Total synthesis of (-)-conocarpan and assignment of the absolute configuration by chemical methods

Derrick L. J. Clive* and Elia J. L. Stoffman

SUPPORTING INFORMATION

In ${ }^{1} H$ NMR spectra the J values quoted are spacings measured directly from the spectrum.

All experiments were done under an inert atmosphere (N_{2} or Ar). Column sizes are quoted as diameter x height. 2-Propenoic acid, 3-phenyl-, ethyl ester, (2E)-

$$
(2 E)-3-[4-(\text { Toluene-4-sulfonyloxy) phenyl]-2-propenoic }
$$

Acid
Ethyl Ester (6).

(EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ (11.6 mL, 58.47 mmol), followed by $\mathrm{Et} \mathrm{m}_{3} \mathrm{~N}$ (8.2 $\mathrm{mL}, 8.2 \mathrm{mmol})$, were added to a suspension of LiBr (5.27 g , 61.11 mmol) in THF (136 mL) and the mixture was stirred for 15 min. Aldehyde 5 (13.69 $9,49.55 \mathrm{mmol})$ was then added in one portion and stirring was continued for $4 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added and the organic layer was washed with water, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dissolved in EtOH (150 mL) and, after a few min, the product crystallized and was collected. A second crop was obtained when the filtrate was allowed to stand for several h. The total product, which was a white crystalline solid, weighed 13.88 g (81\%): mp 75-78 ${ }^{\circ} \mathrm{C}$; FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3068,2982 , 1710, 1415,

1200, $1177 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3$ $\mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02$ (apparent d as part of $A A^{\prime} B^{\prime}$ ' system, $J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33$ (apparent d as part of $A^{\prime} B^{\prime}$ system, $J=8.1 \mathrm{~Hz}, 2$ H), 7.45 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62(d, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (apparent d as part of AA'BB' system, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.3(\mathrm{q})$, 21.7 (q), 60.6 (t), 119.3 (d), 122.9 (d), 128.5 (d), 129.2 (d), $129.8(d), 132.3(s), 133.4(s), 142.8(d), 145.6(s), 150.7(s)$, 166.6 (s); exact mass m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S} 346.08749$, found 346.08836. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{SO}_{5}$: C 62.40; H 5.24; S 9.26. Found: C 62.38; H 5.10; S 9.10.

Toluene-4-sulfonic Acid 4-[(1E)-3-Hydroxy-1-propenyl]phenyl Ester (7).

A three-necked flask was equipped with a stopper, a septum, a magnetic stirring bar and an addition funnel. The flask was charged with $6(20.20 \mathrm{~g}, 58.32 \mathrm{mmol})$ and THF (200 mL) was added. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, and the addition funnel was charged with DIBAL-H (1 M in hexane, 128 mL), which was then added dropwise over 1 h with stirring. After the addition, stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 1 h , and the mixture was then quenched by addition of aqueous $\mathrm{NaOH}(1 \mathrm{M}, 50 \mathrm{~mL}$). The aqueous layer was extracted with $E t_{2} \mathrm{O}$ (3 x 50 mL) and the combined organic extracts were washed with aqueous $\mathrm{NaOH}(1 \mathrm{M}, 2 \mathrm{x}$ 50 mL) and brine (1 x 50 mL). The ethereal solution was allowed to stand overnight, during which time an aluminum hydrate precipitated. MgSO_{4} and Celite were added and the mixture was filtered. Evaporation of the filtrate and flash chromatography of the residue over silica gel (5 x 30 cm), using 30-50\% EtOAc-
hexane (gradient elution), gave 7 (16.84 g, 95\%) as a crystalline solid: mp 64-67 ${ }^{\circ} \mathrm{C}$; $\mathrm{FTIR}\left(\mathrm{CHCl}_{3}\right.$ cast) $3363,2868,1597,1501$, 1371, $1197 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.45$ $(s, 3 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{dt}, \mathcal{J}=15.9,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56,(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (apparent d as part of AA'BB' system, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (apparent d as part of $A^{\prime} B^{\prime}$ system, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (apparent dd as part of AA'BB' system, J$=8.6,0.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.70 (apparent d as part of $A^{\prime} B^{\prime}$ system, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.7$ $(q), 63.4(t), 122.5(d), 127.5(d), 128.5(d), 129.4(d), 129.7$ $(d), 132.3(s), 135.8(s), 145.4(s), 148.8(s) ;$ exact mass m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S} 304.07693$, found 304.07651.

Toluene-4-sulfonic Acid 4-[(2S,3R)-3-Hydroxymethyloxyranyl)]phenyl Ester (8a).

Crushed $4 \AA$ molecular sieves (500 mg), activated at $>200{ }^{\circ} \mathrm{C}$ and 0.3 torr for 24 h , were added to a solution of (-)diisopropyl tartrate $(0.050 \mathrm{~mL}, 0.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, and the flask was lowered into a cold bath (-25 $\left.{ }^{\circ} \mathrm{C}, \mathrm{CO}_{2}-\mathrm{CCl}_{4}\right)$. Ti (OPr-i) $4(0.10 \mathrm{~mL}, 0.34 \mathrm{mmol})$ was then added, followed by t $\mathrm{BuOOH}(3 \mathrm{M}$ in isooctane, $1.6 \mathrm{~mL}, 4.8 \mathrm{mmol})$. The mixture was stirred for 10 min and then $7(728.4 \mathrm{mg}, 2.390 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.2 mL plus 0.8 mL as a rinse) was added dropwise by syringe. The mixture was stirred for 2 h and then quenched by addition of aqueous $\mathrm{NaOH}(30 \% \mathrm{w} / \mathrm{v}, 0.38 \mathrm{~mL})$ saturated with NaCl . Stirring was continued for 10 min and then MgSO_{4} (ca 500 mg) and Celite (ca 1 g) were added. The mixture was swirled and the solids were filtered off. Evaporation of the filtrate and flash chromatography of the residue over silica gel (2.5 x 35 cm), using first 50-60\% EtOAc-hexane (step gradient elution) and then

