Electronic Supplementary Material for Chemical Communications

This journal is © The Royal Society of Chemistry 2007

Significant enhancement on selectivity in silica supported sulfonic acids catalyzed reactions

Ayman Karam, Yanlong Gu, François Jérôme*, Jean-Paul Douliez and Joël Barrault

Supporting Information

Chemicals : all functionnalized carboxylic acids, glycerol and dicyclopentadiene were purchased to Sigma-Aldrich and used as received without any purification. Silica precursors, tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS), were provided by Acros.

Apparatus : ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 300 DPX 300. Chemical shift are expressed in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}$. IR spectra were recorded on a FT-IR Perkin Elmer (spectrum one) using ATR technology. Elemental analyses were measured on a NA 2100 Instrument. Specific area were determined on a TRISTAR 3000. Pore diameters were determined from the adsorption branch of the N_{2} isotherm using the BJH method.

Chromatographic analyses

The reaction progress was monitored on a Varian 3300 GPC equipped with a BPX5 column (12 m x 0.22 mm ; phase thickness: $0.25 \mu \mathrm{~m}$) supplied by SGE, a Flame Detector Ionization and an injector on-column. Prior analysis, products were silylated according to the Sahasrabuhde method (J. Am. Oil. Chem. Soc., 1957, 44, 376). Yields and reaction progress were determined by internal calibration with dodecane. Table 1 summarizes the different response coefficients.

Electronic Supplementary Material for Chemical Communications

This journal is © The Royal Society of Chemistry 2007
Table 1 : response coefficients of studied derivatives relative to dodecane
Response coefficient

Preparation of HMS materials was inspired from the procedure described by Shanks et al. (see ref 11 in the manuscript) except than n-dodecylamine was replaced by n-hexadecylamine as structure directing agent.

Electronic Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2007

Synthesis of $\mathrm{HMS}_{1}-\mathrm{SO}_{3} \mathbf{H}$:

Typically, 3.2 g (0.013 mol) of n-hexadecylamine was dissolved at room temperature in aqueous ethanol (ethanol/water: $21 / 27$). Then 8.3 g of tetraethoxysilane (TEOS, 0.039 mol) and 1.97 g of 3mercaptopropyltrimethoxysilane (MPTMS, 0.01 mol) was simultaneously but separately added to the template mixture. The resulting solution was stirred for 20 h at room temperature and the white solid was recovered by filtration. Removal of the n-hexadecylamine was carried out by soxhlet extraction over boiling ethanol for 18 h affording the hybrid organic-inorganic $\mathrm{HMS}_{1}-\mathrm{SH}$. Thiol groups were oxidized with 35% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{~g} / \mathrm{g}$ of solid) in a methanol/water mixture. The suspension was stirred for 24 hours at room temperature and then washed with ethanol and water. Finally, the resulting solid was suspended in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (1 g of solid per 100 mL of solution) and stirred for an additional 4h before filtration and extensive washing with $\mathrm{H}_{2} \mathrm{O}$. The recovered $\mathrm{HMS}_{1}-\mathrm{SO}_{3} \mathrm{H}$ was dried in an oven at $50^{\circ} \mathrm{C}\left(10^{-1} \mathrm{mmHg}\right)$ for 18 h .

Synthesis of $\mathbf{H M S}_{\mathbf{2}}-\mathrm{SO}_{\mathbf{3}} \mathbf{H}$:

$\mathrm{HMS}_{2}-\mathrm{SO}_{3} \mathrm{H}$ was synthesized as described above except that the initial molar ratio tetraethoxysilane $/ 3$-mercaptopropylsilane was increase from 4 to 10 (TEOS : 0.05 mol and MPTMS : 0.005)

Synthesis of SBA-15-SO $\mathbf{O}_{3} \mathrm{H}$

Pluronic (4 g) was dissolved in 125 g of aqueous $\mathrm{HCl}(1.9 \mathrm{M})$ and stirred at room temperature. The solution was then heated at $40^{\circ} \mathrm{C}$ before addition of $7.7 \mathrm{~g}(0.0369 \mathrm{~mol})$ of TEOS. After stirring for 45 mn , MPTMS ($0.8 \mathrm{~g}, 0.0041 \mathrm{~mol}$) and 0.0369 mol of $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ was added. The solution was then stirred for 24 h at $40^{\circ} \mathrm{C}$ and aged into a teflon autoclave for an additional 24 h at $100^{\circ} \mathrm{C}$. The resulting solid was finally collected by filtration and thoroughly washed with water. The recovered SBA-15- $\mathrm{SO}_{3} \mathrm{H}$ was dried in an oven at $50^{\circ} \mathrm{C}\left(10^{-1} \mathrm{mmHg}\right)$ for 18 h .

