Supporting Information

Selective Guest Sorption in Interdigitated Porous Framework

with Hydrophobic Pore Surfaces

Satoshi Horike, Daisuke Tanaka, Keiji Nakagawa and Susumu Kitagawa

Experimental

 $\{[Zn_2(ip)_2(bpy)_2] \cdot DMF\}_n$ (CID-1 \supset DMF; ip = isophthalate, bpy = 4,4'-bipyridine). A DMF solution (10 cm³) of Zn(NO₃)₂ 4H₂O (2.97 g) was added to a DMF solution (100 cm³) of H₂ip (1.66 g) and bpy (1.56 g). After the mixture was allowed to stand for several days at 393 K, a white precipitate was collected, washed with DMF and ethanol, and dried at 403 K under a vacuum. Elemental analysis for CID-1: (calc) C, 56.05; H, 3.14; N, 7.26, (obs) C, 55.36; H, 3.05; N, 7.32.

Single Crystal X-ray Diffraction. The colorless single crystal of CID-1 \supset DMF was mounted on glass fibers with epoxy resin. X-ray data collection for the single crystal was carried out on a Rigaku Mercury diffractometer with graphite monochromated MoK α radiation ($\lambda = 0.71070$ Å) and a CCD two-dimensional detector at 173 K in a cold nitrogen stream. The condition of X-ray for CID-1 \supset DMF was 50 kV × 100 mA. The structure solution was solved by direct method (SIR-97) and refined (SHELXL-97) by full matrix least squares. All non-hydrogen atoms except for those of disordered atoms in pyridine rings were refined anisotropically. Hydrogen atoms were included in calculated positions and refined using a riding model.

NOTE: Several compounds that have similar crystal structure have been reported. Zhu *et al.* reported Zn and Cd compounds with ethanol guests (*J. Mol. Struct.*, 2006, 787, 45) and Chen *et al.* reported Ni and Fe compounds (*J. Solid State Chem.*, 2003, 170, 130; *Dalton Trans.*, 2004, 2217) and Liu *et al.* reported Mn compound (*New J. Chem.*, 2003, 27, 890) and Yao *et al.* reported Cu compound (*Inorg. Chem. Acta*, 2005, 358, 3347), respectively. In this report, Zn compound with DMF guests is firstly reported.

Physical Measurements. All chemicals and solvents used in the syntheses were of reagent grade

and used without further purification. Thermogravimetric analysis (TGA) were performed using a Rigaku Thermo plus TG 8120 apparatus in the temperature range between 298 and 723 K in a N₂ atmosphere and at a heating rate of 5 Kmin⁻¹. Solid-state ¹³C NMR was measured by JEOL JNM-LA300 spectrometer and standard CPMAS probe at 75.577 MHz. X-ray powder diffraction (XRPD) data were collected on a Rigaku RINT-2200HF (Ultima) diffractometer with CuK α radiation. The adsorption isotherm for CO₂ at 195 K was measured with Quantachrome AUTOSORB-1 and adsorption/desorption isotherms for other solvents at 298 K were measured with BELSORP-18 volumetric adsorption equipment from BEL Japan, Inc.

Fig. S1 TGA curve of CID-1 \supset DMF over the temperature range from 25-450 °C at a heating rate of $\beta = 5$ °C min⁻¹ under the N₂ atmosphere.

Fig. S2 Solid-state ¹³C CPMAS NMR spectrum of CID-1⊃DMF (as synthesized) at 298 K. For assignment the chemical shifts of DMF are shown in the figure and the other peaks can be assigned to the framework of CID-1. Spinning side bands are indicated by asterisks (*).

Fig. S3 Adsorption isotherm of CO₂ for CID-1 at 195 K.

Fig. S4 Adsorption and desorption isotherms for MeOH (298 K, open circle) and H_2O (298 K, closed circle) of CID-1.

Fig. S5 The variation of double exponential kinetic parameters k_1 (closed circle) and k_2 (open circle) with pressure for adsorption of (a) MeOH and (b) H₂O on CID-1 at 298 K.