6:3:1 EtOAc-hexane-MeOH, gave 8a (712.4 mg, 93\%) as a white solid: mp 51-53 ${ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CHCl}_{3}\right.$ cast) 3419,3069 , 2986, 2926, 2872, 1598, 1505, 1372, 1198, 1176, $1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.74(\mathrm{dd}, \mathrm{J}=5.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.18$ (ddd, $J=2.3,2.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{ddd}, J=3.6,7.8,12.64 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=2.5,4.9,12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99$ (apparent d as part of AA'BB' system, J = $8.7 \mathrm{~Hz}, 2$ H), 7.21 (apparent d as part of $A^{\prime} B^{\prime}$ system, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.71 (apparent d as part of AA'BB' system, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.0(\mathrm{t}), 55.1(\mathrm{~d}), 61.3$ (t), 62.8 (d), 122.8 $(d), 127.2(d), 128.7(d), 130.1(d), 132.5(s), 136.1(s), 145.7$ (s), 149.7 (s); exact mass m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaOS} 343.06107$, found 343.06134 .

Samples of the Mosher esters (from the above optically active epoxy alcohol and the corresponding racemic epoxy alcohol) were prepared by adding (+)-MTPA-Cl to a stirred solution of the epoxy alcohol and $E t_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Analysis of the derived crude Mosher esters by ${ }^{1} \mathrm{H}$ NMR showed the diastereomeric ratio of the above epoxy alcohol to be 94:6. Analysis of the epoxy alcohol from another batch (but prepared under the same conditions) by chiral HPLC [Chiralpak AD-RH (150 x 4.6 mm), $1: 1$ MeCN-water, flow $0.5 \mathrm{~mL} / \mathrm{min}$, detection at 232 nm . Baseline separation of a racemic sample; retention times 11.9 min and 14.3 min.] showed the enantiomeric ratio to be 94.7:5.3.

4-Nitrobenzoic Acid 3-[(2R,3R)-4-(Toluene-4-sulfonyloxy)phenylloxiranylmethyl Ester (8b).

p-Nitrobenzoyl chloride ($43.6 \mathrm{mg}, 0.235 \mathrm{mmol})$ was added in one portion to a stirred solution of $8 \mathrm{a}(64.3 \mathrm{mg}, 0.201 \mathrm{mmol})$ and
$E t_{3} \mathrm{~N}$ ($\left.0.04 \mathrm{~mL}, 0.3 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL). Stirring was continued for 2 h , and the mixture was then washed once with water, twice with saturated aqueous NaHCO_{3}, and dried (MgSO_{4}). Evaporation of the solvent and crystallization of the residue from MeOH gave 8 b ($67.2 \mathrm{mg}, 70 \%$) as small white needles: mp 102$104{ }^{\circ} \mathrm{C} ; \quad[\alpha]^{22}{ }_{\mathrm{D}}+20.42\left(c \quad 0.62, \mathrm{CHCl}_{3}\right) ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3112, 3057, 2997, 2955, 2868, 1926, 1728, 1598, 1528, 1373 cm¹; 1H NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, \mathrm{J}=12.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, \mathrm{J}=12.3$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (apparent d as part of $A^{\prime} \mathrm{BB}^{\prime}$ system, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$) , 7.24 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33$ (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.1 \mathrm{~Hz}, 2$ H) , 7.72 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.27 (apparent d as part of AA'BB' system, J = 8.9 Hz, 2 H) , 8.33 (apparent d as part of AA'BB' system, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.7(\mathrm{q}), 55.8(\mathrm{~d}), 59.2(\mathrm{~d}), 65.3$ (t), 122.7 $(d), 123.6(d), 126.9(d), 128.5(d), 129.8(d), 130.9(d), 132.3$ $(s), 134.8(s), 134.9(s), 145.5(s), 149.7(s), 150.8(s), 164.4$ (s); exact mass m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{8} S$ 492.07236, found 492.07249. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{8} \mathrm{~S}: ~ \mathrm{C} 58.84$; H 4.08; S 6.83. Found: C 58.82; H 4.14; S 7.07.

A separate sample from a later and larger-scale experiment was crystallized from 7:3 EtOAc-hexane and gave large prisms which had $[\alpha]^{22}+20.22\left(c 0.70, \mathrm{CHCl}_{3}\right)$. This nitrobenzoate was recrystallized again twice from EtOH , and the resulting material (total yield 62\%) was used for the conocarpan synthesis.

Toluene-4-sulfonic
acid
4-[(2R,3R)-(3-Hydroxymethyloxiranyl)]phenyl Ester (8a').

$\mathrm{K}_{2} \mathrm{CO}_{3}(1.90 \mathrm{~g}, 13.7 \mathrm{mmol})$ was added to a stirred solution of

8b (5.46 g, 11.6 mmol) in $80 \% \mathrm{MeOH}$ (100 mL). The mixture was stirred until a clear solution was obtained (ca 2.5 h). The MeOH was then evaporated, the residue was dissolved in EtOAc and the solution was washed three times with saturated aqueous NaHCO_{3} and once with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel (2.5 x 40 cm), using first 50\% EtOAc-hexane containing Et ${ }_{3} N$ (ca 3 drops/100 mL) and then 60% EtOAc-hexane containing $E t_{3} N$ (ca 3 drops/100 $\mathrm{mL})$, gave 8a' (3.6178 g, 97\%).

The hydrolysis was repeated on a small scale, using the same batch of 8 b , and HPLC analysis of the product [Chiralpak AD-RH (150 x 4.6 mm), 1:1 MeCN-water, flow $0.5 \mathrm{~mL} / \mathrm{min}$, detection at 232 nm. Baseline separation of a racemic sample] showed the enantiomeric ratio to be 98.9:1.1. The material had: $[\alpha]{ }^{25}{ }_{D}$ $18.35\left(c 0.75, \mathrm{CHCl}_{3}\right)$; all other data are identical to those reported above.