Titration of solid

0.2 g of acid solid was suspended in 20 mL of aqueous solution of $\mathrm{KCl}(0.1 \mathrm{M})$ and stirred for 30 mn . Titration of the resulting solution was then carried out with a solution of KOH 0.02 M and the pH evolution was monitored by a Metrohm pH meter.

General procedure for the esterification of functional carboxylic acids with glycerol

Functional carboxylic acids (1 mmol), glycerol (6 mmol) and $2.5 \mathrm{~mol} \%$ of supported sulfonic groups were mixed in an opening conic tube and stirred at the desired temperature (see table 1 in the manuscript) under air. At the end of the reaction, reaction products were directly extracted from the crude with ethyl acetate ($2 \times 3 \mathrm{~mL}$). The organic phase was evaporated and the ester derivatives were finally purified by flash silica gel chromatography (Silica Gel $60, \mathrm{~m}$) using a mixture ethyl acetate-heptane ($7 / 3$) as eluent for esters from juniperic, aleuritic and thapsic acids and $1 / 1$ from ester produced from 12-hydroxystearic acid. All the different targeted esters were obtained as a white solid.

2,3-dihydroxypropyl 16-hydroxyhexadecanoate (from juniperic acid)

${ }^{1}{ }^{H}$ RMN $\left(300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta(\mathrm{ppm}) 1.26\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 3.89\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right), 4.13(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.4 \mathrm{~Hz}\right), 4.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHa},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.3\right.$ $\mathrm{Hz}), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHb},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.8 \mathrm{~Hz}\right), 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.86$ (s, 1H, OH).
${ }^{13} \mathrm{C}$ RMN ($75 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta(\mathrm{ppm}) 26.2\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 30.2-30.9\left(\mathrm{CH}_{2}\right), 34.7\left(\mathrm{CH}_{2}\right), 35.2$ $\left(\mathrm{CH}_{2}\right), 62.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 65,2\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 71.8(\mathrm{CHOH}), 174.6(\mathrm{C}=\mathrm{O})$.

IR (neat) $\vee 1172,1192,1391,1462,1733(\mathrm{C}=\mathrm{O}), 2848(\mathrm{C}-\mathrm{H}), 2915(\mathrm{C}-\mathrm{H}), 3310(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1}$
Elemental analysis: Calculated for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{4}$: \%C 65.86, \%H 11.05. Measured: \%C 65.79; \%H 11.03
$\mathrm{mp}=74-75^{\circ} \mathrm{C}$

2,3-dihydroxypropyl-9,10,16-trihydroxyhexadecanoate

${ }^{1} \mathrm{H}$ RMN $\left(300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta(\mathrm{ppm}) 2.72\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.27\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.79\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 5.30(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CHOH}), 5.34\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right)$, $5.6\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.4 \mathrm{~Hz}\right), 5.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 6.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHa},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.1 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.3 \mathrm{~Hz}\right), 6.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHb},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.5 \mathrm{~Hz}\right), 6.5($ broad peak, $2 \mathrm{H}, 2 \times \mathrm{OH})$, 7.25 (broad peak, 2H, $2 \times \mathrm{OH}$), 7.41 (broad peak, $1 \mathrm{H}, \mathrm{OH}$)
${ }^{13} \mathrm{C}$ RMN $(75 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}) 23.9\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 27.8-28.4$ $\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 64.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 69.4$ $(\mathrm{CHOH}), 73.6(\mathrm{CHOH}), 76.4(\mathrm{CHOH}), 173.5(\mathrm{C}=\mathrm{O})$.

IR (neat) v 1047, 1172, 1413, 14642, $1736(\mathrm{C}=\mathrm{O}), 2849(\mathrm{C}-\mathrm{H}), 2927(\mathrm{C}-\mathrm{H}), 3338(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1}$
Elemental analysis: Calculated for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{7}$: \%C 60.29; \%H 10.12. Measured: \%C 60.49; \%H 9.80 .
$\underline{m p}=54-55^{\circ} \mathrm{C}$

Bis(2,3-dihydroxypropyl) 16-hydroxy hexadecanoate (from thapsic acid)

${ }^{1}{ }^{1} \mathrm{RMN}\left(300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta(\mathrm{ppm}) 1.21\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.37\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 4.13\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.5 \mathrm{~Hz}\right), 4.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOH}), 4.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHa}$,
$\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.3 \mathrm{~Hz}\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHb},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.8 \mathrm{~Hz}\right), 5.03(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, OH), 6.79 (br s, 2H, OH).
${ }^{13} \mathrm{C}$ RMN $\left(75 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta(\mathrm{ppm}) 24.4\left(\mathrm{CH}_{2}\right), 28.5-29.0\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 63.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 65.9$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.1(\mathrm{CHOH}), 172.9(\mathrm{C}=\mathrm{O})$.