CIF report on CID-1⊃DMF

data_crystalclear

_audit_creation_method	SHELXL-97
_chemical_name_systematic	
. ,	
?	
,	
_chemical_name_common	?
_chemical_melting_point	?
_chemical_formula_moiety	?
_chemical_formula_sum	
'C39 H31 N5 O9 Zn2'	
_chemical_formula_weight	844.43
loop_	
_atom_type_symbol	
_atom_type_description	
_atom_type_scat_dispersion_real	
_atom_type_scat_dispersion_imag	
_atom_type_scat_source	
'C' 'C' 0.0033 0.0016	
'International Tables Vol C Tables 4.	2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000	
'International Tables Vol C Tables 4.	2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'Zn' 'Zn' 0.2839 1.4301

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P2/c loop_

_symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2'

_cell_length_a	10.082(5)
_cell_length_b	11.384(5)
_cell_length_c	15.744(8)
_cell_angle_alpha	90.00
_cell_angle_beta	103.917(8)
_cell_angle_gamma	90.00
_cell_volume	1753.9(14)
_cell_formula_units_Z	2
_cell_measurement_temperature	173(2)
_cell_measurement_reflns_used	?
_cell_measurement_theta_min	?
_cell_measurement_theta_max	?

_exptl_crystal_description	prism
_exptl_crystal_colour	colorless
_exptl_crystal_size_max	0.20
_exptl_crystal_size_mid	0.20
_exptl_crystal_size_min	0.20
_exptl_crystal_density_meas	?
_exptl_crystal_density_diffrn	1.599
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	864
_exptl_absorpt_coefficient_mu	1.434
_exptl_absorpt_correction_type	empirical

_exptl_absorpt_correction_T_min	0.7624
_exptl_absorpt_correction_T_max	0.7624
_exptl_absorpt_process_details	sadab

_exptl_special_details

- ;
- ?
- ;
- diffrn ambient temperature 173(2) 0.71070 diffrn radiation wavelength diffrn radiation type MoK¥a 'fine-focus sealed tube' _diffrn_radiation_source diffrn radiation monochromator graphite CCD _diffrn_measurement_device_type ¥w diffrn measurement method _diffrn_detector_area_resol_mean ? ? diffrn standards number diffrn standards interval count ? ? diffrn standards interval time ? _diffrn_standards_decay_% 9433 diffrn_reflns_number diffrn reflns av R equivalents 0.0732 diffrn reflns av sigmal/netI 0.0758 -10 diffrn reflns limit h min _diffrn_reflns_limit_h_max 11 diffrn reflns limit k min -10 diffrn reflns limit k max 13 diffrn reflns limit 1 min -18 17 diffrn reflns limit 1 max _diffrn_reflns_theta_min 2.23 25.01 diffrn reflns theta max _reflns_number_total 3057 _reflns_number_gt 2353 _reflns_threshold_expression >2sigma(I) 4 1.4. . 11 4 . 1 . 1

_computing_data_collection	crystalclear
_computing_cell_refinement	crystalclear
_computing_data_reduction	teXsan

```
_computing_structure_solution'SHELXS-97 (Sheldrick, 1990)'_computing_structure_refinement'SHELXL-97 (Sheldrick, 1997)'_computing_molecular_graphics?_computing_publication_materialteXsan
```

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2 \operatorname{sigma}(F^2^>)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef	Fsqd
_refine_ls_matrix_type	full
_refine_ls_weighting_scheme	calc
_refine_ls_weighting_details	
'calc w=1/[¥s^2^(Fo^2^)+(0.0422	$(2P)^{2}+5.3254P$ where $P=(Fo^{2}+2Fc^{2})/3'$
_atom_sites_solution_primary	direct
_atom_sites_solution_secondary	difmap
_atom_sites_solution_hydrogens	geom
_refine_ls_hydrogen_treatment	constr
_refine_ls_extinction_method	none
_refine_ls_extinction_coef	?
_refine_ls_number_reflns	3057
_refine_ls_number_parameters	222
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0770
_refine_ls_R_factor_gt	0.0600
_refine_ls_wR_factor_ref	0.1449
_refine_ls_wR_factor_gt	0.1368
_refine_ls_goodness_of_fit_ref	1.068
_refine_ls_restrained_S_all	1.068