Toluene-4-sulfonic Acid 4-[(1S,2R)-1-(4-formyl-2,3-dihydroxy-2-iodophenoxy) propyl] phenyl Ester (10). 21

8a'

10

Epoxy alcohol 8a' (er = 99.8:1.1) (1.8694 9, 5.8350 mmol) was added in one portion to a stirred and heated (sand bath, 70 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of 4-hydroxy-3-iodobenzaldehyde ${ }^{19}$ (2.6359 $\mathrm{g}, 10.628$ mmol) in a mixture of aqueous $\mathrm{NaOH}(1 \mathrm{M}, 5.8 \mathrm{~mL}, 5.8 \mathrm{mmol})$ and water (6 mL). Stirring at $70{ }^{\circ} \mathrm{C}$ was continued for 2.5 h . The mixture was allowed to cool and was then poured into aqueous NaOH (1 M, 10 mL). The aqueous phase was extracted with Et ${ }_{2} \mathrm{O}$ and the combined organic extracts were washed with brine and dried (MgSO_{4}). Evaporation of the solvent and flash chromatography of
the residue over silica gel (2.5 x 35 cm), using 50-80\% EtOAchexane containing $E t_{3} N$ (ca 3 drops/100 mL) (gradient elution), gave 10 [2.1124 $9,64 \%$, or 83% based on recovered $8 \mathrm{ar}(436.8 \mathrm{mg}$, 23\%)] as a white, crystalline solid: mp 55-58 ${ }^{\circ} \mathrm{C}$; $[\alpha]{ }^{22}{ }_{\mathrm{D}}-39.52$ (c 5.69, CHCl_{3}); FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) 3417, 3067, 2927, 2883, 2731, 1694, 1587, 1502, 1480, 1371, 1255, 1198, 1177, 1155, 1093, 1038, $869 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.33$ (br s, 1 H) , 2.45 (s, 3 H) , 2.75 (br s, 1 H$), 3.82(\mathrm{dd}, J=3.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (dd, $J=5.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.06(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (apparent d as part of AA'BB' system, J $=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (apparent dd as part of $A^{\prime} B^{\prime}$ system, $J=0.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.33 (apparent d as part of AA'BB' system, J$=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=2.0,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.69 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$) , 8.27 $(d, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 21.7 (q) , $62.3(t), 74.4(d) 81.4(d), 87.4(s), 113.3(d), 122.9$ $(d), 128.2(d), 128.3(d), 129.8(d), 131.7(d), 131.8(s), 132.3$ $(s), 135.2(s), 140.9(d), 145.6(s), 149.6(s), 160.1(s), 189.2$ (d); exact mass m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{INaO}_{7} \mathrm{~S}$ 590.99450, found 590.99454.

Toluene-4-sulfonic Acid 4-[(1S,2R)-1-(4-formyl-2-iodo-phenoxy)-2,3-bismethanesulfonyloxypropyl]phenyl Ester (11).

$E t_{3} N(0.022 \mathrm{~mL}, 0.16 \mathrm{mmol})$ and then $\mathrm{MeSO}_{2} \mathrm{Cl}(0.012 \mathrm{~mL}, 0.16$ mmol) were added to a stirred and cooled ($\left.0{ }^{\circ} \mathrm{C}\right)$ solution of 10 (37.4 mg, 0.0659 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After the addition stirring was continued for 10 min , the cooling bath was removed and stirring was continued overnight. The mixture was washed
twice with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave an oil which was kept under oil pump vacuum for 12 h to give 11 (48.8 mg, 100\%) as a white, crystalline solid: mp 60-64 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{22}{ }_{D}-31.92\left(C \quad 4.10, \mathrm{CHCl}_{3}\right) ; \operatorname{FTIR}\left(\mathrm{CDCl}_{3}\right.$ cast) 3031, 2939, 2849, 1694, 1588, 1503, 1480, 1412, 1365, 1251, 1199, 1178, 1156, 1041, 1017, $866 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.50(\mathrm{~s}, 3 \mathrm{H})$, $2.89(s, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{dd}, \mathrm{J}=2.5,11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.92 (dd, J $=5.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (ddd, $J=2.5,5.8,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (apparent dd as part of $A A^{\prime} B^{\prime}$ system, $J=0.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.73 (apparent d as part of AA'BB' system, J = 8.4 Hz, 2 H), 7.73 (dd, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.84(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.0(\mathrm{q}), 38.0(\mathrm{q}), 38.7(\mathrm{q}), 67.0$ $(t), 78.9(d), 80.4(d), 87.4(s), 113.4(d), 123.8(d), 128.4$ $(d), 128.7(d), 130.2(d), 132.0(d), 132.3(s), 132.6(s), 133.3$ $(s), 141.3(d), 146.0(s), 150.6(s), 159.5(s), 189.3(d) ;$ exact mass m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{INaO}_{11} \mathrm{~S}_{3} 746.94960$, found 746.94935.

Toluene-4-sulfonic Acid 4-[(R)-1-(4-formyl-2-iodophenoxy) allyl]phenyl Ester (12).

