A novel, facile route to beta-fluoroamines by hydrofluorination using superacid HF/SbF₅.

Sébastien Thibaudeau,** Agnès Martin-Mingot, Marie-Paule Jouannetaud, Omar Karam and Fabien Zunino

^a Laboratoire" Synthèse et Réactivité des Substances Naturelles", UMR 6514, 40, avenue du Recteur Pineau, F-86022 Poitiers Cedex, France. Fax: 33-549453501; Tel: 33-549453702; sebastien.thibaudeau@univ-poitiers.fr ^b @rtMolecule, 40, avenue du Recteur Pineau, F-86022 Poitiers Cedex, France. Fax: 33-549453501; Tel/Fax: 33-54945412; contact@artmolecule.fr

Supporting Information

General Method

The authors draw the reader's attention to the dangerous features of superacidic chemistry. Handling of hydrogen fluoride and antimony pentafluoride must be done by experienced chemists with all the necessary safety arrangements in place.

Reactions performed in superacid were carried out in a sealed Teflon® flask with a magnetic stirrer. No further precautions have to be taken to prevent mixture from moisture (test reaction worked out in anhydrous conditions leads to the same results as expected).

Yields refer to isolated pure products.

¹H, ¹³C and ¹⁹F NMR were recorded on a 300 MHz Brüker spectrometer using CDCl₃ as solvent.

Melting points were determined in a capillary tube and are uncorrected.

High-resolution mass spectra were performed on a Micromass ZABSpec TOF by the Centre Regional de Mesures Physiques de l'Ouest, Université Rennes (France).

All separations were done under flash-chromatography conditions on silica gel (15-40 μm).

Optimized procedure in superacidic media

To a mixture of HF/SbF₅ (6 mL, 7/1 molar ratio) maintained at -20 °C was added nitrogen derivative (1 mmol). The mixture was magnetically stirred at the same temperature for reaction time. The reaction mixture was then neutralized with water-ice-Na₂CO₃, extracted with dichloromethane (\times 3). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo*. Products were isolated by column chromatography over silica gel.

Compound 2a: 1-(2-fluoropropyl)piperidine Optimized procedure (60 min reaction time) was followed, starting from 250 mg of 1a (2 mmol). Purification by flash column chromatography (97/2/1: dichloromethane/methanol/NH₃ aq.) afforded 209 mg of the title compound as a colourless oil (72%). ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.23 (3H, dd, J = 23.6 Hz, J = 6.4 Hz, H₃·), 1.36 (2H, m, H₄), 1.52 (4H, m, H₃ and H₅), 2.29 (1H, ddd, J = 31.2 Hz, J = 13.9 Hz, J = 3.0 Hz, H_{1'a}), 2.37 (4H, m, H₂ and H₆), 2.50 (1H, ddd, J = 21.6 Hz, J = 13.9 Hz, J = 7.7 Hz, H_{1'b}), 4.77 (1H, dm, J = 49.8 Hz, H₂·). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 19.9 (CH₃, d, J = 22 Hz, C₃·), 24.5 (CH₂, C₄), 26.3 (2 CH₂, C₃ and C₅), 55.4 (2 CH₂, C₂ and C₆), 65.0 (CH₂, d, J = 21 Hz, C₁·), 89.2 (CH, d, J = 167 Hz, C₂·). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, ppm): δ –173.7. MS (EI, 70 ev): m/z (relative intensity %) 146 [M+H]⁺ (100). HRMS (ESI): Calc for C₈H₁₆NF: 145.12668, found 145.1269.

Compound 2b: 1-(2-fluoropropyl)piperazine Optimized procedure (60 min reaction time) was followed, starting from 0.14 mL of 1b (1 mmol). Purification by flash column chromatography (92/5/3: dichloromethane/methanol/NH₃ aq.) afforded 83 mg of the title compound as a colourless oil (57%). ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.34 (3H, dd, J = 23.6 Hz, J = 6.4 Hz, H₃·), 1.82 (1H, broad s, NH), 2.44 (1H, ddd, J = 31.7 Hz, J = 13.9 Hz, J = 2.8 Hz, H₁·a), 2.52 (4H, m, H₃ and H₅), 2.61 (1H, ddd, J = 21.7 Hz, J = 13.9 Hz, J = 7.8 Hz, H₁·b) 2.91 (4H, broad t, J = 5.0 Hz, H₂ and H₆), 4.86 (1H, dm, J = 49.8 Hz, H₂·). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 19.9 (CH₃, d, J = 22 Hz, C₃·), 46.4 (2 CH₂, C₃ and C₅), 55.4 (2 CH₂, C₂ and C₆), 64.8 (CH₂, d, J = 21 Hz, C₁·), 89.2 (CH, d, J = 167 Hz, C₂·). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, ppm): δ –174.0. MS (EI, 70 ev): m/z (relative intensity %) 146 [M]⁺ (8), 126 [M-HF]⁺ (93), 99 [M-CH₃CHF]⁺ (96), 85 [M-CH₂CHFCH₃]⁺ (71). HRMS (ESI): Calc for C₇H₁₄N₂: 126.11570, found 126.1151.

Compound 2c: 1-benzyl-4-(2-fluoropropyl)piperazine Optimized procedure (60 min reaction time) was followed, starting from 216 mg of 1c (1 mmol). Purification by flash column chromatography (95/4/1: dichloromethane/methanol/NH₃ aq.) afforded 201 mg of the title compound as a colourless oil (85%). ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.30

(3H, dd, J = 23.6 Hz, J = 6.2 Hz, H₃·), 2.55 (10H, m, H₁·,H₂, H₃, H₅ and H₆), 3.50 (2H, s, H_{benzyl}), 4.83 (1H, dm, J = 49.8 Hz, H₂·), 7.25 and 7.30 (5H, 2 m, H_{arom}). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 19.5 (CH₃, d, J = 23 Hz, C₃·), 53.0 (2 CH₂, C₂ and C₆), 53.7 (2 CH₂, C₃ and C₅), 63.0 (CH₂, CH₂ benzyl), 63.8 (CH₂, d, J = 21 Hz, C₁·), 88.8 (CH, d, J = 167 Hz, C₂·), 127.0 (CH, C_{para}), 128.2 (2 CH, C_{meta}), 129.2 (2 CH, C_{ortho}), 138.1 (C _{ipso}). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, ppm): δ –174.1. MS (EI, 70 ev) m/z (relative intensity %) 236 [M]⁺ (32), 216 [M-HF]⁺ (100). HRMS (ESI): Calc for C₁₄H₂₀N₂: 216.16265, found 216.1625.

Compound 2d: 1-(4-(2-fluoropropyl)piperazin-1-yl)ethanone Optimized procedure (10 min reaction time) was followed, starting from 168 mg of 1d (1 mmol). Purification by flash column chromatography (97/2/1: dichloromethane/methanol/NH₃ aq.) afforded 130 mg of the title compound as a colourless oil (69%). 1 H NMR (300 MHz, CDCl₃, ppm) : δ 1.34 (3H, dd, J = 23.7 Hz, J = 6.4 Hz, H₃., 2.09 (3H, s, H₂), 2.53 (6H, m, H₃., H₅. and H₁., 3.48 (2H, t, J = 5.1 Hz, H₂., and H₆., 3.64 (2H, m, H₂., and H₆., 4.87 (1H, dm, J = 49.6 Hz, H₂.). 13 C NMR (75 MHz, CDCl₃, ppm) : δ 19.3 (CH₃, d, J = 22 Hz, C₃.), 21.3 (CH₃, C₂), 41.4 (CH₂, C₂. or C₆.), 46.2 (CH₂, C₂. or C₆.), 53.3 (CH₂, C₃. or C₅.), 53.7 (CH₂, C₃. or C₅.), 63.5 (CH₂, d, J = 20 Hz, C₁.), 88.9 (CH, d, J = 167 Hz, C₂...), 168.9 (CO). 19 F { 1 H} NMR (282 MHz, CDCl₃, ppm): δ –174.3. MS (EI, 70 ev): m/z (relative intensity %) 189 [M+H⁺]⁺ (20). HRMS (ESI): Calc for C₉H₁₆N₂O: 168.12626, found 168.1263.

Compound 2e: 4-(2-fluoropropyl)morpholine Optimized procedure (60 min reaction time) was followed, starting from 127 mg of 1e (1 mmol). Purification by flash column chromatography (96/3/1: dichloromethane/methanol/NH₃ aq.) afforded 90 mg of the title compound as a colourless oil (61%). ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.26 (3H, dd, J = 23.6 Hz, J = 6.4 Hz, H₃·), 2.36 (1H, ddd, J = 31.1 Hz, J = 13.9 Hz, J = 2.8 Hz, H₁·a), 2.46 (4H, broad t, J = 4.7 Hz, H₃ and H₅), 2.55 (1H, ddd, J = 22.3 Hz, J = 13.9 Hz, J = 7.8 Hz, H₁·b), 3.66 (4H, m, H₂ and H₆), 4.80 (1H, dm, J = 49.7 Hz, H₂·). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 19.8 (CH₃, d, J = 22 Hz, C₃·), 54.6 (CH₂, C₃ and C₅), 64.6 (CH₂, d, J = 21 Hz, C₁·), 67.3 (CH₂, C₂ and C₆), 89.2 (CH, d, J = 167 Hz, C₂·). ¹⁹F { ¹H } NMR (282 MHz, CDCl₃, ppm): δ –174.3. MS (EI, 70 ev): m/z (relative intensity %) 148 [M+H⁺]⁺ (100). HRMS (ESI): Calc for C₇H₁₃NOF: 146.09812, found 146.0992.