_refine_ls_shift/su_max	0.001
_refine_ls_shift/su_mean	0.000

loop_

_atom_site_label _atom_site_type_symbol _atom_site_fract_x atom site fract y _atom_site_fract_z atom site U iso or equiv _atom_site_adp_type _atom_site_occupancy atom site symmetry multiplicity _atom_site_calc_flag _atom_site_refinement_flags atom site disorder assembly _atom_site_disorder_group Zn1 Zn 0.62512(6) 0.23565(5) 0.66157(4) 0.0218(2) Uani 1 1 d . . . O1 O -0.1596(4) 0.2273(3) 0.6710(2) 0.0255(8) Uani 1 1 d . . . O4 O 0.4280(4) 0.2308(3) 0.5885(2) 0.0240(8) Uani 1 1 d . . . C1 C 0.3306(5) 0.2285(4) 0.6256(3) 0.0206(11) Uani 1 1 d . . . O3 O 0.3429(4) 0.2486(3) 0.7047(2) 0.0299(9) Uani 1 1 d . . . O2 O -0.2939(4) 0.2166(4) 0.5391(2) 0.0336(9) Uani 1 1 d . . . C11 C 0.7288(6) 0.8648(5) 0.7286(3) 0.0313(14) Uani 1 1 d . . . H17 H 0.7999 0.8266 0.7674 0.038 Uiso 1 1 calc R . .

C3 C 0.0766(5) 0.2150(4) 0.6048(3) 0.0223(11) Uani 1 1 d . . .

H2 H 0.0879 0.2381 0.6627 0.027 Uiso 1 1 calc R . .

C2 C 0.1898(5) 0.2016(4) 0.5710(3) 0.0233(11) Uani 1 1 d . . .

C8 C -0.1760(5) 0.2139(4) 0.5901(3) 0.0248(11) Uani 1 1 d . . .

N1 N 0.6290(4) 0.4229(4) 0.6597(3) 0.0253(10) Uani 1 1 d . . .

C6 C -0.0546(6) 0.1945(4) 0.5533(3) 0.0248(11) Uani 1 1 d . . .

C12 C 0.5224(5) 0.8627(5) 0.6187(3) 0.0274(12) Uani 1 1 d . . .

H18 H 0.4506 0.8234 0.5813 0.033 Uiso 1 1 calc R . .

C14 C 0.6305(5) 0.6697(4) 0.6687(3) 0.0241(11) Uani 1 1 d . . .

C4 C 0.1719(6) 0.1607(5) 0.4850(3) 0.0344(14) Uani 1 1 d . . .

H4 H 0.2470 0.1510 0.4611 0.041 Uiso 1 1 calc R . .

C10 C 0.5239(6) 0.9827(4) 0.6208(4) 0.0272(12) Uani 1 1 d . . . H19 H 0.4525 1.0226 0.5836 0.033 Uiso 1 1 calc R . . N2 N 0.6217(4) 1.0459(4) 0.6729(3) 0.0223(9) Uani 1 1 d . . . C13 C 0.6274(5) 0.7993(4) 0.6720(3) 0.0218(10) Uani 1 1 d . A . C9 C 0.7234(6) 0.9852(5) 0.7270(3) 0.0322(14) Uani 1 1 d . . . H20 H 0.7926 1.0269 0.7646 0.039 Uiso 1 1 calc R . . C7 C -0.0694(6) 0.1542(5) 0.4683(3) 0.0348(14) Uani 1 1 d . . . H7 H -0.1561 0.1404 0.4329 0.042 Uiso 1 1 calc R . . C5 C 0.0434(6) 0.1350(6) 0.4365(4) 0.0403(16) Uani 1 1 d . . . H8 H 0.0327 0.1038 0.3807 0.048 Uiso 1 1 calc R . . C20 C 0.7284(11) 0.6021(9) 0.7232(7) 0.020(2) Uiso 0.50 1 d P A 1 H9 H 0.7993 0.6383 0.7635 0.024 Uiso 0.50 1 calc PR A 1 C21 C 0.7222(12) 0.4801(9) 0.7185(7) 0.023(2) Uiso 0.50 1 d P A 1 H10 H 0.7866 0.4369 0.7586 0.028 Uiso 0.50 1 calc PR A 1 C22 C 0.5412(11) 0.4879(9) 0.6011(7) 0.024(2) Uiso 0.50 1 d P A 1 H11 H 0.4778 0.4490 0.5575 0.029 Uiso 0.50 1 calc PR A 1 C15 C 0.7398(14) 0.4830(10) 0.6829(8) 0.033(3) Uiso 0.50 1 d P A 2 H12 H 0.8216 0.4415 0.6975 0.039 Uiso 0.50 1 calc PR A 2 C19 C 0.5387(12) 0.6079(10) 0.6012(7) 0.028(2) Uiso 0.50 1 d P A 1 H13 H 0.4776 0.6485 0.5574 0.034 Uiso 0.50 1 calc PR A 1 C16 C 0.5110(15) 0.4860(12) 0.6407(9) 0.042(3) Uiso 0.50 1 d P A 2 H14 H 0.4282 0.4460 0.6252 0.050 Uiso 0.50 1 calc PR A 2 C17 C 0.5095(14) 0.6081(11) 0.6436(8) 0.040(3) Uiso 0.50 1 d P A 2 H15 H 0.4269 0.6483 0.6286 0.048 Uiso 0.50 1 calc PR A 2 C18 C 0.7475(13) 0.6047(10) 0.6879(8) 0.032(3) Uiso 0.50 1 d P A 2 H16 H 0.8320 0.6417 0.7044 0.038 Uiso 0.50 1 calc PR A 2