$\mathrm{NaI}(91.7 \mathrm{mg}, 0.612 \mathrm{mmol})$ was added to a stirred solution of 11 ($29.5 \mathrm{mg}, 0.0408 \mathrm{mmol}$) in 2 -butanone (2 mL), and the mixture was refluxed for 4 h , and then allowed to cool. The solvent was evaporated and the residue was partitioned between EtOAc and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash
chromatography of the residue over silica gel (0.5 x 20 cm), using 30% EtOAc-hexane, gave $12(15.7 \mathrm{mg}, 71 \%)$ as an amber oil: $[\alpha]^{22}{ }_{D}-8.88\left(c \quad 13.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3065, 2922, 2834, 2727, 1695, 1587, 1501, 1479, 1371, 1252, 1197, 1177, 1154, 1093, $866 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.48(\mathrm{~s}, 3 \mathrm{H}), 5.36$ $(\mathrm{dd}, J=0.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=0.8,17.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{ddd}, J=5.9,10.4,17.0 \mathrm{~Hz}, 1$ H) , $6.88(d, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (apparent d as part of AA'BB' system, J $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (apparent d as part of AA'BB' system, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (apparent d as part of AA'BB' system, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (apparent d as part of AA'BB' system, J $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ $(d, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 21.7 (q), $81.4(d), 87.8(s), 113.6(d), 117.8$ (t), 122.8 (d), $127.8(d), 128.4(d), 129.8(d), 131.5(d), 131.6(s), 132.4(s)$, $136.2(d), 137.6(s), 141.2(d), 145.5(s), 149.3(s), 160.6(s)$, $189.2(d) ;$ exact mass m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{INaO}_{5} S$ 556.98902, found 556.98890. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{IO}_{5} \mathrm{~S}: \mathrm{C} 51.69$; H 3.58; S 6.00. Found: C 51.41; H 3.65; S 5.92.

When the experiment was repeated on a larger scale with the dimesylate (2.1255 g, 2.94 mmol$)$, the yield was 65\% [or 80% based on recovered 11 (398.1 mg, 19\%)].

Toluene-4-sulfonic Acid 4-[(2S,3R)-2,3-Dihydro-5-formyl-3-methylbenzofuran-2-yl]phenyl Ester (13).

A solution of $B u_{3} \operatorname{SnH}(0.62 \mathrm{~mL}, 2.3 \mathrm{mmol})$ and AIBN (48.1 mg, $0.293 \mathrm{mmol})$ in PhMe (18 mL) was added over 4 h (syringe pump) to a stirred and heated ($80{ }^{\circ} \mathrm{C}$) solution of 12 (910.4 mg, 1.704
mmol) in PhMe (18 mL) (N_{2} atmosphere). After the addition the mixture was heated for a further $2 h$ and then allowed to cool. Evaporation of the solvent and flash chromatography of the residue over KF-silica gel $31(10 \% \mathrm{w} / \mathrm{w}, 2.5 \mathrm{x} 30 \mathrm{~cm})$, using 25\% EtOAc-hexane, gave $13(482.6 \mathrm{mg}, 69 \%)$ as a light yellowish oil: $[\alpha]^{22}{ }_{D}-50.54\left(C \quad 0.77, \mathrm{CHCl}_{3}\right) ; \operatorname{FTIR}\left(\mathrm{CHCl}_{3}\right.$ cast) 2964,2928 , 1690, 1605, 1504, 1483, 1373, 1247, 1198, 1177, 1154, 1093, 867 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.40(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.38$ $(\mathrm{s}, 3 \mathrm{H}), 3.31-3.38(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (apparent d as part of AA'BB' system, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 4 \mathrm{H}), 9.80(\mathrm{~s}, 1$ H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ (the spectrum shows minor aromatic impurities) $\delta 18.3$ (q), 21.7 (q), 44.8 (d), 92.7 (d), 109.8 (d), $122.8(d), 124.7(d), 127.1(d) 128.5(d), 129.8$ (d), $131.0(s)$ ($132.4(s), 133.1(s), 133.4(d), 138.9(s), 145.5(s), 149.6$ (s), $164.3(s), 190.5(d) ;$ exact mass m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{5} \mathrm{~S}$ 431.09237, found 431.09242.

Toluene-4-sulfonic Acid 4-[(2R,3S)-2,3-Dihydro-(3-methyl-5-(1E)-1-propenylbenzofuran-2-yl)phenyl Ester (E-14) and Toluene-4sulfonic Acid 4-[(2R,3S)-2,3-Dihydro-3-methyl-5-(1Z)-1-propenylbenzofuran-2-yl] phenyl Ester (z-14).

(a) Use of t-BuOK
t-BuOK (33.0 mg, 0.294 mmol) was added to a stirred suspension of $\mathrm{Ph}_{3} \mathrm{PEt}^{+} \mathrm{I}^{-}(129.6 \mathrm{mg}, 0.3098 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the mixture was stirred for 0.5 h . A solution of 13 (54.2 $\mathrm{mg}, 0.133 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added by syringe. The mixture was stirred for 15 min and then $E t_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the
mixture was washed twice with water, and once with brine and dried $\left(\mathrm{MgSO}_{4}\right)$ Evaporation of the solvent and flash chromatograph of the residue over silica gel (1.5 x 30 cm), using 5-10\% EtOAc-hexane (gradient elution), gave 14 (33.9 mg, 62\%) as a yellowish oil. Integration of the allylic methyl peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum showed the $E: Z$ ratio to be 1:3; apart from this ratio difference, all spectral data corresponded to those reported below for the $97: 3$ mixture of the same compounds.
(b) Use of BuLi

BuLi (1.6 M in hexanes, $0.06 \mathrm{~mL}, 0.096 \mathrm{mmol}$) was added to a stirred and cooled ($0{ }^{\circ} \mathrm{C}$) suspension of $\mathrm{Ph}_{3} \mathrm{PEt} \mathrm{I}^{-}$(39.5 mg , $0.0944 \mathrm{mmol})$ in THF (2 mL). Stirring was continued for 15 min and $13(35.7 \mathrm{mg}, 0.0796 \mathrm{mmol})$ in THF (1.3 mL plus 0.3 mL as a rinse) was added dropwise by syringe. Stirring was continued for 2 h and the mixture was then quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$, and partitioned between water (5 mL) and $\mathrm{Et}_{2} \mathrm{O}$ (10 mL). The organic extract was dried (MgSO_{4}) and evaporated. Flash chromatography of the residue over silica gel $(0.5 \times 30 \mathrm{~cm})$, using 20% EtOAc-hexane containing ca $1 \% \mathrm{Et} \mathrm{H}_{3} \mathrm{~N}$, gave 14 (23.2 mg, 69\%) as a yellowish oil, which was a mixture of Z and E isomers.

