0 -0.133549	2.084977	-2.549689
6 0 0.242079	-3.152318	-1.195375
6 0 0.706430	-2.550417	-2.428415

6 0 3.939880	-1.099115	-2.661043	6 0 -4.539230 4.872060 1.371835
6 0 2.597766	-1.218505	-3.177723	60-5.804553 4.767896 0.793522
6 0 -0.188966	-1.491870	-2.806367	60-6.073395 3.659985 -0.009298
6 0 3.598040	1.326943	-2.551362	70-5.161954 2.697874 -0.247704
6 0 1.299525	2.236130	-2.457271	80-3.137597 2.041768 -2.517372
6 0 0.325851	-0.354373	-3.377063	80-2.102459 -0.478667 -1.531440
6 0 2.257007	1.235113	-2.986883	160-0.781610 1.013933 -3.897730
6 0 1.755681	-0.106156	-3.366601	60-1.506237 -1.706526 -2.002242
6 0 -2.291011	-1.118558	0.870476	10-4.345180 -0.452341 -2.705741
6 0 -2.983342	1.661316	-0.104367	10-5.989353 -1.910888 -3.866876
7 0 -3.810693	0.472155	-0.222709	10-6.656300 -4.080958 -2.847275
6 0 -3.123743	-0.760738	-0.434382	10-5.685042 -4.763343 -0.6666697
6 0 -3.938136	2.804142	0.308856	1 0 -4.094525 -3.289959 0.504261
6 0 -4.122153	-1.767192	-1.016079	1 0 -4.503553 0.011930 1.963116
6 0 -3.182390	-1.677389	2.008403	10-5.941583 -0.801237 3.807018
6 0 -4.665656	-1.388301	-2.259539	10-5.461259 -2.987444 4.892857
6 0 -5.576394	-2.214282	-2.911947	10-3.518878 -4.334367 4.119519
6 0 -5.948652	-3.435466	-2.340112	1 0 -2.082418 -3.509629 2.302353
6 0 -5.402158	-3.818825	-1.116498	10-4.291395 5.712661 2.008648
6 0 -4.490219	-2.990143	-0.452946	10-6.563269 5.521152 0.961396
6 0 -4.281339	-0.925406	2.452902	10-7.043787 3.534180 -0.475574
6 0 -5.095696	-1.396260	3.482130	10-2.229009 -2.301284 -2.571127
6 0 -4.829007	-2.624503	4.090969	1 0 -4.657452 0.655607 -0.763413
6 0 -3.739590	-3.379176	3.656929	1 0 -2.604439 3.937567 1.564342
6 0 -2.922359	-2.909904	2.625003	Single point energy = -3716.09566842 hartrees
6 0 -3.588444	3.879414	1.124935	(SPE, B3LYP/6-31G**//B3LYP/3-21G)

Optimized	TS	structure	coordinate	of	He-2
(B3LYP/3-2	21G)	; Nimag =	1		
01					
6 0 -3.3634	62 -	0.422794	-3.343226		
6 0 -1.9220	020	-0.297935	-3.517197		
60-1.3119	86	0.928549	-3.368470		
6 0 -2.0983	65	2.106103	-3.017382		
6 0 -3.4615	503	1.976509	-2.770645		
6 0 -4.1112	256	0.683421	-2.944818		
6 0 -1.2789	95	-1.489737	-2.985762		
6 0 -0.0306	574	1.011001	-2.702500		
6 0 -1.2689	25	2.928727	-2.155693		
6 0 -4.0427	'98	2.617480	-1.592099		
60-5.1138	37	0.531285	-1.893457		
6 0 -3.6242	274	-1.731952	-2.769552		
6 0 -3.2290	09	3.355203	-0.739978		
6 0 -1.8218	67	3.549330	-1.044154		
6 0 -3.3264	76	3.158606	0.700936		
6 0 -1.0749	94	3.546432	0.200781		
6 0 -0.0709	27	-1.417972	-2.260652		
6 0 0.0270	63	2.291405	-2.023110		
6 0 -2.0023	23	3.223368	1.270086		
6 0 0.8073	27	2.422952	-0.887122		
6 0 0.5807	88	-0.111792	-2.122452		
6 0 -5.0423	95	1.712908	-1.037635		
6 0 -5.3571	11	-0.720028	-1.337760		
6 0 0.1703	82	-2.401579	-1.199138		
6 0 -4.6193	22	-1.889616	-1.806903		
6 0 -2.3431	58	-2.408253	-2.605280		
6 0 -5.5381	56	-0.860335	0.104559		