loop_

_atom_site_aniso_label

- _atom_site_aniso_U_11
- _atom_site_aniso_U_22
- atom_site_aniso_U_33
- atom site aniso U 23
- _atom_site_aniso_U_13
- _atom_site_aniso_U_12

Zn1 0.0159(4) 0.0233(3) 0.0262(3) 0.0005(2) 0.0048(2) 0.0001(2)

```
01 0.021(2) 0.032(2) 0.0240(18) -0.0018(15) 0.0077(15) 0.0004(16)
O4 0.0156(19) 0.0271(18) 0.0302(18) -0.0011(15) 0.0073(15) -0.0003(15)
C1 0.019(3) 0.016(2) 0.028(3) 0.002(2) 0.007(2) 0.000(2)
O3 0.020(2) 0.043(2) 0.0252(19) -0.0018(16) 0.0035(16) -0.0005(17)
O2 0.010(2) 0.055(3) 0.034(2) -0.0032(18) 0.0013(16) -0.0004(18)
C11 0.029(3) 0.024(3) 0.030(3) 0.003(2) -0.013(2) 0.000(2)
C3 0.018(3) 0.028(3) 0.022(2) -0.001(2) 0.006(2) -0.002(2)
C2 0.017(3) 0.026(3) 0.026(2) -0.001(2) 0.003(2) -0.002(2)
C8 0.019(3) 0.023(3) 0.035(3) -0.001(2) 0.012(2) -0.002(2)
N1 0.019(2) 0.027(2) 0.028(2) 0.0021(19) 0.0030(19) -0.0011(19)
C6 0.026(3) 0.026(3) 0.023(2) 0.002(2) 0.007(2) 0.001(2)
C12 0.016(3) 0.028(3) 0.035(3) -0.004(2) -0.001(2) -0.002(2)
C14 0.023(3) 0.021(2) 0.028(2) 0.003(2) 0.006(2) -0.004(2)
C4 0.027(3) 0.048(4) 0.029(3) -0.005(3) 0.009(3) 0.003(3)
C10 0.017(3) 0.023(3) 0.036(3) -0.002(2) -0.004(2) 0.001(2)
N2 0.016(2) 0.024(2) 0.026(2) -0.0005(17) 0.0031(18) -0.0001(18)
C13 0.020(3) 0.025(3) 0.022(2) 0.000(2) 0.007(2) -0.001(2)
C9 0.033(4) 0.028(3) 0.029(3) -0.002(2) -0.006(3) -0.004(2)
C7 0.023(3) 0.055(4) 0.025(3) -0.007(3) 0.003(2) -0.003(3)
C5\ 0.019(3)\ 0.072(5)\ 0.027(3)\ -0.015(3)\ 0.000(2)\ -0.003(3)
```