Compound 2f: 1-(2-fluoropropyl)piperidin-4-one Optimized procedure (60 min reaction time) was followed, starting from 139 mg of 1f (1 mmol). Purification by flash column chromatography (95/4/1: dichloromethane/methanol/NH₃ aq.) afforded 112 mg of the title compound as a colourless oil (70%). ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.37 (3H, dd, J = 23.6 Hz, J = 6.2 Hz, H₃·), 2.47 (4H, t, J = 6.1 Hz, H₃ and H₅), 2.69 (2H, m, H₁·), 2.86 (4H, t, J = 6.2 Hz, H₂ and H₆), 4.88 (1H, dm, J = 49.6 Hz, H₂·). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 19.3 (CH₃, d, J = 22 Hz, C₃·), 41.2 (2 CH₂, C₃ and C₅), 53.7 (CH₂, C₂ and C₆), 62.4 (CH₂, d, J = 21 Hz, C₁·), 89.2 (CH, d, J = 167 Hz, C₂·), 208.7 (CO). ¹⁹F { ¹H } NMR (282 MHz, CDCl₃, ppm): δ –174.7. MS (EI, 70 ev): m/z (relative intensity %) 159 [M] ⁺ (10),

112 [M-CH₃CHF]⁺ (100). HRMS (ESI): Calc for C₈H₁₄NOF: 159.10594, found 159.1058.

F-V

Compound 2g: 1-(2-fluoropropyl)-1*H*-indole Optimized procedure (10 min reaction time) was followed, starting from 157 mg of 1g (1 mmol). Purification by flash column chromatography (98/2: petroleum ether/ethyl acetate) afforded 72 mg of the title compound as a colourless oil (41%). ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.26 (3H, dd, J = 23.5 Hz, J = 6.3 Hz, H₃·), 4.16 (2H, m, H₁·), 4.88 (1H, dm, J = 48.2 Hz, H₂·), 6.45 (1H, d, J=3.8 Hz, H₃), 7.04 (2H, m, H₆ and H₂), 7.12 (1H, t, J=4.7 Hz, H₅), 7.25 (1H, d, J=8.2 Hz, H₄), 7.56 (1H, d, J=7.9 Hz, H₇). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 18.8 (CH₃, d, J = 22 Hz, C₃·), 51.6 (CH₂, d, J = 24 Hz, C₁·), 89.6 (CH, d, J = 171 Hz, C₂·), 102.3 (CH, C₃), 109.6 (CH, C₄), 119.9 (CH, C₆), 121.4 (CH, C₇), 122.1 (CH, C₅), 128.9 (C_{3a}), 129.0 (CH, C₂), 136.8 (C_{7a}). ¹⁹F { ¹H } NMR (282 MHz, CDCl₃, ppm): δ -175.3. MS (EI, 70 ev): m/z (relative intensity %) 177 [M] ⁺ (30), 130 [M-CH₃CHF] ⁺ (100). HRMS (ESI): Calc for C₁₁H₁₂N_F: 177.09538, found 177.0962.

$$O_2N$$

Compound 2i: N-(4-nitrobenzyl)-2-fluoropropan-1-amine Optimized procedure (10 min reaction time) was followed, starting from 324 mg of 1i (1.68 mmol). Purification by flash column chromatography (99/1: dichloromethane/methanol) afforded 160 mg of the title compound as a colourless oil (45 %). The second compound 1,2,3,4-

tetrahydro-4-methyl-6-nitroisoquinoline 2i' (80 mg, 24 %) was then eluted (95/4/1: dichloromethane/methanol/NH₃ aq.).

Compound 2i ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.27 (3H, dd, J = 23.9 Hz, J = 6.4 Hz, H₃), 1.66 (1H, NH), 2.70 (2H, m, H₁), 3.87 (2H, s, H_{benzyl}), 4.75 (1H, dm, J = 49.3 Hz, H₂), 7.45 (2H, d, J=8.8 Hz, H_{arom}), 8.11 (2H, d, J=8.8 Hz, H_{arom}). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 17.7 (CH₃, d, J = 22 Hz, C₃), 51.8 (CH₂, C_{benzyl}), 53.5 (CH₂, d, J = 20 Hz, C₁), 89.3 (CH, d, J = 165 Hz, C₂), 122.6 (2 CH₂, C_{arom}), 127.5 (2 CH₂, C_{arom}), 146.0 (C_{arom}), 146.9 (C_{arom}). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, ppm): δ –179.6. MS (GCT, CI⁺): m/z (relative intensity %) 212 [M]⁺ (100). HRMS (ESI): Calc for C₁₀H₁₃N₂O₂F: 212.09611, found 212.0967.

NO₂

Compound 2i': 1,2,3,4-tetrahydro-4-methyl-6-nitroisoquinoline ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.27 (3H, d, J = 7.0 Hz, CH₃), 1.97 (1H, broad s, NH), 2.76 (1H, dd, J=12.6 Hz, J=6.3 Hz, H_{3a}), 2.89 (1H, m, H₄), 3.16 (1H, dd, J=12.6 Hz, J=5.0 Hz, H_{3b}), 4.01 (2H, s, H₁), 7.08 (1H, d, J=8.5 Hz, H₈), 7.88 (1H, dd, J=8.4 Hz, J=2.3 Hz, H₇), 8.02 (1H, d, J=2.3 Hz, H₅). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 19.2 (CH₃), 31.4 (CH, C₄), 48.4 (CH₂, C₁), 50.1 (CH₂, C₃), 120.3 (CH, C₇), 122.8 (CH, C₅), 126.6 (CH, C₈), 141.4 (C_{arom}), 142.8 (C_{arom}), 146.2 (C₆). MS (GCT, CI⁺): *m/z* (relative intensity %) 192 [M]⁺ (100). HRMS (ESI): Calc for C₁₀H₁₂N₂O₂: 192.08988, found 192.0907.

Compound 4b: N-(2-hydroxypropyl)benzamide¹⁹ Optimized procedure (10 min reaction time) was followed, starting from 161 mg of 3b (1 mmol). Purification by flash column chromatography (dichloromethane) afforded 154 mg of the title compound as a colourless oil (86 %)

Compound 4b ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.42 (3H, d, J = 6.2 Hz, H₃·), 3.61 (1H, dd, J=14.4 Hz, J=7.4 Hz, H₁·a), 4.14 (1H, dd, J=14.4 Hz, J=9.4 Hz, H₁·b), 4.85 (1H, m, H₂·), 7.42 (3H, m, H_{meta} and H_{para}), 7.94 (2H, d, J=6.7 Hz, H_{ortho}). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 21.5 (CH₃, C₃·), 62.0 (CH₂, C₁·), 76.6 (CH, C₂·), 128.4 (CH, C_{arom}), 128.5 (CH, C_{arom}), 128.7 (CH, C_{arom}), 131.6 (C_{arom}), 164.2 (CO).

$$\mathsf{O}_2\mathsf{N} - \bigvee \mathsf{O} \; \mathsf{HO}$$

Compound 4c: N-(2-hydroxypropyl)-4-nitrobenzamide Optimized procedure (10 min reaction time) was followed, starting from 412 mg of 3c (2 mmol). Purification by flash column chromatography (99/1,dichloromethane/methanol) afforded 310 mg of the title compound as a white solid (69 %)

Compound 4c ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.46 (3H, d, J = 6.3 Hz, H₃·), 3.67 (1H, dd, J=14.9 Hz, J=7.5 Hz, H₁·_a), 4.21 (1H, dd, J=14.9 Hz, J=9.5 Hz, H₁·_b), 4.94 (1H, m, H₂·), 8.10 (2H, d, J=9.0 Hz, H₂ and H₆), 8.27 (2H, d, J=9.0 Hz, H₃ and H₅). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 21.5 (CH₃, C₃·), 62.2 (CH₂, C₁·), 77.4 (CH, C₂·), 123.8 (2CH, C₃ and C₅), 129.5 (2CH, C₂ and C₆), 134.2 (C₁), 149.8 (C₄), 162.5 (CO). MS (GCT, CI⁺): m/z (relative intensity %) 206 [M]⁺ (100). HRMS (ESI): Calc for C₁₀H₁₀N₂O₃: 206.06914, found 206.0692. Mp: 136°C (CH₂Cl₂/hexane (20/80, v/v)).

Compound 4d: 2-(2-hydroxypropyl)isoindoline-1,3-dione²⁰ Optimized procedure (60 min reaction time) was followed, starting from 95 mg of 3d (0.5 mmol). Purification by flash column chromatography (98/2,dichloromethane/methanol) afforded 100 mg of the title compound as a white solid (97 %)

Compound 4d ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.26 (3H, d, J = 6.4 Hz, H₃·), 2.80 (1H, broad s, OH), 3.73 (2H, m, H₁·), 4.12 (1H, m, H₂·), 7.72 (2H, m, H_{arom}), 7.83 (2H, m, H_{arom}). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 21.0 (CH₃, C₃·), 45.5 (CH₂, C₁·), 66.5 (CH, C₂·), 123.4 (2CH, C_{arom}), 131.9 (C_{arom}), 134.1 (2CH, C_{arom}), 168.9 (CO).