Toluene-4-sulfonic Acid 4-[(2R,3S)-2,3-Dihydro-3-methyl-5-(1E)-1-propenylbenzofuran-2-yl] phenyl Ester (15)

(a) Short reaction time
$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(9.4 \mathrm{mg}, 0.025 \mathrm{mmol})$ was added to a stirred solution of 14 ($102.3 \mathrm{mg}, 0.2433 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$, and
stirring was continued for 23 h . $\mathrm{Et}_{2} \mathrm{O}$ (3 mL) was added and the solution was filtered through a pad of Florisil (3 x 2 cm) using $\mathrm{Et}_{2} \mathrm{O}$ (25 mL). Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 30 cm) using 8\% EtOAc-hexane containing $E t_{3} N$ (ca 3 drops/100 mL), gave 15 (100.9 mg, 99\%) as a colorless oil which contained 3.1\% of the Z isomer (${ }^{1} \mathrm{H}$ NMR): $[\alpha]{ }^{22}{ }_{\mathrm{D}}-59.93\left(\mathrm{C} 2.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3021, 2962, 2928, 1598, 1503, 1486, 1375, 1243, 1199, 1177, 1154, 1094, 968, $868 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.42(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{dd}, \mathrm{J}=1.7,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $3.34(\mathrm{~m}, ~ 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dq}, \mathrm{J}=6.7,15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.36$ (dd, J = $1.7,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99$ (apparent d as part of AA'BB' system, $J=8.7 \mathrm{~Hz}, 2$ H), $7.12(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.13(\mathrm{~m}, ~ 1 \mathrm{H}), 7.32$ (apparent dd as part of AA'BB' system, J = 0.7, $7.9 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.33 (apparent d as part of AA'BB' system, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.72 (apparent d as part of AA'BB' system, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 18.3$ (q), 18.4 (q), 21.7 (q), 45.6 (d), 91.7 (d), 109.3 (d), 120.8 (d), 122.6 (d), 123.3 (d), 126.4 (d), 127.2 (d), 128.5 (d), 129.8 $(d), 130.6(d), 131.6(s), 131.8(s), 132.4(s), 140.0(s), 145.4$ (s), 149.3 (s), 158.1 (s); exact mass m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NaO}_{4} \mathrm{~S}$ 443.12875, found 443.12864.
(b) Long reaction time
$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(5.3 \mathrm{mg}, 0.0138 \mathrm{mmol})$ was added to a stirred solution of $14(36.0 \mathrm{mg}, 0.0856 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$, and stirring was continued for 10 days. The solution was filtered through a pad of Florisil ($1 \times 1 \mathrm{~cm}$), using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (0.5 x 30 cm), using 13\% EtOAc-hexane containing $E t_{3} \mathrm{~N}$ (ca 3 drops $/ 100 \mathrm{~mL}$), gave 15 (30.5 mg , 85%) as a colorless oil with spectral data identical to those reported above, except that the Z isomer could not be detected in the ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz).
4-[(2R,3R)-2,3-Dihydro-3-methyl-5-(1E)-1-propenylbenzo-

furan-2-yl]phenol [(+)-Conocarpan] (1).

$\mathrm{Na}(\mathrm{Hg})$ (Aldrich, $10 \% \mathrm{Na}, 868.9 \mathrm{mg}, 3.779 \mathrm{mmol} \mathrm{Na}$) were added in one portion to a stirred solution of 15 (197.0 mg, 0.4685 mmol) in $80 \% \mathrm{MeOH}(8 \mathrm{~mL})$, and stirring was continued overnight. The solution was then decanted from the Hg , and diluted with water (10 mL). The mixture was extracted with Et ${ }_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$, by which stage the aqueous layer was free of product (TLC control, silica, 30\% EtOAc-hexane). The combined organic extracts were washed with brine and dried (MgSO_{4}). Evaporation of the solvent and flash chromatography of the residue over silica gel (1.5 x 25 cm), using 0-15\% EtOAc-hexane, gave 1 (119.0 mg, 95\%) as a white, crystalline solid: mp 120-123 ${ }^{\circ} \mathrm{C}$ [lit. 4 a 133-135 ${ }^{\circ} \mathrm{C}$; lit. 4 g 124-126 $\left.{ }^{\circ} \mathrm{C}\right]$; $[\alpha]_{\mathrm{D}}^{22}-82.24$ (C 1.04 , MeOH$)$, Lit. ${ }^{4 \mathrm{a}}[\alpha]^{21_{D}}+122$ (c 1.03, MeOH); FTIR (microscope, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3395, 3022, 2962, 2928, 2882, 1614, 1517, 1487, 1240, 1202, 1171, 964, 831; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.40(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.86$ $(\mathrm{dd}, J=1.6,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.37-3.43(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H})$, $5.08(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dq}, J=6.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ $(d, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (apparent d as part of $A A^{\prime} B^{\prime}$ system, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.12-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.30 (apparent d as part of $A A^{\prime} B B '^{\prime}$ system, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 17.9(\mathrm{q}), 18.4(\mathrm{q}), 45.3(\mathrm{~d}), 92.7(\mathrm{~d})$, 109.3 (d), $115.5(d), 120.8(d), 123.1(d), 126.3(d), 127.9(d)$, $130.8(d), 131.3(s), 132.4(s), 132.9(s), 155.7(s), 158.3$ (s); exact mass m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$ 282.16199, found 282.16095. HPLC analysis [Chiralcel OD column (0.46 x 15.0 cm); 90:10 heptane-isopropanol; flow rate $0.6 \mathrm{~mL} / \mathrm{min} ; 40{ }^{\circ} \mathrm{C}$; detection at $210 \mathrm{~nm}]$ of our synthetic conocarpan showed that it had ee of 88%
(i.e. enantiomeric ratio $=94: 6$)

Toluene-4-sulfonic Acid 4-[(2R,3R)-3-(methanesulfonyloxymethyl)oxiranyl]phenyl Ester (16).