_geom_special_details

```
;
```

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

,

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag Zn1 O4 2.044(4) . ? Zn1 O3 2.057(4) 2_656 ? Zn1 N1 2.132(4) . ? Zn1 O1 2.142(4) 1_655 ? Zn1 N2 2.169(4) 1_545 ? Zn1 O2 2.278(4) 1_655 ? Zn1 C8 2.536(5) 1_655 ? O1 C8 1.253(6) . ? O1 Zn1 2.142(4) 1_455 ? O4 C1 1.259(6) . ? C1 O3 1.242(6) . ? C1 C2 1.503(7).? O3 Zn1 2.057(4) 2_656 ? O2 C8 1.265(6) . ? O2 Zn1 2.279(4) 1_455 ? C11 C9 1.372(7) . ? C11 C13 1.399(7) . ? C11 H17 0.9300 . ? C3 C2 1.379(7).? C3 C6 1.395(7).? C3 H2 0.9300 . ? C2 C4 1.401(7) . ? C8 C6 1.492(7) . ? C8 Zn1 2.536(5) 1_455 ? N1 C15 1.286(13) . ? N1 C21 1.322(12) . ? N1 C22 1.338(11) . ? N1 C16 1.360(14) . ? C6 C7 1.388(7) . ? C12 C10 1.367(7) . ? C12 C13 1.385(7) . ? C12 H18 0.9300 . ? C14 C18 1.363(13) . ? C14 C20 1.377(11) . ? C14 C17 1.379(14) . ?

C14 C19 1.416(12) . ? C14 C13 1.478(7).? C4 C5 1.368(8) . ? C4 H4 0.9300 . ? C10 N2 1.332(6) . ? C10 H19 0.9300 . ? N2 C9 1.354(7) . ? N2 Zn1 2.169(4) 1 565 ? C9 H20 0.9300 . ? C7 C5 1.366(8).? C7 H7 0.9300 . ? C5 H8 0.9300 . ? C20 C21 1.390(15) . ? C20 H9 0.9300 . ? C21 H10 0.9300 . ? C22 C19 1.365(15) . ? C22 H11 0.9300 . ? C15 C18 1.388(16) . ? C15 H12 0.9300 . ? C19 H13 0.9300 . ? C16 C17 1.391(18) . ? C16 H14 0.9300 . ? C17 H15 0.9300 . ? C18 H16 0.9300 . ?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O4 Zn1 O3 118.03(15) . 2_656 ? O4 Zn1 N1 92.15(15) . . ? O3 Zn1 N1 86.77(16) 2_656 . ?

O4 Zn1 O1 150.44(14) . 1_655 ? O3 Zn1 O1 91.47(14) 2 656 1 655 ? N1 Zn1 O1 91.37(16) . 1_655 ? O4 Zn1 N2 89.26(15) . 1_545 ? O3 Zn1 N2 89.35(16) 2_656 1_545 ? N1 Zn1 N2 176.09(16) . 1_545 ? O1 Zn1 N2 89.20(15) 1_655 1_545 ? O4 Zn1 O2 91.08(14) . 1 655 ? O3 Zn1 O2 150.84(14) 2_656 1_655 ? N1 Zn1 O2 94.15(16) . 1_655 ? O1 Zn1 O2 59.38(12) 1_655 1_655 ? N2 Zn1 O2 89.47(16) 1_545 1_655 ? O4 Zn1 C8 120.89(16) . 1_655 ? O3 Zn1 C8 120.98(16) 2_656 1_655 ? N1 Zn1 C8 94.16(17) . 1_655 ? O1 Zn1 C8 29.55(15) 1_655 1_655 ? N2 Zn1 C8 88.24(16) 1_545 1_655 ? O2 Zn1 C8 29.86(15) 1_655 1_655 ? C8 O1 Zn1 92.9(3) . 1_455 ? C1 O4 Zn1 120.0(3) . . ? O3 C1 O4 124.1(5) . . ? O3 C1 C2 117.7(5) . . ? O4 C1 C2 118.2(4) . . ? C1 O3 Zn1 165.0(4) . 2_656 ? C8 O2 Zn1 86.4(3) . 1_455 ? C9 C11 C13 120.0(5) . . ? C9 C11 H17 120.0 . . ? C13 C11 H17 120.0 . . ? C2 C3 C6 121.0(5) . . ? C2 C3 H2 119.5 . . ? C6 C3 H2 119.5 . . ? C3 C2 C4 118.9(5) . . ? C3 C2 C1 120.8(4) . . ? C4 C2 C1 120.4(5) . . ? O1 C8 O2 121.1(5) . . ? O1 C8 C6 119.6(5) . . ?