Compound 4d': 2-(2-fluoropropyl)isoindoline-1,3-dione Optimized procedure (10 min reaction time) was followed, starting from 374 mg of 3d (2 mmol). After reaction time 3 mL of HF/pyridine (70/30 w/w) were added to reaction mixture, stirred for 24 hours at reaction temperature, and worked up as described procedure. Purification by flash column chromatography (dichloromethane) afforded 131 mg of the title compound as a white solid (31 %). The second compound 4d (140 mg, 34 %) was then eluted (98/2: dichloromethane/methanol).

Compound 4d': ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.42 (3H, dd, J = 23.6 Hz, J = 6.3 Hz, H₃·), 3.74 (1H, ddd, J=27.7 Hz, J=14.4 Hz, J=3.5 Hz, H₁·_a), 3.98 (1H, ddd, J=22.6 Hz, J=14.4 Hz, J=8.2 Hz, H₁·_b), 4.95 (1H, dm, J = 49.3 Hz, H₂·), 7.74 (2H, dd, J=5.3 Hz, J=3.0 Hz, H_{arom}), 7.87 (2H, dd, J=5.3 Hz, J=3.0 Hz, H_{arom}). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 18.6 (CH₃, d, J = 21 Hz, C₃·), 42.9 (CH₂, d, J = 24 Hz, C₁·), 87.6 (CH, d, J = 171 Hz, C₂·), 123.4 (2CH, C_{arom}), 132.0 (C_{arom}), 134.1 (2CH, C_{arom}), 168.1 (CO). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, ppm): δ –180.5. MS (EI, 70 ev): m/z (relative intensity %) 208 [M+H⁺]⁺ (70), 207 [M]⁺ (100) 187 [M-HF]⁺ (100) 160 [M-CH₃CHF]⁺ (100). HRMS (ESI): Calc for C₉H₆NO₂: 160.03985, found 160.0394. Mp: 99°C (CH₂Cl₂/hexane (20/80, v/v)).

Compound 4e: 4,6-dimethyl-3,4-dihydro-2H,benzo[e][1,2]thiazine 1,1-

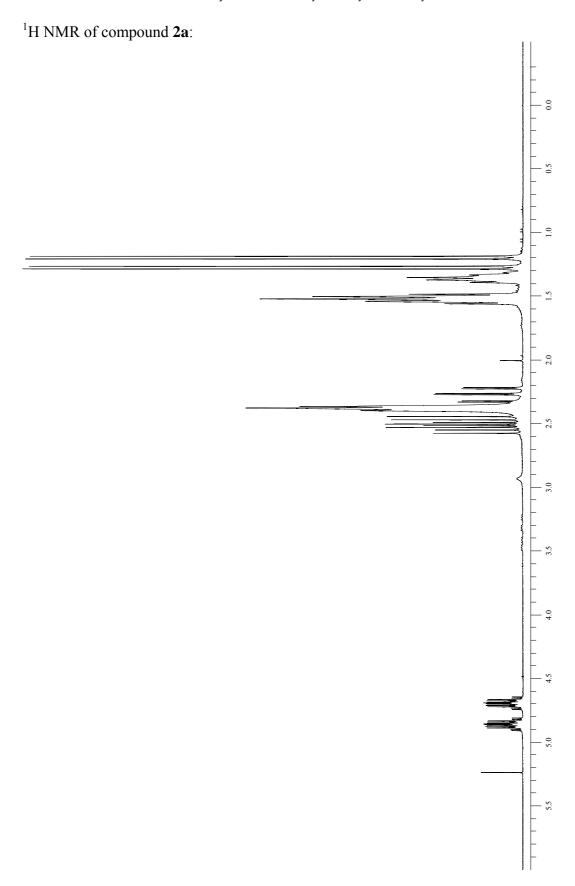
dioxide Optimized procedure (10 min reaction time) was followed, starting from 422 mg of **3e** (2 mmol). Purification by flash column chromatography (98/2,dichloromethane/methanol) afforded 270 mg of the title compound as a colourless oil (64 %).

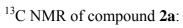
Compound 4e ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.34 (3H, d, J = 7.2 Hz, CH₃), 2.37 (3H, s, CH₃), 2.98 (1H, m, H₄), 3.41 (1H, m, H_{3a}), 3.82 (1H, m, H_{3b}), 4.89 (1H, t, J=7.7 Hz, NH), 7.09 (1H, s, H₅), 7.14 (1H, d, J=8.1 Hz, H₇), 7.62 (1H, d, J=8.1 Hz, H₈). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 19.5 (CH₃), 21.6 (CH₃), 31.5 (CH, C₄), 48.2 (CH₂, C₃), 124.0 (CH, C₇), 128.2 (CH, C₈), 129.0 (C₅), 134.2 (C_{8a}), 140.2 (C₆), 142.7 (C_{4a}). MS (EI, 70 ev): m/z (relative intensity %) 211 [M]⁺ (40). HRMS (ESI): Calc for C₁₀H₁₃NO₂S: 211.06670, found 211.0664.

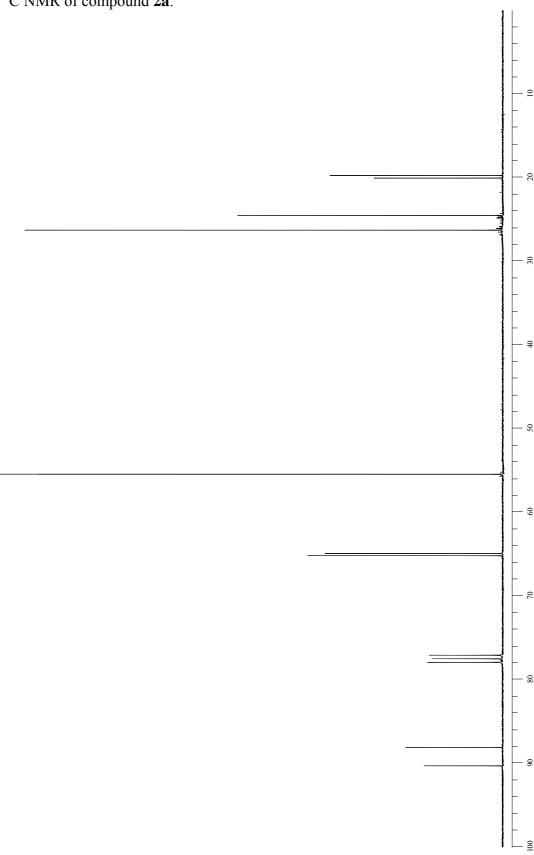
$$O_2N$$
 O_2 O_2

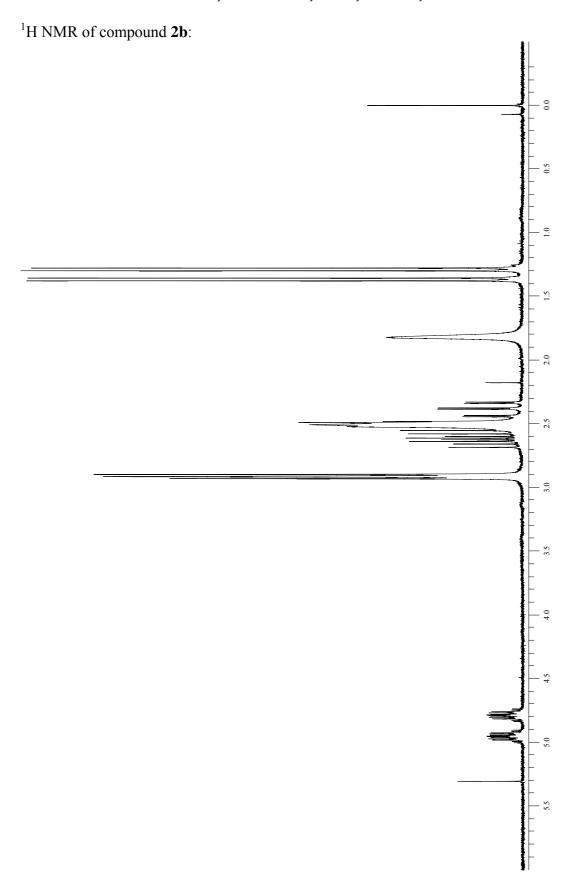
Compound 4f: N-(2-fluoropropyl)-4-nitrobenzenesulfonamide

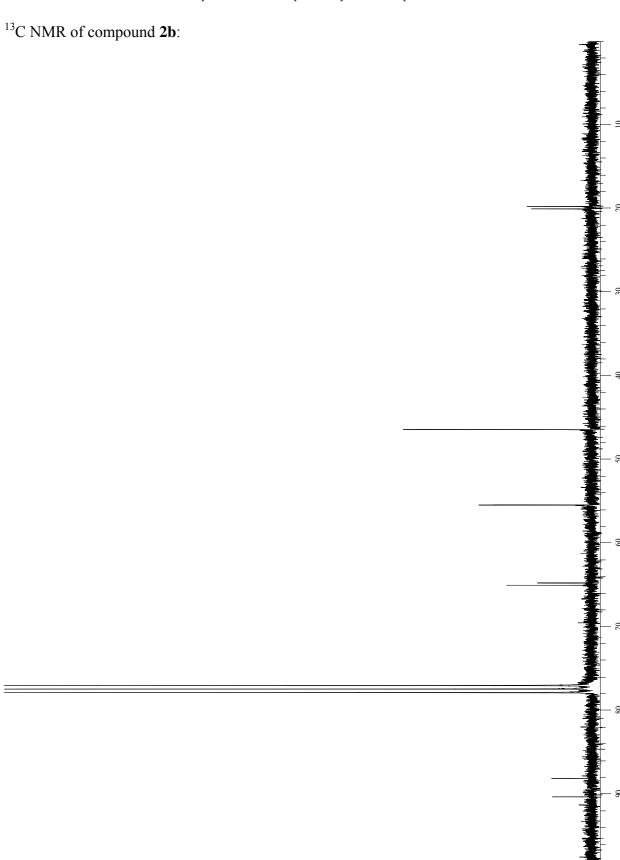
Optimized procedure (10 min reaction time) was followed, starting from 242 mg of **3f** (1 mmol). Purification by flash column chromatography (90/10: petroleum ether/ethylacetate) afforded 195 mg of the title compound as a white solid (74 %).