6 0 -4.396933	-2.774763	-0.671487
6 0 -2.146583	-3.275348	-1.552114
6 0 0.237641	3.095416	0.279540
60-5.159067	1.566759	0.344098
6 0 1.598125	0.122399	-1.103859
6 0 -4.961435	-2.135282	0.513840
6 0 -3.206758	-3.487772	-0.566371
6 0 -0.865281	-3.305120	-0.878329
6 0 -1.126634	-3.646413	0.508524
6 0 1.196530	-2.109401	-0.195168
6 0 1.785302	1.394646	-0.615832
6 0 2.248240	2.571571	1.619946
6 0 -2.564104	-3.664693	0.723186
6 0 -3.090808	-3.036418	1.853379
6 0 -2.195305	-2.348971	2.779668
6 0 -4.297530	-2.237539	1.732674
6 0 -4.239333	2.272693	1.227238
6 0 -5.407100	0.258884	0.922632
6 0 -4.634907	0.168726	2.156062
6 0 0.936071	-2.483875	1.096544
6 0 0.743691	2.703938	1.577685
6 0 -0.161932	2.328420	2.554159
6 0 -0.290090	-3.111943	1.460661
6 0 -0.829856	-2.400127	2.598691
60-4.111126	-1.041351	2.550463
6 0 -2.794055	-1.080712	3.139186
6 0 0.049612	-1.302810	2.960704
6 0 -3.841368	1.379124	2.311239
6 0 -1.589739	2.390755	2.322083

6 0 -0.540978	3 -0.139537	3.419475	7 0 5.098218 2.341035 -0.508276
6 0 -2.525477	1.361868	2.828070	8 0 2.967622 3.028976 2.497930
6 0 -1.989611	0.057935	3.293726	8 0 2.509848 -0.895078 2.092581
6 0 2.329451	-1.120319	-0.533391	16 0 0.309494 1.388418 4.087105
6 0 2.866574	1.758392	0.363379	6 0 1.480986 -1.809588 2.348187
7 0 3.667112	0.605005	0.725665	1 0 5.136743 -0.246703 2.507711
6 0 3.223143	-0.759515	0.759706	1 0 7.085993 -1.590510 3.203311
6 0 3.839769	2.768216	-0.321244	1 0 7.472847 -3.836622 2.198244
6 0 4.455686	-1.653573	1.027953	1 0 5.879529 -4.698444 0.494748
6 0 3.224412	-1.608364	-1.708463	1 0 3.998145 -3.327993 -0.251200
6 0 5.332484	-1.197997	2.031354	1 0 4.502477 0.131128 -1.629893
6 0 6.418128	-1.968622	2.437861	10 5.921820 -0.561728 -3.507213
6 0 6.630731	-3.232583	1.881075	1 0 5.484139 -2.703177 -4.695598
6 0 5.738482	-3.713830	0.925367	1 0 3.591417 -4.140956 -3.961089
6 0 4.656289	-2.934264	0.504867	1 0 2.170871 -3.453094 -2.078461
6 0 4.291327	-0.802410	-2.133580	1 0 4.083860 5.906005 -1.581797
6 0 5.099873	-1.197577	-3.198939	1 0 6.431093 5.091908 -1.940102
6 0 4.856400	-2.399760	-3.866043	1 0 7.005650 2.773010 -1.201712
6 0 3.795207	-3.204808	-3.454047	1 0 1.826602 -2.577681 3.055754
6 0 2.985828	-2.812150	-2.385197	1 0 4.666658 0.775047 0.604419
6 0 3.441803	4.055335	-0.694647	1 0 2.428835 4.389564 -0.524126
6 0 4.373598	4.905146	-1.286007	2 0 1.830237 0.851027 2.409250
6 0 5.682374	4.456062	-1.486389	Single point energy = -3718.92169650 hartrees
6 0 6.003838	3.166533	-1.078663	(SPE, B3LYP/6-31G**//B3LYP/3-21G)

Optimized structure of He@2

B3LYP/3-21G

603	3.543979	-0.128203	3.235771
60	2.116365	-0.030891	3.511830
60	1.460763	1.169838	3.346465
60	2.182987	2.341582	2.859995
60	3.526375	2.232361	2.516728
60	4.227750	0.971309	2.720372
60	1.471046	-1.267703	3.094852
60	0.125710	1.181430	2.790098
60	1.265888	3.081104	2.012682
60	3.996130	2.811693	1.260006
60	5.156796	0.782129	1.609260
60	3.802537	-1.461237	2.719107
60	3.095373	3.463423	0.423664
60	1.708142	3.631569	0.818143
60	3.098496	3.175534	-1.004996
60	0.871572	3.508420	-0.364765
60	0.208337	-1.269199	2.466632
60-	0.018045	2.410261	2.034142
60	1.733594	3.146548	-1.475172
60-	-0.891349	2.448174	0.959039
60-	-0.504048	0.008739	2.332544
60	4.985583	1.904995	0.691431
60	5.404406	-0.493117	1.114282
60-	-0.071215	-2.306486	1.460978
60	4.734767	-1.651072	1.700886
60	2.532823	-2.176758	2.683109
60	5.494654	-0.716340	-0.326291