O2 C8 C6 119.3(5) . . ? O1 C8 Zn1 57.5(3) . 1 455 ? O2 C8 Zn1 63.7(3) . 1_455 ? C6 C8 Zn1 175.7(4) . 1_455 ? C15 N1 C21 27.9(6) . . ? C15 N1 C22 106.7(8) . . ? C21 N1 C22 116.9(7) ...? C15 N1 C16 115.9(9) . . ? C21 N1 C16 109.4(8) . . ? C22 N1 C16 32.6(6) . . ? C15 N1 Zn1 123.1(6) . . ? C21 N1 Zn1 119.7(5) . . ? C22 N1 Zn1 123.4(5) . . ? C16 N1 Zn1 120.8(6) . . ? C7 C6 C3 118.9(5) . . ? C7 C6 C8 121.1(5) . . ? C3 C6 C8 120.1(4) . . ? C10 C12 C13 120.2(5) . . ? C10 C12 H18 119.9 . . ? C13 C12 H18 119.9 . . ? C18 C14 C20 26.6(6) . . ? C18 C14 C17 116.5(8) . . ? C20 C14 C17 110.2(8) . . ? C18 C14 C19 105.8(8) . . ? C20 C14 C19 115.5(7) . . ? C17 C14 C19 32.9(6) . . ? C18 C14 C13 124.0(7) . . ? C20 C14 C13 123.6(6) . . ? C17 C14 C13 119.6(7) . . ? C19 C14 C13 120.5(6) . . ? C5 C4 C2 119.7(5) . . ? C5 C4 H4 120.2 . . ? C2 C4 H4 120.2 . . ? N2 C10 C12 123.8(5) . . ? N2 C10 H19 118.1 . . ? C12 C10 H19 118.1 . . ?

C10 N2 C9 116.6(4) . . ? C10 N2 Zn1 120.7(3) . 1 565 ? C9 N2 Zn1 122.4(3) . 1_565 ? C12 C13 C11 116.3(5) . . ? C12 C13 C14 121.2(4) . . ? C11 C13 C14 122.5(5) . . ? N2 C9 C11 122.8(5) ...? N2 C9 H20 118.6 . . ? C11 C9 H20 118.6 . . ? C5 C7 C6 119.9(5) . . ? C5 C7 H7 120.0 . . ? C6 C7 H7 120.0 . . ? C7 C5 C4 121.5(5) . . ? C7 C5 H8 119.3 . . ? C4 C5 H8 119.3 . . ? C14 C20 C21 120.6(9) . . ? C14 C20 H9 119.7 . . ? C21 C20 H9 119.7 . . ? N1 C21 C20 123.0(9) . . ? N1 C21 H10 118.5 . . ? C20 C21 H10 118.5 . . ? N1 C22 C19 124.2(9) . . ? N1 C22 H11 117.9 . . ? C19 C22 H11 117.9 . . ? N1 C15 C18 125.4(11) . . ? N1 C15 H12 117.3 . . ? C18 C15 H12 117.3 . . ? C22 C19 C14 119.3(9) . . ? C22 C19 H13 120.4 . . ? C14 C19 H13 120.4 . . ? N1 C16 C17 122.4(12) . . ? N1 C16 H14 118.8 . . ? C17 C16 H14 118.8 . . ? C14 C17 C16 120.1(11) . . ? C14 C17 H15 119.9 . . ? C16 C17 H15 119.9 . . ?

C14 C18 C15 119.7(11) . . ? C14 C18 H16 120.2 . . ? C15 C18 H16 120.2 . . ?

_diffrn_measured_fraction_theta_max	0.989
_diffrn_reflns_theta_full	25.01
_diffrn_measured_fraction_theta_full	0.989
_refine_diff_density_max 0.441	
_refine_diff_density_min -0.546	
_refine_diff_density_rms 0.103	

SQUEEZE RESULTS

loop_

_platon_squeeze_void_nr

_platon_squeeze_void_average_x

_platon_squeeze_void_average_y

_platon_squeeze_void_average_z

_platon_squeeze_void_volume

_platon_squeeze_void_count_electrons

1	0.000	0.500	0.000	106.7	24.2
2	0.000	0.500	0.500	106.7	24.3

_platon_squeeze_details

;

;