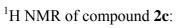

Compound 2f ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.32 (3H, dd, J = 23.8 Hz, J = 6.3 Hz, H₃·), 3.10 (1H, m, H₁·_a), 3.26 (1H, dm, J=28.1 Hz, H₁·_b), 4.73 (1H, dm, J = 48.9 Hz, H₂·), 5.38 (1H, m, NH), 8.07 (2H, d, J=9.1 Hz, H₂ and H₆), 8.38 (2H, d, J=9.1 Hz, H₃ and H₅). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 18.0 (CH₃, d, J = 22 Hz, C₃·), 48.2 (CH₂, d, J = 21 Hz, C₁·), 89.1 (CH, d, J = 168 Hz, C₂·), 124.5 (2 CH, C₃ and C₅), 128.3 (2 CH, C₂ and C₆), 145.8 (C₁), 150.1

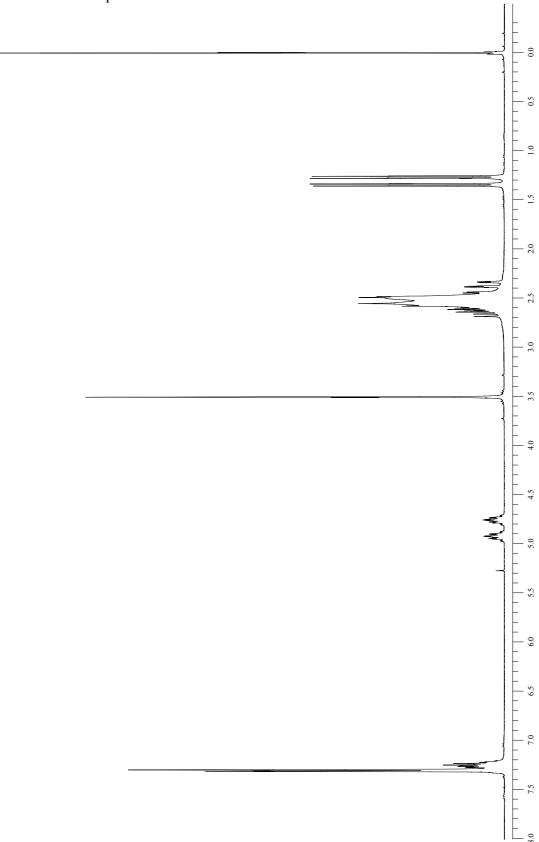

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

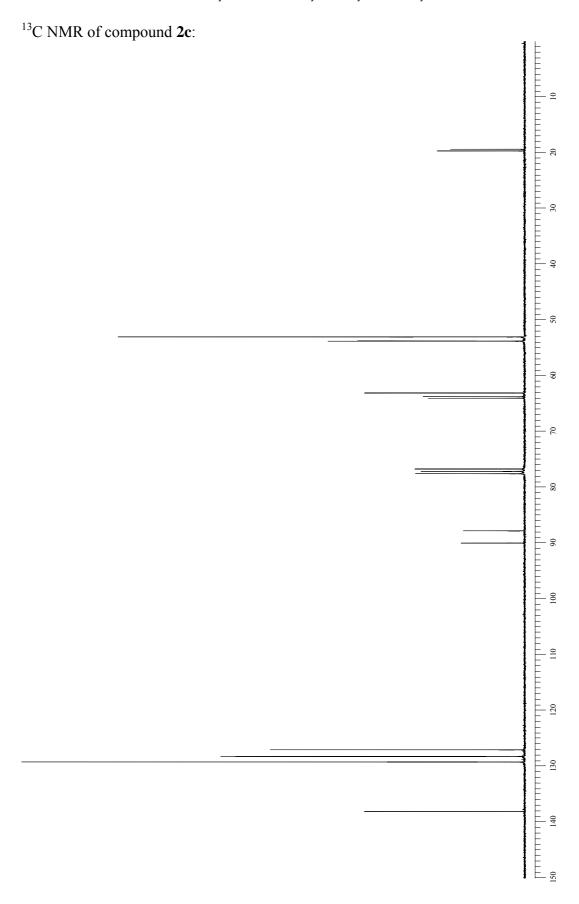

 $(C_4)^{.19}F\{^1H\}$ NMR (282 MHz, CDCl₃, ppm): δ -180.2. MS (GCT, CI⁺): m/z (relative intensity %) 215 [M-CH₃CHF]⁺ (20). HRMS (ESI): Calc for C₇H₇N₂O₄S: 215.01265, found 215.0122. Mp: 109°C (CH₂Cl₂/hexane (20/80, v/v)).

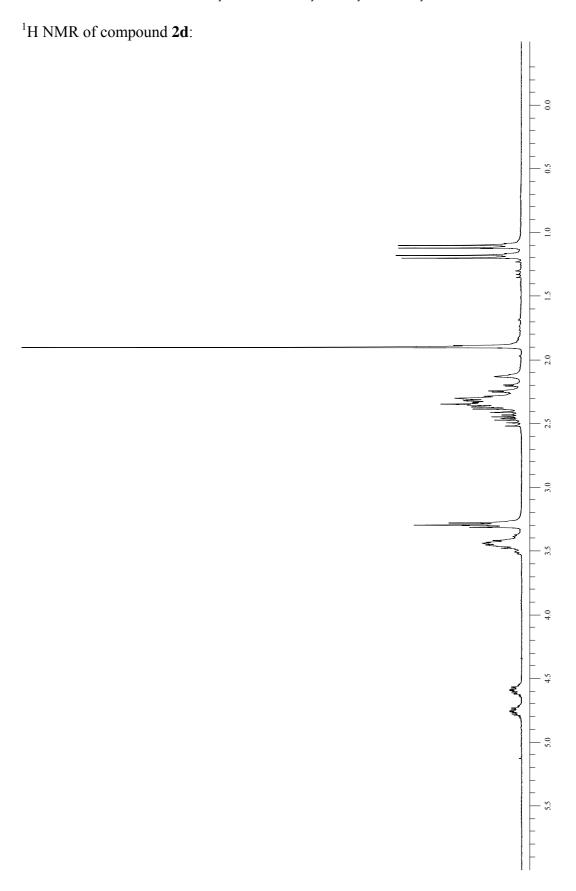

Optimized procedure (10 min reaction time) was followed, starting from 150 mg of **3g** (0.58 mmol). Purification by flash column chromatography (80/20: petroleum ether/ethylacetate) afforded 50 mg of the title compound as a pale yellow oil (30 %).

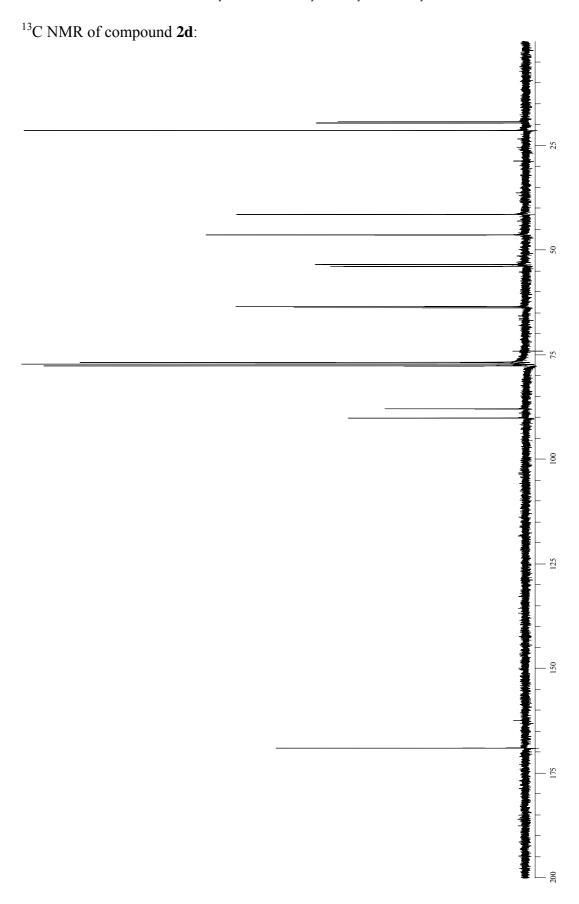

Compound 2f ¹H NMR (300 MHz, CDCl₃, ppm) : δ 1.26 (3H, dd, J = 24.2 Hz, J = 6.3 Hz, H₄·), 1.74 (2H, m, H₂'), 3.10 (2H, m, H₁·), 4.66 (1H, dm, J = 49.1 Hz, H₃·), 4.91 (1H, m, NH), 8.00 (2H, d, J=9.1 Hz, H₂ and H₆), 8.37 (2H, d, J=9.1 Hz, H₃ and H₅). ¹³C NMR (75 MHz, CDCl₃, ppm) : δ 21.3 (CH₃, d, J = 22 Hz, C₄·), 36.9 (CH₂, d, J=20.0 Hz, C₂·), 40.6 (CH₂, d, J = 3 Hz, C₁·), 90.0 (CH, d, J = 164 Hz, C₃·), 124.8 (2 CH, C₃ and C₅), 128.7 (2 CH, C₂ and C₆), 146.2 (C₁), 150.5 (C₄). ¹⁹F { ¹H } NMR (282 MHz, CDCl₃, ppm): δ –175.4. MS (GCT, CI⁺): m/z (relative intensity %) 276 [M]⁺ (60), 215 [M-CH₂CHFCH₃]⁺ (100). HRMS (ESI): Calc for C₁₀H₁₃N₂O₄FS: 276.05801, found 276.0576.