IR (neat) v 1167, 1195, 1242, 1286, 1387, $17323(\mathrm{C}=\mathrm{O}), 2848(\mathrm{C}-\mathrm{H}), 2915(\mathrm{C}-\mathrm{H}), 3239(\mathrm{O}-\mathrm{H})$ cm^{-1}

Elemental analysis: Calculated for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{8}$: $\% \mathrm{C} 60.81$; $\% \mathrm{H} 9.74$. Measured: $\% \mathrm{C} 60.95 ; \% \mathrm{H}$ 9.71
$\mathrm{mp}=85-86^{\circ} \mathrm{C}$

2,3-dihydroxypropyl-12-hydroxyoctadecanoate (from 12-hydroxystearic)

${ }^{1}{ }^{H} \mathrm{RMN}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.82\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right), 1.20\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right), 2.28\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 3.53(\mathrm{dd}, 2 \mathrm{H}$, $\left.\mathrm{CHc},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.0 \mathrm{~Hz}\right), 3.53\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CHd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.0 \mathrm{~Hz}\right), 3.86(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHOH}), 4.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHaHb}, \mathrm{CHOH})$, one OH group was not seen.
${ }^{13} \mathrm{C}$ RMN $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.5\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 29.4-30.0$ $\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 63.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 65.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.6(\mathrm{CHOH}), 72.4$ (CHOH), 174,7 ($\mathrm{C}=\mathrm{O}$).

IR (neat) \vee 1059, 1175, 1464, $1729(\mathrm{C}=\mathrm{O}), 2850(\mathrm{C}-\mathrm{H}), 2926(\mathrm{C}-\mathrm{H}), 3338(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1}$
Elemental analysis: Calculated for $\mathrm{C}_{2} \mathrm{H}_{42} \mathrm{O}_{5} . \mathrm{H}_{2} \mathrm{O} \% \mathrm{C} 64.25, \% \mathrm{H} 11.30$. Measured: $\% \mathrm{C}$ 64.66, \%H 11.48.
$\mathrm{mp}=72-73^{\circ} \mathrm{C}$

Selective esterification of maleic with dicyclopentadiene.

Maleic acid (1 mmol), dicyclopentadiene (3 mmol) and $2.5 \mathrm{~mol} \%$ of supported sulfonic groups were mixed in an opening conic tube and stirred at $105^{\circ} \mathrm{C}$. Ater total consumption of the maleic acid, the crude was diluted in 3 mL of ethyl acetate and purified by flash silica gel chromatography (Silica Gel $60 \mu \mathrm{~m}$) using ethyl acetate/heptane (3/7) as eluent affording the monester derivative as a yellow pale viscous oil.
(2Z)-4-(3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-5-yloxy)-4-oxobut-2-enoic acid (from maleic acid and dicyclopentadiene)

${ }^{1}{ }^{1} \mathrm{RMN}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1,80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;$ 1,82 (m, 1H, CH); $2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 2.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 2.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 4.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO})$; $5.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 5.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$; $6.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=12.6 \mathrm{~Hz}\right) ; 6.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $12.6 \mathrm{~Hz}), \mathrm{CO}_{2} \mathrm{H}$ not seen.
${ }^{13} \mathrm{C}$ RMN $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 29.9\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 42.8(\mathrm{CH}), 43.8(\mathrm{CH})$, $46.8(\mathrm{CH}), 52.0(\mathrm{CH}), 81.1(\mathrm{CH}), 130.8(\mathrm{CH}), 131.4(\mathrm{CH}), 134.2(\mathrm{CH}), 137.2(\mathrm{CH}), 165.7$ ($\mathrm{C}=\mathrm{O}$), $168.5(\mathrm{C}=\mathrm{O})$.

IR (neat) v 990, 1053, 1167, 1412, $1634(\mathrm{COOH}), 1720(\mathrm{C}=\mathrm{O}), 2845(\mathrm{C}-\mathrm{H}), 2957(\mathrm{C}-\mathrm{H}), 3343$ (O-H) cm^{-1}

Elemental analysis: Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$: $\% \mathrm{C} 67.73, \% \mathrm{H} 6.50$. Measured: $\% \mathrm{C} 67.85 \% \mathrm{H} 6.82$