$\mathrm{MeSO} 2_{2} \mathrm{Cl}(0.14 \mathrm{~mL}, 1.8 \mathrm{mmol})$ was added dropwise by syringe to a stirred and cooled ($0{ }^{\circ} \mathrm{C}$) solution of 8a' (514.6 mg, 1.606 mmol) and $E t_{3} N(0.30 \mathrm{~mL}, 2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Ar atmosphere). The mixture was stirred for 1 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed once with water (6 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave 16 as a colorless oil that was used without further purification: $[\alpha] 22_{\mathrm{D}}+16.33\left(c 1.56, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl} l_{3}\right.$ cast) 3032, 1598, 1506, 1359, 1199, 1177, 1155, 1093, $868 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.30$ (ddd, J $=2.0,3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ $(\mathrm{dd}, \mathrm{J}=5.6,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=3.2,12.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.72 (apparent d as part of $A A^{\prime} B B^{\prime}$ system, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.0(\mathrm{q}), 38.2(\mathrm{q}), 56.0(\mathrm{~d}), 59.1(\mathrm{~d}), 68.8$ $(t), 123.0(d), 127.2(d), 128.8(d), 130.1(d), 132.5(s), 134.7$ $(s), 145.8(s), 150.1(s) ;$ exact mass m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{7} \mathrm{~S}_{2}$ 421.03862, found 421.03835.

Toluene-4-sulfonic Acid 4-[(S)-1-Hydroxyallyl]phenyl Ester (17) .

NaI (2.42 g, 16.1 mmol$)$ was added to a stirred solution of 16 (total product from previous experiment, ca 1.6 mmol) in glyme (8 mL). The vessel was flushed with Ar and the mixture was refluxed for 12 h , and then allowed to cool. The mixture was diluted with EtOAc (10 mL), washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(8 \mathrm{~mL})$, water $(8 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.5 x 30 cm), using 27\% EtOAc-hexanes containing a trace (0.4-1\% $\mathrm{v} / \mathrm{v})$ of $E t_{3} \mathrm{~N}$, gave $17(279.8 \mathrm{mg}, 57 \%$ over 2 steps from the hydroxy epoxide) as a colorless oil: $[\alpha]^{22}{ }_{D}+4.63$ (c 0.57, $\left.\mathrm{CHCl}_{3}\right) ; \operatorname{FTIR}\left(\mathrm{CHCl}_{3}\right.$ cast) 3533, 3400, 3068, 2981, 2924, 2872, 1597, 1500, 1402, 1371, 1197, 1175, 1154, 1093, $867 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}}^{\mathrm{N}} \mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta 1.10(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 4.62-$ $4.65(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{dt}, \mathrm{J}=1.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dt}, \mathrm{J}=$ $1.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.64$ (ddd, J$=5.9,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (apparent d as part of $A A^{\prime} \mathrm{BB}^{\prime}$ system, J $=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.92-9.98 $(\mathrm{m}, 4 \mathrm{H}), 7.63$ (apparent d as part of AA'BB' system, J = 8.3 Hz, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right)$ (two signals coincident) $\delta 21.2$ $(q), 74.4(d), 114.7(t), 122.6(d), 128.7(d), 129.8(d), 133.4$ $(s), 140.5(d), 142.3(s), 144.9(s), 149.5(s) ;$ exact mass m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{4} \mathrm{~S} 327.06615$, found 327.06657.

Attempts to prepare the Mosher ester by a literature method ${ }^{32}$ gave material that had clearly undergone extensive epimerization during the derivatization, as the ratio of diastereoisomers was 2.3:0.95 (${ }^{1} \mathrm{H}$ NMR), while the parent epoxide had an er of 98.9:1.1. We were unable to separate the corresponding racemic alcohol by chiral HPLC.

```
    Toluene-4-sulfonic Acid 4-[(S)-1-(tert-Butyldimethyl-
silanyloxy)allyl]phenyl Ester (18).
```


17
18
$t-\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.25 \mathrm{~mL}, 1.1 \mathrm{mmol})$ was added dropwise by syringe to a stirred and cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of 17 (269.8 $\mathrm{mg}, 0.8865 \mathrm{mmol})$ and sym-collidine ($0.26 \mathrm{~mL}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) (Ar atmosphere). Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 15 min and then saturated aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$ was added and the cooling bath was removed. After ca $15 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added and the mixture was washed with water (8 mL), dried (MgSO_{4}) and evaporated. Flash chromatography of the residue over silica gel (1.5 x 25 cm), using 13\% EtOAc-hexanes containing a trace (0.5-1\%v/v) of $E t_{3} N$, gave $18(370.6 \mathrm{mg}, 100 \%)$ as a colorless oil: $[\alpha] 2_{\mathrm{D}}-6.46\left(\mathrm{C} 1.21, \mathrm{CHCl}_{3}\right) ; \operatorname{FTIR}\left(\mathrm{CHCl}_{3}\right.$ cast) 2954, 2928, 2885, 2856, 1598, 1499, 1472, 1376, 1294, 1197, 1175, 1154, 1093, 865 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right) \delta 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 1.02$ $(s, 9 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{dt}, \mathrm{J}=1.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ $(d, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=1.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (ddd, J $=5.9,10.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.67 (apparent dd as part of AA'BB' system, J $=0.7,8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (apparent d as part of AA'BB' system, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (apparent dd as part of $A^{\prime} B^{\prime}$ system, J$=0.6,8.9 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.71 (apparent d as part of $A^{\prime} B^{\prime}$ system, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right) \delta-4.8$ $(q), 18.4(s), 21.1(q), 26.0(q), 75.6(d), 113.8(t), 122.6$ $(d), 127.4(d), 128.8(d), 129.6(d), 133.6(s), 141.4(d), 142.7$ (s), 144.7 (s), 149.5 (s); exact mass m / z calcd for $C_{22} \mathrm{H}_{30} \mathrm{NaO}_{4}$ SSi 441.15263, found 441.15262.