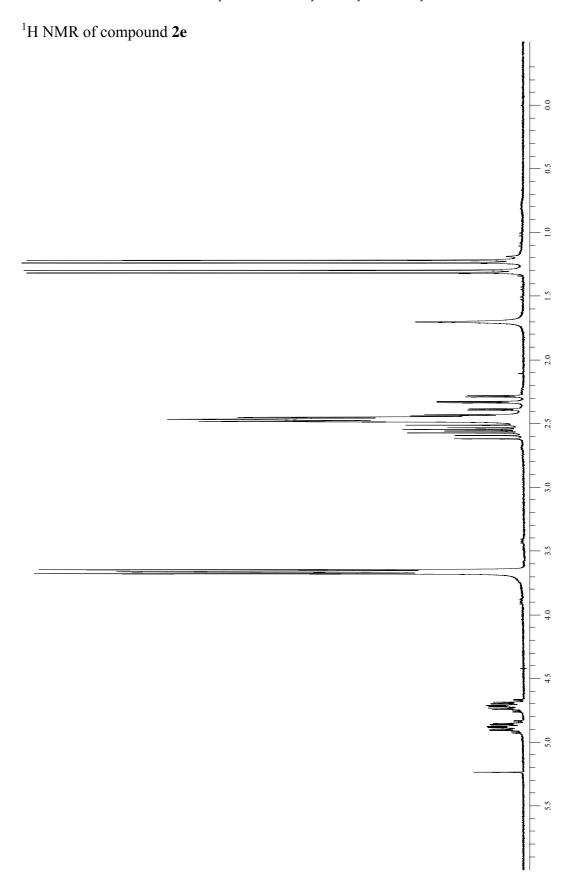


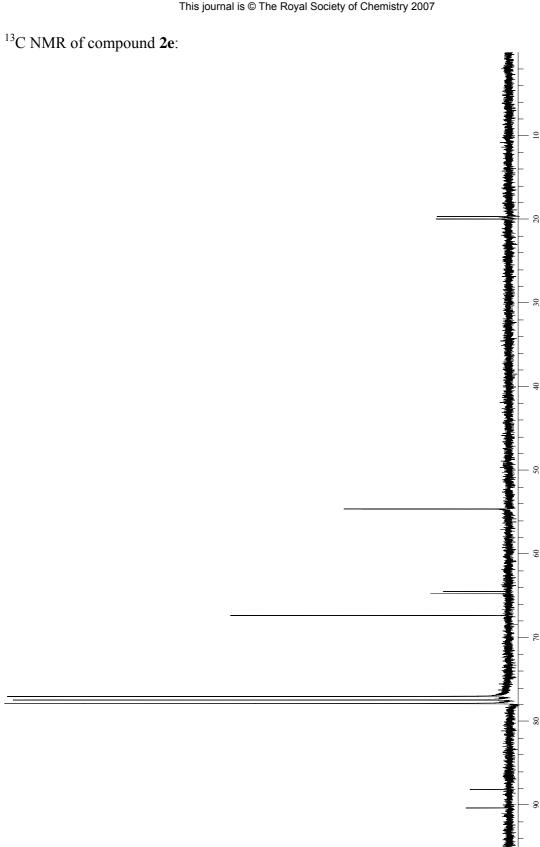


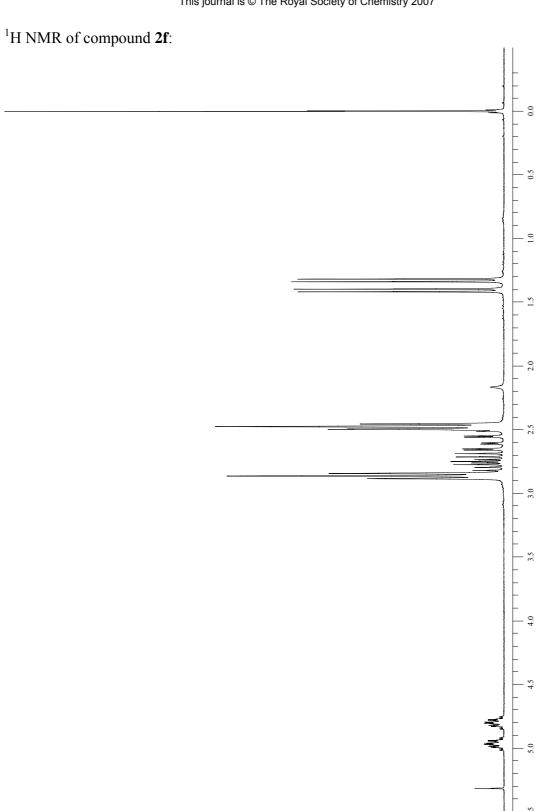


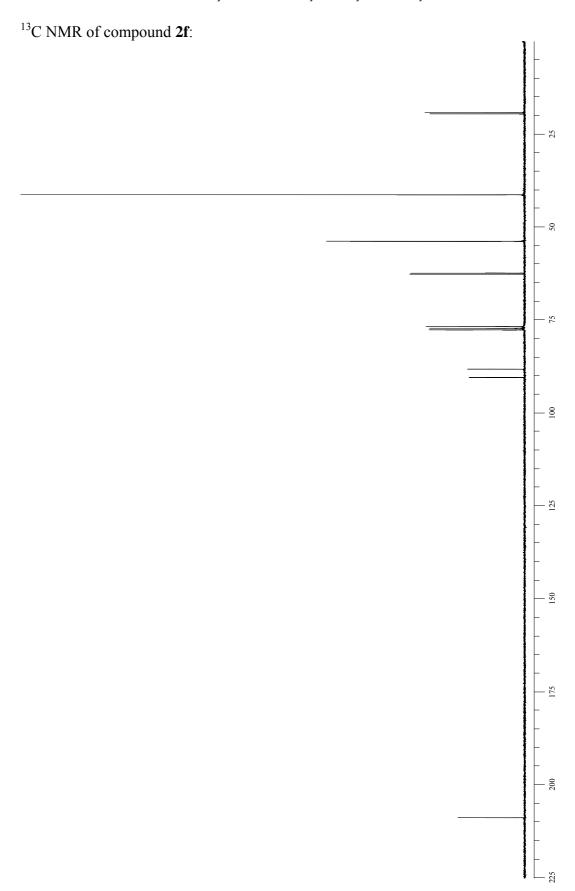


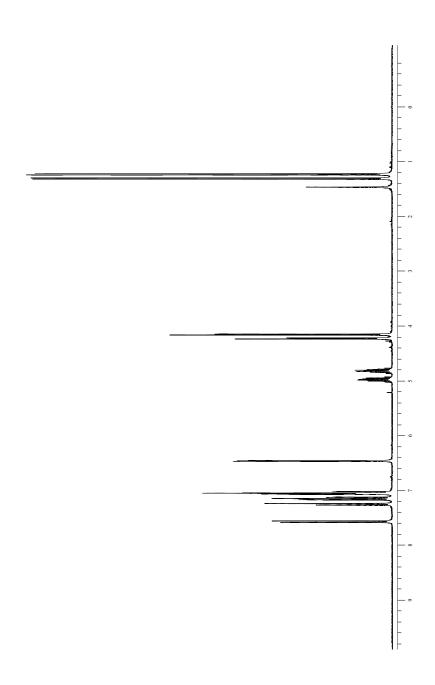