6 0 4.464485	-2.608597	0.637079
6 0 2.289790	-3.103635	1.692522
6 0 -0.430126	3.016848	-0.309310
6 0 5.014572	1.677639	-0.683339
6 0 -1.611208	0.161792	1.403322
6 0 4.934757	-2.030330	-0.618135
6 0 3.286579	-3.350974	0.651949
6 0 0.968535	-3.195121	1.107841
6 0 1.141007	-3.610464	-0.269224
6 0 -1.145343	-2.069677	0.504476
6 0 -1.877851	1.404351	0.861942
6 0 -2.426009	2.084275	-1.517790
6 0 2.566339	-3.620527	-0.578794
6 0 3.012364	-3.062402	-1.777974
6 0 2.049544	-2.470199	-2.701790
6 0 4.200521	-2.227283	-1.783301
6 0 4.012507	2.296201	-1.541577
6 0 5.273006	0.345839	-1.200167
6 0 4.432363	0.156309	-2.375981
6 0 -0.956956	-2.476571	-0.795441
6 0 -0.992115	2.480348	-1.526282
6 0 -0.143470	2.089415	-2.546284
6 0 0.233607	-3.149168	-1.199419
6 0 0.697300	-2.544820	-2.431283
6 0 3.930492	-1.093642	-2.664404
6 0 2.587963	-1.212027	-3.179944
6 0 -0.198352	-1.485922	-2.807302
6 0 3.588440	1.332007	-2.551131
6 0 1.289586	2.241161	-2.454720

6 0 0.315918	-0.347949	-3.377537
6 0 2.247188	1.241043	-2.986537
6 0 1.745802	-0.099623	-3.367122
6 0 -2.299007	-1.119755	0.870732
6 0 -2.992246	1.661110	-0.100004
7 0 -3.819701	0.472077	-0.219369
60-3.132255	-0.760134	-0.433330
6 0 -3.947063	2.803806	0.313323
6 0 -4.129808	-1.766246	-1.017026
6 0 -3.190320	-1.681020	2.007482
6 0 -4.673514	-1.385308	-2.259787
60-5.582347	-2.211399	-2.914679
60-5.952507	-3.434734	-2.346075
6 0 -5.405883	-3.820046	-1.123132
6 0 -4.495813	-2.991285	-0.457102
6 0 -4.290498	-0.930871	2.452037
60-5.105507	-1.404248	3.479589
6 0 -4.838212	-2.633206	4.086690
6 0 -3.747428	-3.385965	3.652724
6 0 -2.929541	-2.914187	2.622461
60-3.597259	3.879633	1.128566
60-4.547713	4.872971	1.374060
60-5.812776	4.768919	0.795156
6 0 -6.081763	3.660375	-0.006745
7 0 -5.170681	2.697622	-0.243768
8 0 -3.147501	2.044016	-2.512554
80-2.111363	-0.475539	-1.530051
16 0 -0.791907	1.020766	-3.896016
60-1.515217	-1.702430	-2.003359
1 0 -4.354388	-0.447823	-2.703768

1 0 -5.995318	-1.906482	-3.869118		
1 0 -6.658492	-4.080422	-2.855300		
1 0 -5.687059	-4.766278	-0.675872		
1 0 -4.099798	-3.292816	0.499443		
1 0 -4.513213	0.006927	1.963356		
1 0 -5.952432	-0.810671	3.804422		
1 0 -5.471075	-2.998203	4.887160		
1 0 -3.526238	-4.341665	4.114034		
1 0 -2.088572	-3.512450	2.299788		
1 0 -4.299780	5.714104	2.010123		
1 0 -6.571182	5.522753	0.961826		
1 0 -7.051963	3.534614	-0.473444		
1 0 -2.238028	-2.296170	-2.573233		
1 0 -4.666383	0.656204	-0.760039		
1 0 -2.613382	3.937759	1.568288		
2 0 2.248786	-0.120811	0.080531		
Single point energy = -3719.00197411 hartrees				
(SPE, B3LYP/6-31G**//B3LYP/3-21G)				

Single point energy for He = -2.90704885073 hartrees (B3LYP/6-31G**//B3LYP/3-21G)

Empirical formula	$C_{82}H_{16}N_2O_2S_5$
Formula weight	1221.27
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	a = 15.7008(9) Å α = 90°.
	b = 16.1532(9) Å β = 90°.
	c = 19.0307(11) Å γ = 90°.
Volume	4826.5(5) $Å^3$
Z	4
Density (calculated)	1.681 Mg/m^3
Absorption coefficient	0.308 mm^{-1}
F (000)	2472
Crystal size	0.18 x 0.11 x 0.09 mm ³
Theta range for data collection	1.65 to 25.00° .
Index ranges	$-16 \le h \le 18$, $-19 \le k \le 18$, $-20 \le 1 \le 22$
Reflections collected	25316
Independent reflections	8471 [R(int) = 0.0442]
Completeness to theta = $25.00-$	99.9 %
Absorption correction	Empirical (SADABS)
Max. and min. transmission	0.9728 and 0.9466
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8471 / 0 / 824
Goodness-of-fit on ${\sf F}^2$	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0430, wR2 = 0.0666
R indices (all data)	R1 = 0.0618, wR2 = 0.0696
Absolute structure parameter	0.17(5)
Largest diff. peak and hole	0.408 and -0.318 e. \AA^{-3}

Table 1. Crystal data and structure refinement for compound 2.