Toluene-4-sulfonic Acid 4-[(S)-1-(tert-Butyldimethylsilanyloxy) propyl]phenyl Ester (19).

$\mathrm{Rh}-\mathrm{Al}_{2} \mathrm{O}_{3}(5 \% \mathrm{w} / \mathrm{w}, 9.7 \mathrm{mg}, 0.0047 \mathrm{mmol})$ was added to a solution of $18(30.3 \mathrm{mg}, 0.0724 \mathrm{mmol})$ in THF (1.8 mL). The mixture was stirred and degassed by sequentially evacuating the flask (house vacuum) and then admitting H_{2}, this sequence being repeated twice more. The mixture was stirred overnight under H_{2} (balloon) and then filtered through a short pad (0.5 x 1 cm) of silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a rinse. Evaporation of the filtrate gave 19 ($30.3 \mathrm{mg}, ~ 99 \%$) as a colorless oil: [$\alpha]^{22}{ }_{\mathrm{D}}-26.43$ (c 3.03, $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{FTIR}\left(\mathrm{CHCl}_{3}\right.$ cast) 3034, 2957, 2929, 2857, 1598, 1501, 1472, 1463, 1378, 1257, 1198, 1175, 1155, 1094, 1060, 1014 $\mathrm{Cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H})$, 1.00 (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.72-1.88(\mathrm{~m}, 2 \mathrm{H})$, 2.61 (s, 3H), 4.70 (apparent $t, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$) , 7.08 (apparent d as part of $A A^{\prime} B^{\prime}$ system, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$) , 7.36 (apparent das part of $A A^{\prime} B^{\prime}$ system, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (apparent d as part of AA'BB' system, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (apparent d as part of AA'BB' system, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-5.0$ (q), -4.7 (q), 9.8 (q), 18.2 (s), 21.7 (q), 25.8 (q), 33.5 (t), $75.5(d), 121.9(d), 127.0(d), 128.5(d), 129.6(d), 132.3(s)$, $144.7(s), 145.2(s), 148.3(s) ;$ exact mass m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NaO}_{4}$ SSi 443.16828, found 443.16826.

4-[(S)-1-(tert-Butyldimethylsilanyloxy) propyl]phenol (20).

$\mathrm{Na}(\mathrm{Hg}) \quad(815.0 \mathrm{mg}, 10 \% \mathrm{Na}, 3.543 \mathrm{mmol})$ was added to a
stirred, cloudy solution of 19 ($316.4 \mathrm{mg}, 0.7444 \mathrm{mmol}$) in 80% $\mathrm{MeOH}(5.4 \mathrm{~mL})$. The flask was flushed with Ar and stirring was continued for 45 min to give a clear, colorless solution. The mixture was then decanted from the remaining amalgam into a separatory funnel containing phosphate buffer solution $\left(\mathrm{KH}_{2} \mathrm{PO}_{4}-\right.$ $\mathrm{NaOH}, \mathrm{pH} 7,8 \mathrm{~mL}$) and $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. Saturated aqueous oxalic acid (2 mL) was then added and the biphasic mixture was shaken and separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 6 mL) and the combined organic extracts were washed with brine, dried (MgSO_{4}) and evaporated. Flash chromatography of the residue over silica gel (1.5 x 25 cm), using 0-20\% EtOAc-hexanes (gradient elution), gave 20 as a colorless oil (119.3 mg, 60\%) and recovered 19 (102.3 mg, 32\%). Phenol 20 had: [19$]^{22}{ }_{\mathrm{D}}-19.32$ (c 1.41, $\left.\mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$ cast) 3349, 3024, 2958, 2930, 2858, 1614, 1600, 1514, 1472, 1463, 1361, 1252, 1059, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$ (phenolic OH not observed) $\delta-0.09$ (s, 3 H) , 0.05 $(s, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.66-1.88(\mathrm{~m}$, $2 \mathrm{H}), 4.54$ (dd, J$=5.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}$) , 6.62 (apparent d as part of AA'BB' system, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (apparent dd as part of $A^{\prime} B^{\prime}$ system, $\left.J=0.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right) \delta-$ $4.8(q),-4.4(q), 10.3(q), 18.4(s), 26.1(q), 34.1(t), 76.5$ $(d), 115.1(d), 127.4(d), 137.7(s), 155.4$ (s); exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaO}_{2}$ Si 289.15943, found 289.15935.

Trifluoromethanesulfonic Acid 4-[(S)-1-(tert-butyldimethylsilanyloxy) propyl]phenyl Ester (21).