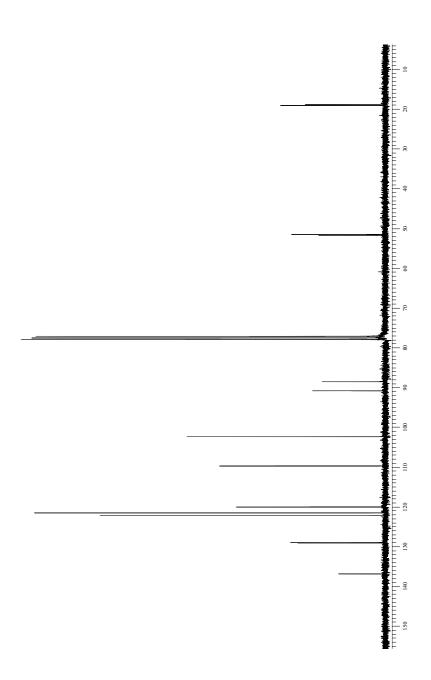


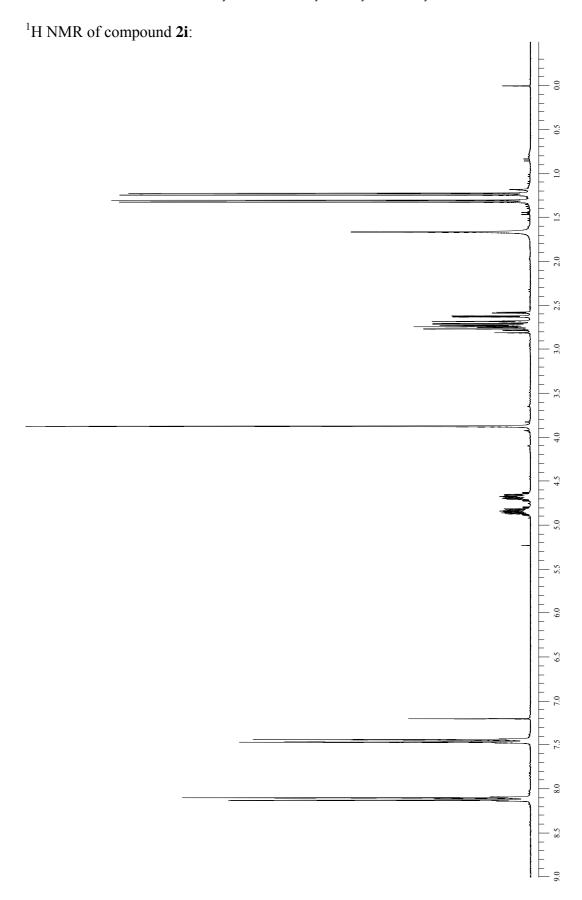


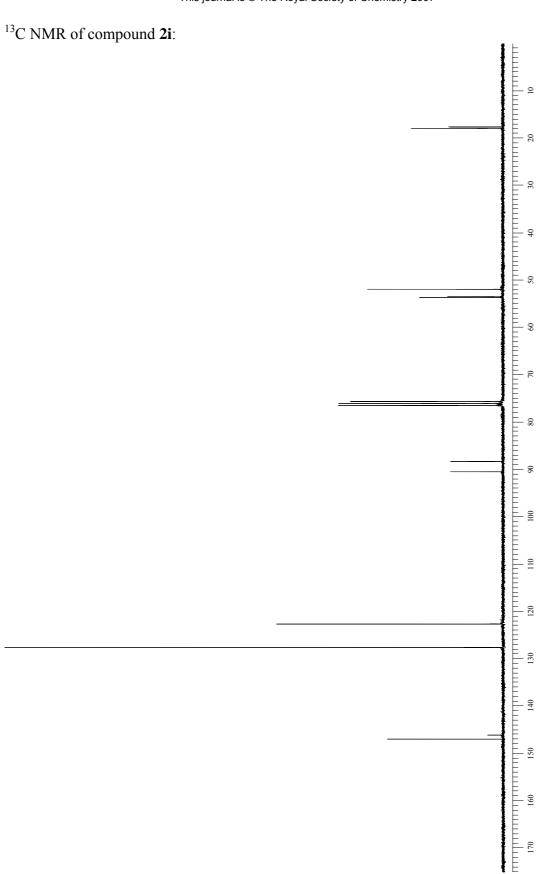


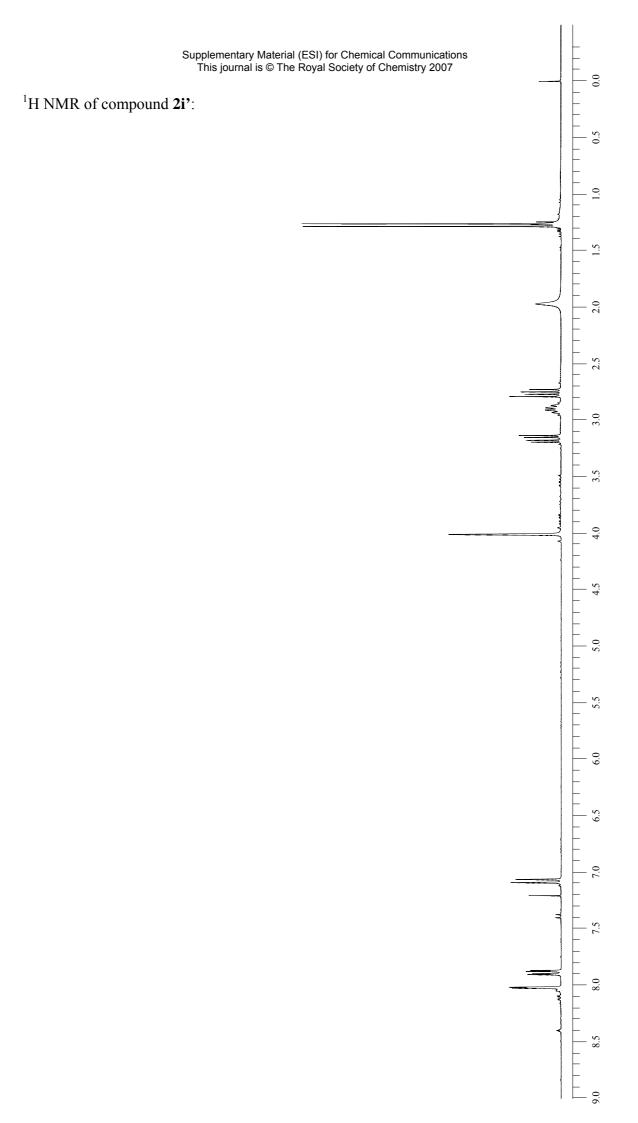


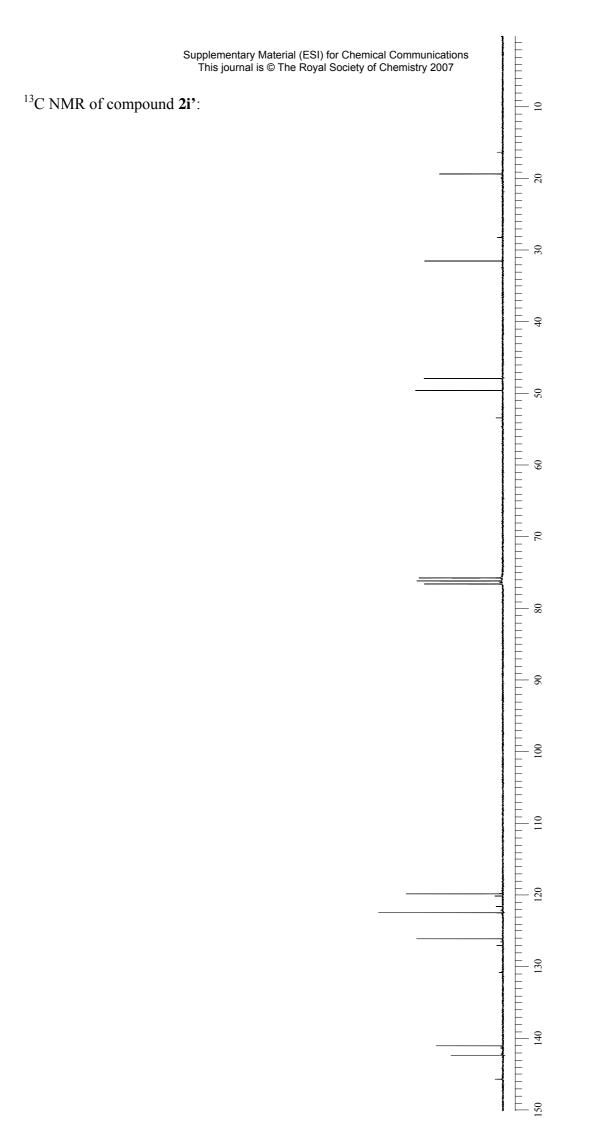


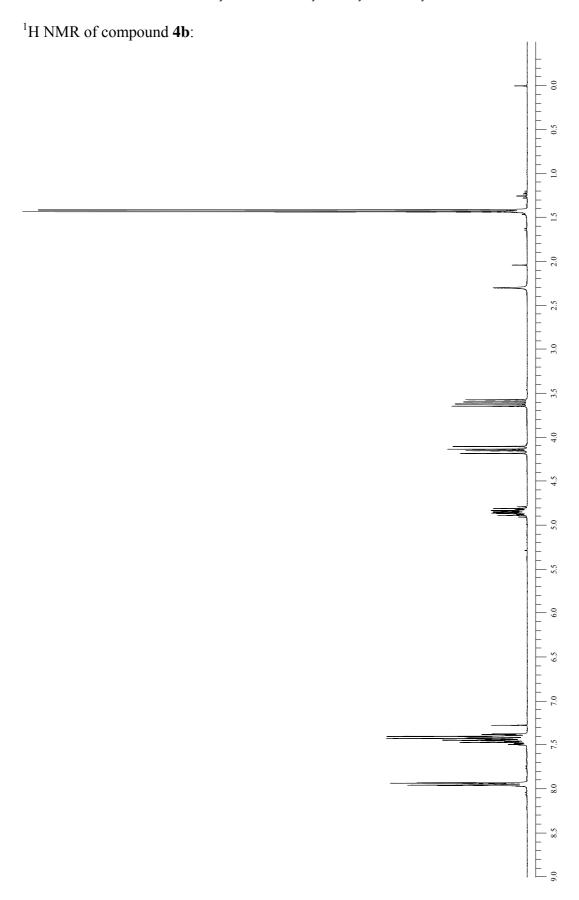