$\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(0.07 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was added dropwise by syringe to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of $20(99.9 \mathrm{mg}, 0.375$ mmol) and $E t_{3} N(0.09 \mathrm{~mL}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ (Ar
atmosphere). Stirring was continued for 10 min and then saturated aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$ was added. The cooling bath was removed and the mixture was poured into a separatory funnel containing water (5 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was shaken and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using 13\% EtOAc-hexanes containing a trace (0.5-1\% v/v) of Et ${ }_{3} \mathrm{~N}$, gave 21 (111.6 mg, 75\%) as a colorless oil: [$\left.\alpha\right]^{22}{ }_{\mathrm{D}}-21.08$ (c 0.48, $\left.\mathrm{CHCl}_{3}\right) ; ~ F T I R ~\left(\mathrm{CHCl}_{3}\right.$ cast) 2959, 2932, 2859, 1500, 1427, 1251, 1214, 1143, 890, 861, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right) \delta$ $0.00(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s} 3 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, $9 \mathrm{H})$, 1.57-1.77 (m, 2 H$), 4.54(\mathrm{dd}, \mathrm{J}=5.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (apparent d as part of AA'BB' system, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (apparent dd as part of AA'BB' system, J = 0.5, 8.9 Hz, 2 H) ; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right) \delta-5.0(q),-4.7(q), 9.7(q), 18.3(\mathrm{~s}), 25.9$ (q), 33.6 (t), 75.4 (d), $119.3\left(\mathrm{~s}, \mathrm{CF}_{3}\right.$ quartet, $\left.J=318.6 \mathrm{~Hz}\right)$, $121.0(d), 127.7$ (d), $146.1(s), 148.6(s) ; ~ e x a c t ~ m a s s ~ m / z ~ c a l c d$ for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{SSi} 421.10872$, found 421.10906 .
(S) -tert-Butyldimethyl (1-phenylpropoxy)silane (22).

Pd-C (10\% w/w, $60.8 \mathrm{mg}, 0.0571 \mathrm{mmol})$ was added to a solution of 21 ($99.0 \mathrm{mg}, 0.248 \mathrm{mmol})$ and $E t_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.79 \mathrm{mmol})$ in EtOAC (5 mL). The stirred mixture was degassed by sequentially evacuating the flask (house vacuum) and then admitting H_{2}, the procedure being repeated twice more. A hydrogen-filled balloon was then left in place and stirring was continued for 3 h . The heterogeneous mixture was filtered through a short pad (0.5 x 1.0 cm) of silica gel, using EtOAc as a rinse. Evaporation of the solvent gave 22 ($62.6 \mathrm{mg}, 100 \%$) as a yellowish oil: $[\alpha]^{22}{ }_{\mathrm{D}}$ -
$32.21\left(c 0.66, \mathrm{CHCl}_{3}\right) ; \operatorname{FTIR}\left(\mathrm{CHCl}_{3}\right.$ cast) $3065,3028,2958,2930$, 2858, 1493, 1472, 1463, 1453, 1361, 1257, 1104, 1086, 1058, 1013, 860, 837, 775, 699 cm¹; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right) \delta-0.10(\mathrm{~s}, 3 \mathrm{H})$, $0.04(s, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.58-$ $1.79(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=5.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07($ tt, $J=$ $1.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right) \delta-4.8(\mathrm{q}),-4.5(\mathrm{q}), 10.2(\mathrm{q}), 18.4$ (s), 26.1 (q) , $34.0(t), 76.7(d), 126.2(d), 127.2(d), 128.3(d)$, 145.8 (s); exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaOSi} 273.16451$, found 273.16448.
(S)-1-Phenylpropan-1-ol (23).

$\mathrm{Bu}_{4} \mathrm{NF}$ (1 M in THF, $0.3 \mathrm{~mL}, 0.3 \mathrm{mmol}$) was added to a stirred solution of 22 (56.0 mg, 0.224 mmol) in THF (3.6 mL) (Ar atmosphere). The mixture was stirred for 12 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$ (8 mL) and washed with water (2 x 4 mL) and once with brine (4 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (0.5 x 30 cm), using $20 \% \mathrm{Et}_{2} \mathrm{O}$-pentane containing a trace $(0.5-1 \% \mathrm{v} / \mathrm{v})$ of $E t_{3} \mathrm{~N}$, gave an impure product. Further purification by Kugelrohr distillation and flash chromatography over silica gel (0.5 x 30 cm), using 20\% EtOAchexanes containing a trace ($0.5-1 \% \mathrm{v} / \mathrm{v}$) of $E t_{3} N$, gave 23 (21.5 mg, 71\%) as a colorless liquid whose ${ }^{1} \mathrm{H}$ NMR spectrum was identical to that reported. 28 The material had: [α] ${ }^{22_{D}}-29.26$ (c 1.23, CHCl_{3}) [Lit. $\left.28,29[\alpha]_{\mathrm{D}}^{22}-45.6\left(c 1.3, \mathrm{CHCl}_{3}\right)\right]$ indicating an er $=88: 12$.

References

31 D. C. Harrowven and I. L. Guy, Chem. Comm. 2004, 1968-1969.
32 A. J. M. Janssen, A. J. H. Klunder and B. Zwanenburg,

100 MHz APT
100 MHz APT in CDC13 (ref. to CDC13@ 77
0 ppm), temp 26.8 C -> actual temp $=27$
$c \&$ CB2 same, CH \& CH3 opposite side of
$\exp 2$ apt

apt
SAMPL
Nov

∞
exp1
date
dot

12
$\underbrace{\square}$

14


```
        & % %
```


4

$\| M$
$=$
$\begin{array}{r}6 \quad 0 \tau \\ \ldots \quad-\quad, \quad 1 \\ \hline\end{array}$
$400 \mathrm{MHz} \mathrm{1D} \mathrm{in} \mathrm{C6D6} \mathrm{(ref} .\mathrm{to} \mathrm{C6D6} \mathrm{a} 7.15$ pm), temp $m 400 \mathrm{gz}$ probe
exp2 $\quad \mathbf{s 2 p u 1}$

15 in $\mathrm{C}_{6} \mathrm{D}_{6}$
15 in $\mathrm{C}_{6} \mathrm{D}_{6}$
(10-day reaction)

1,

exp1

300 MHz 1D in CDC13 (ref. to CDC13@ 7.2
6 ppm), temp $27.5 \mathrm{C} \rightarrow$ actual temp $=27$.
0 c , 1d probe
exp1 s2pul

23