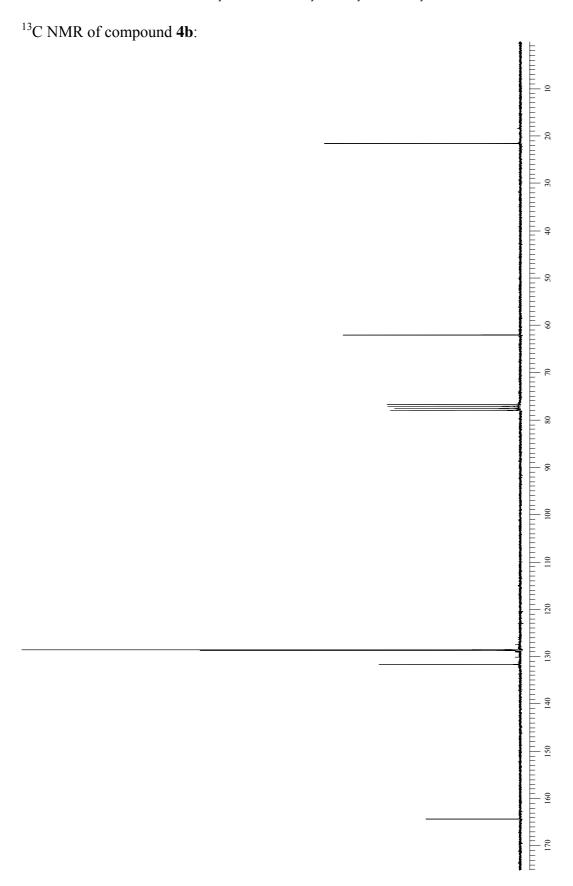


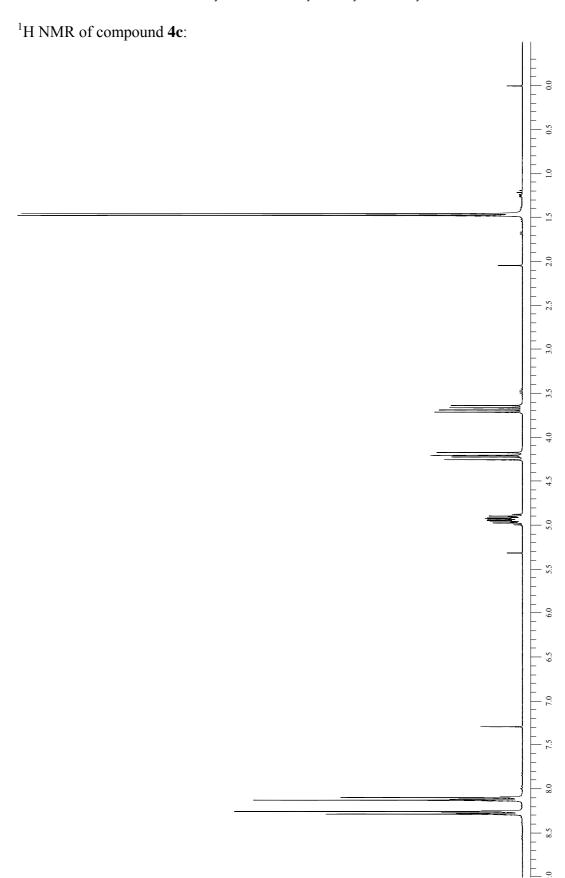

¹H NMR of compound **2g**:

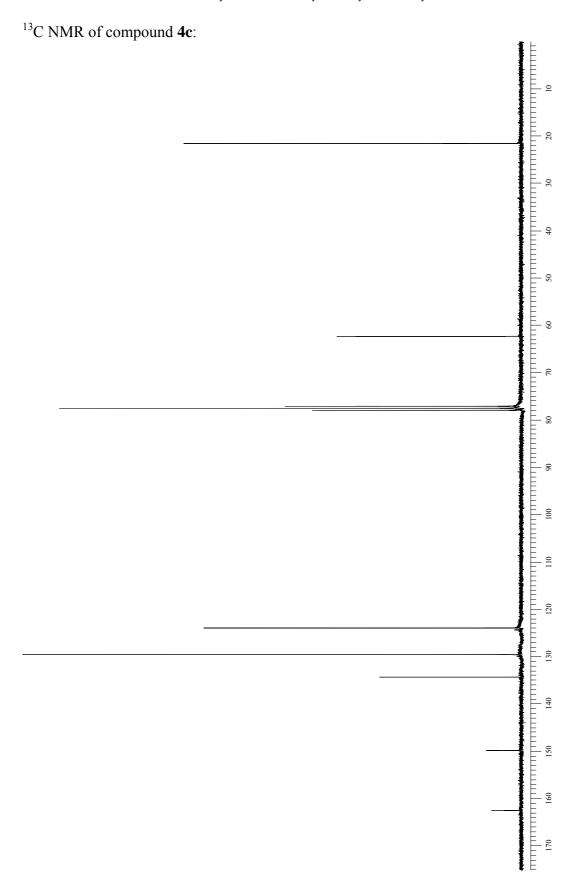


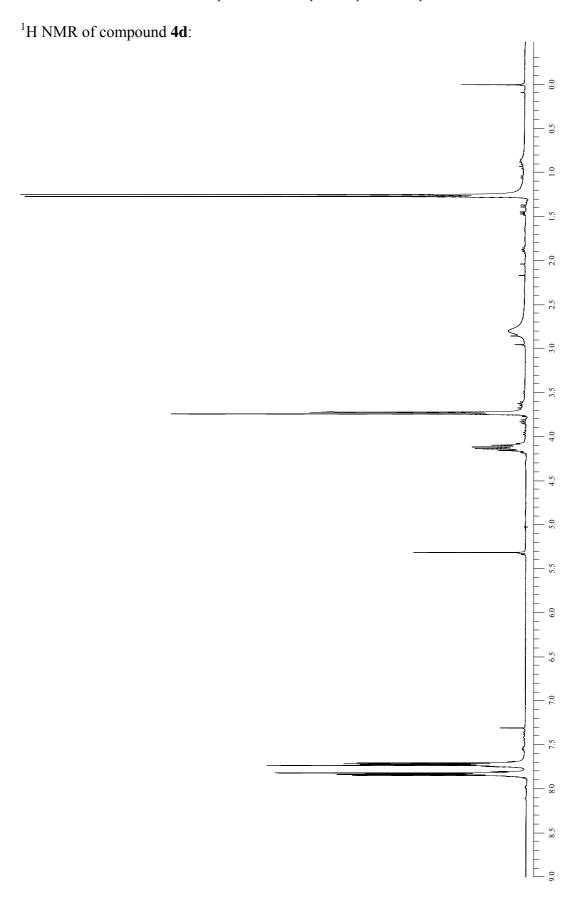

¹³C NMR of compound **2g**:

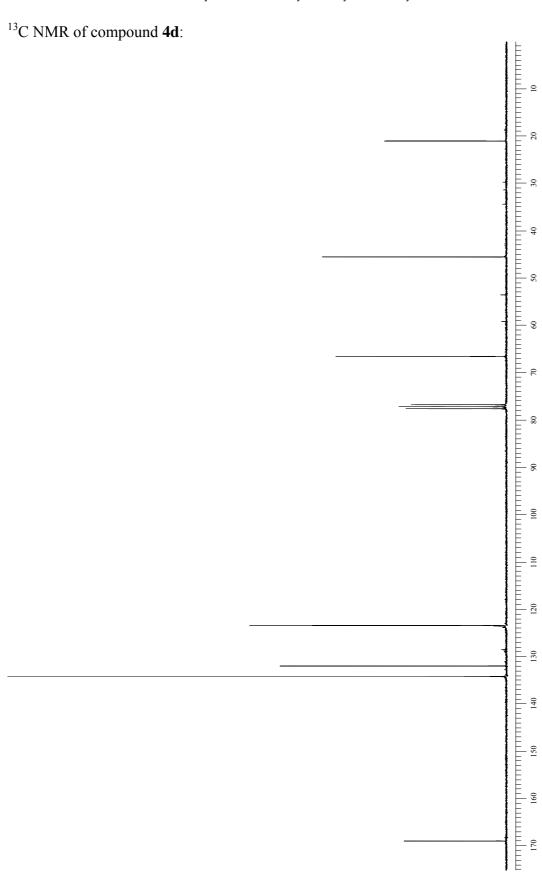


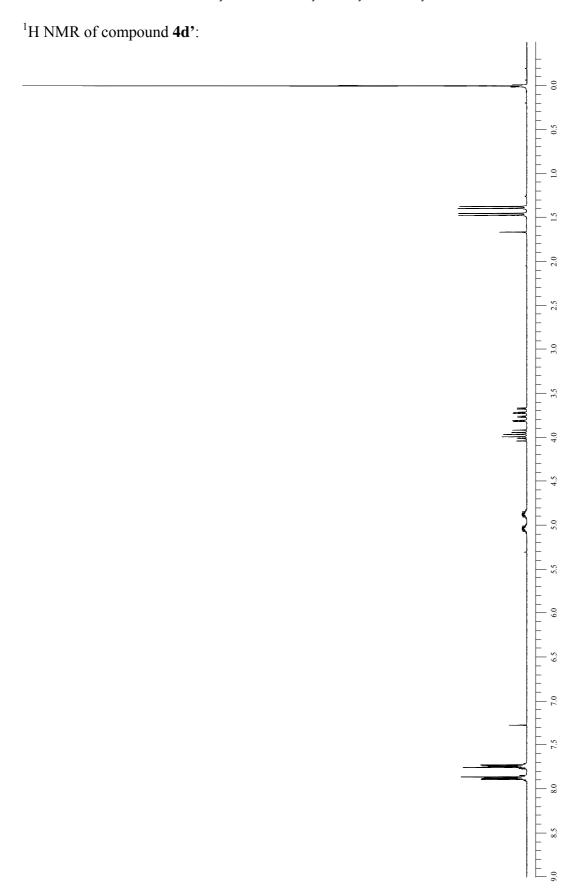


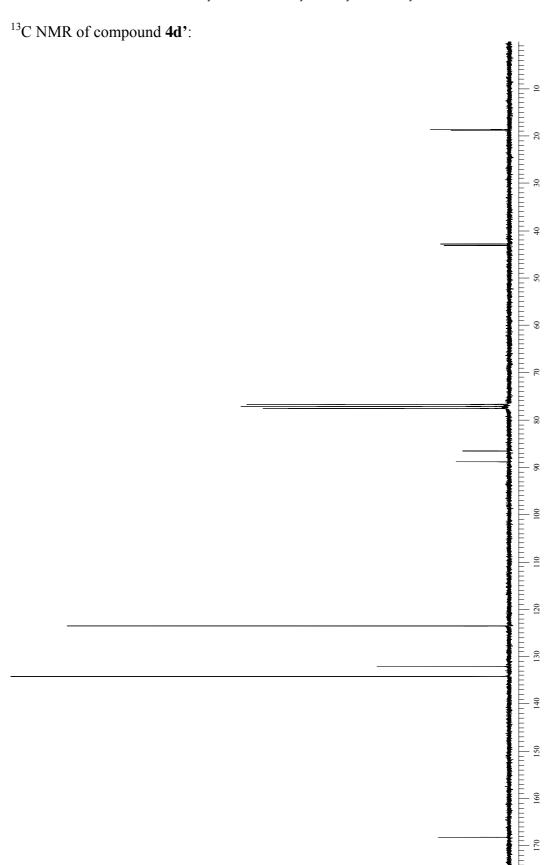


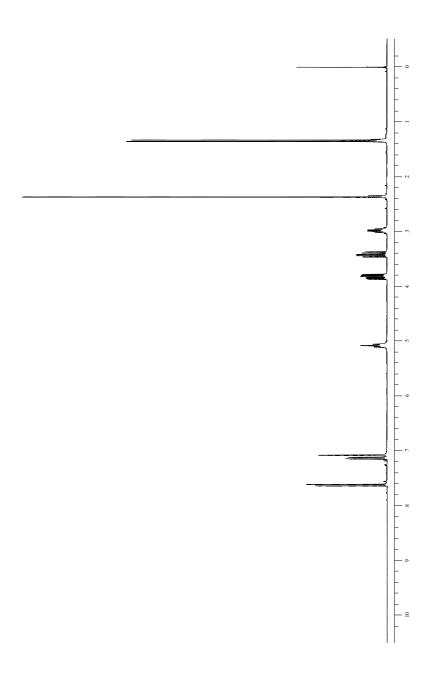


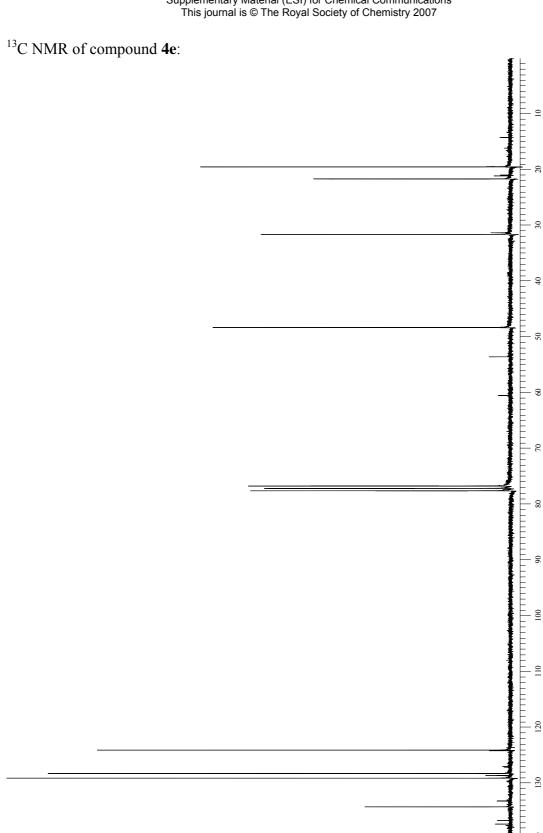


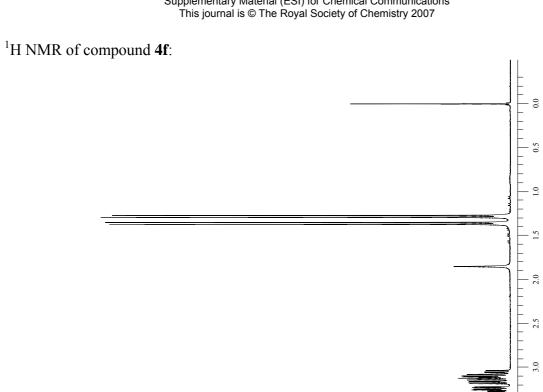


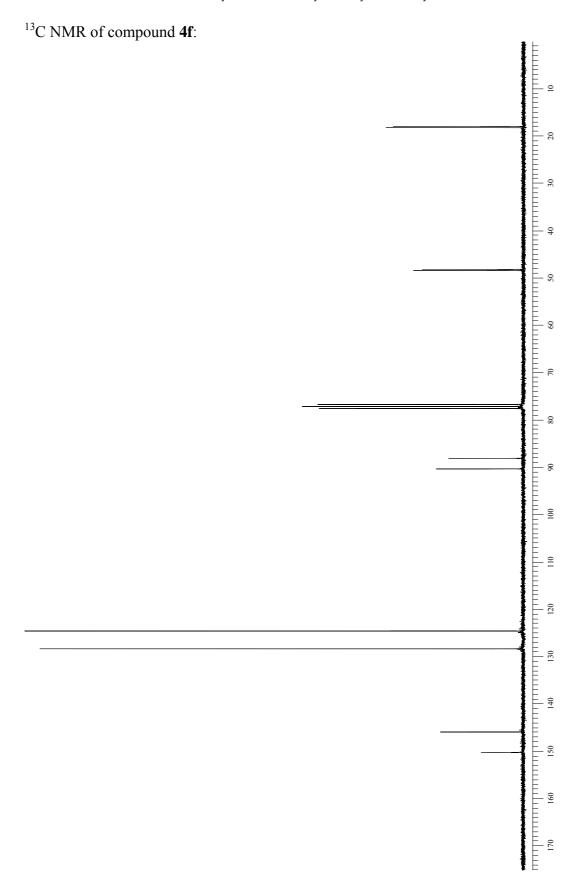


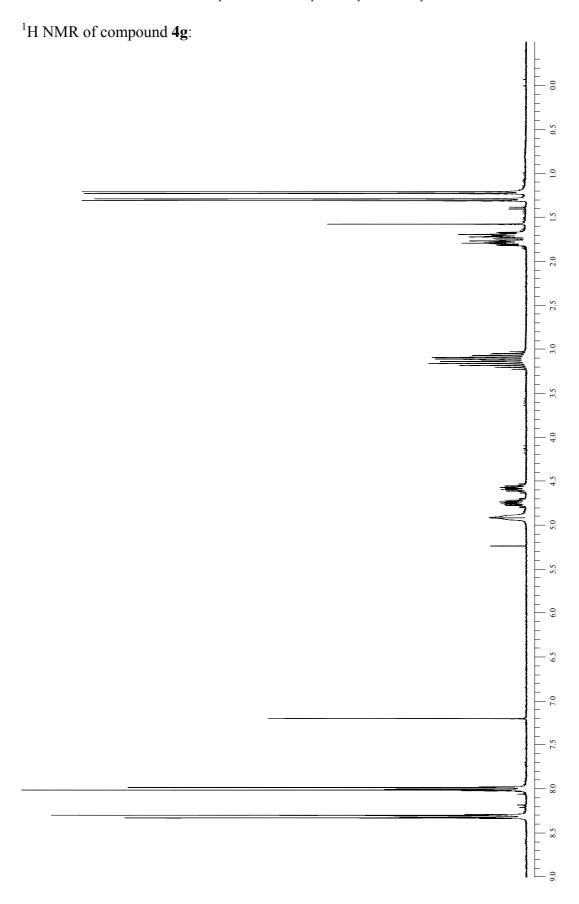











¹H NMR of compound **4e**:

