Organocatalytic Asymmetric Friedel-Crafts Alkylation/Cascade Reactions of Naphthols and Nitroolefins

Tian-Yu Liu,^a Hai-Lei Cui,^a Qian Chai,^a Jun Long,^a Bang-Jing Li,^b Yong Wu,^a Li-Sheng Ding,^b Ying-Chun Chen^{*,a,c}

^a Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China, ^b Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, ^c State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China

E-mail: ycchenhuaxi@yahoo.com.cn

Supplementary Information

Table of Contents	
1. General Methods	S2
2. General procedure for the Friedel-Crafts reaction	S2-S7
3. Crystal data and structure refinement for enantiopure tosylate of 4ah and racem	ic
5aa	S7-S10
4. Plausible mechanism for the cascade reaction of F-C product	S10-11
5. NMR and HPLC spectra of the products	S12-S55

General Methods

NMR spectra were recorded with tetramethylsilane as the internal standard. Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. Optical rotations were measured at 589 nm at 20 °C. TLC was performed on glass-backed silica plates. Enantiomeric excess was determined by HPLC analysis on Chiralpak AS, AD and OD columns. Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997).

General procedure for thiourea-tertiary amine catalyzed asymmetric Friedel-Crafts Reaction and domino reactions of naphthols 2 and nitroalkenes 3

Catalyst **1a** (5.6 mg, 0.01 mmol, 10 mol %), naphthol **2** (0.10 mmol), and 4A MS (20 mg) were stirred in dry toluene (0.80 mL) and cooled to the desired temperature under argon. Then nitroalkene **3** (0.15 mmol) in dry toluene (0.2 mL) were added. After the stated reaction time, the product was purified by flash chromatography on silica gel (*previously saturated with cold petroleum ether in order to retard the unreacted starting materials*) to give the product **4** and **5**. For the F-C reaction, the reaction was generally conducted for 96 h. For the domino reactions, the reaction was extended to 144 h. The enantiomeric excess was determined by HPLC analysis on chiral column.

4aa 80% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20}$ = -27.3 (c = 0.26 in CHCl₃); 93% *ee*, determined by HPLC analysis [Daicel Chiralcel AS, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 13.92 min, t(minor) = 16.06 min]; ¹H NMR (300 MHz, CDCl₃): δ = 8.12 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.55-7.50 (m, 1H), 7.39-7.34 (m, 3H), 7.31-7.22 (m, 3H), 6.97 (d, J = 8.8 Hz, 1H),

(III, III), 7.577.54 (III, 511), 7.577.22 (III, 511), 0.577 (II, 512), 1.577.22 (III, 511), 0.577.22 (III, 511), 0.577.2

4ab 82% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20}$ = -24.0 (c = 0.30 in CHCl₃); 94% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 23.72 min, t(major) = 30.46 min]; ¹H NMR (300 MHz, CDCl₃): δ = 8.07 (d, *J* = 8.7 Hz, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.56-7.50 (m, 1H), 7.40-7.35 (m, 1H), 7.32-7.29 (m, 2H), 7.26-7.22 (m, 2H),

6.97 (d, J = 8.8 Hz, 1H), 5.81 (t, J = 7.3 Hz, 1H), 5.46 (dd, J = 8.1, 13.2 Hz, 1H), 5.44 (s, 1H), 5.30 (dd, J = 6.7, 13.3 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.3$, 138.1, 132.9, 130.3, 129.6, 129.0, 128.9, 128.8, 127.6, 123.7, 122.2, 118.3, 117.2, 78.2, 40.5 ppm; ESI-HRMS: calcd. for C₁₈H₁₄ClNO₃+Na 350.0554, found 350.0555.

4ac 81% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = +23.9$ (c = 0.28 in CHCl₃); 91% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 21.75 min, t(major) = 27.68 min]; ¹H NMR (300 MHz, CDCl₃): δ = 8.09 (d, *J* = 8.7 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.56-7.50 (m,

1H), 7.40-7.32 (m, 3H), 7.00-6.93 (m, 3H), 5.81 (t, J = 7.4 Hz, 1H), 5.46 (dd, J = 8.1, 13.2 Hz, 1H), 5.35-5.28 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 161.8$ (d, ¹ $J_{C,F} = 244.3$ Hz), 151.2, 135.3, 132.9, 130.2, 129.7, 129.2, 129.0 (d, ³ $J_{C,F} = 8.0$ Hz), 127.6, 123.7, 122.3, 118.3, 117.4, 115.6 (d, ² $J_{C,F} = 21.2$ Hz), 78.5, 40.6 ppm; ESI-HRMS: calcd. for C₁₈H₁₄FNO₃+Na 334.0850, found 334.0834.

4ad 69% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = -14.4$ (c = 0.26 in CHCl₃); 85% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 15.40 min, t(major) = 21.53 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.13$ (d, J = 8.7 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.55-7.50 (m, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H),

7.10 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 8.8 Hz, 1H), 5.84 (t, J = 7.5 Hz, 1H), 5.45 (dd, J = 8.0, 13.2 Hz, 1H), 5.31 (dd, J = 7.0, 13.2 Hz, 1H), 5.25 (s, 1H), 2.29 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.4$, 136.9, 136.3, 133.0, 129.9, 129.5, 128.9, 127.4, 127.2, 123.6, 122.4, 118.5, 117.7, 78.2, 40.7, 21.0 ppm; ESI-HRMS: calcd. for C₁₉H₁₇NO₃+Na 330.1101, found 330.1095.

4ae 74% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = -22.4$ (c = 0.24 in CHCl₃); 85% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t(minor) = 25.02 min, t(major) = 30.06 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.12$ (d, J = 8.6 Hz, 1H), 7.78 (dd, J = 1.1, 8.1 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz,

1H), 7.31-7.28 (m, 2H), 6.96 (d, J = 8.8 Hz, 1H), 6.83-6.80 (m, 2H), 5.80 (t, J = 7.5 Hz, 1H), 5.45 (dd, J = 8.1, 13.2 Hz, 1H), 5.33-5.28 (m, 2H), 3.75 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.4$, 133.0, 131.3, 130.0, 129.7, 129.1, 129.0, 128.5, 127.4, 123.6, 123.0, 122.4, 118.5, 117.7, 114.2, 78.4, 55.2, 40.5 ppm; ESI-HRMS: calcd. for C₁₉H₁₇NO₄+Na 346.1050, found 346.1051.

4af 72% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D{}^{20} = -14.1$ (c = 0.18 in CHCl₃); 91% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 14.77 min, t(major) = 18.63 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.14$ (d, J = 8.6 Hz, 1H), 7.79 (dd, J = 0.83, 8.1 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.58-7.51 (m, 1H), 7.40-7.35 (m, 1H), 7.20-7.18 (m, 3H),

7.06-7.05 (m, 1H), 6.94 (d, J = 8.8 Hz, 1H), 5.84 (t, J = 7.5 Hz, 1H), 5.45 (dd, J = 7.8, 13.2 Hz, 1H), 5.36-5.29 (m, 2H), 2.29 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.5$, 139.3, 138.5, 133.0, 129.9, 129.6, 128.9, 128.7, 128.1, 128.0, 127.4, 124.3, 123.6, 122.4, 118.5, 117.5, 78.2, 40.9, 21.5 ppm; ESI-HRMS: calcd. for C₁₉H₁₇NO₃+Na 330.1101, found 330.1109.

4ag 77% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20}$ = -17.5 (c = 0.32 in CHCl₃); 90% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 14.57 min, t(major) = 25.75 min]; ¹H NMR (300 MHz, CDCl₃): δ = 8.05 (d, J = 8.7 Hz, 1H), 7.80 (dd, J = 0.76, 8.1 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.59-7.50 (m, 1H), 7.41-7.34 (m, 2H), 7.00 (d, J = 8.8 Hz, 1H), 6.31-6.30 (m, 1H), 6.11 (d, J = 3.3 Hz, 1H), 5.98 (t, J = 7.2 Hz, 1H), 5.58 (s, 1H), 5.47 (dd,

J = 8.8, 13.3 Hz, 1H, 5.13 (dd, J = 6.7, 13.3 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 152.1, 151.9, 142.0, 132.7, 130.4, 129.6, 129.0, 127.4, 123.7, 122.2, 118.5, 114.8, 110.6, 106.9, 76.2, 35.4 ppm; ESI-HRMS: calcd. for C₁₆H₁₃NO₄+Na 306.0737, found 306.0730.$

4ah 79% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = +17.5$ (c = 0.35 in CHCl₃); 94% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 19.11 min, t(major) = 24.79 min]; ¹H NMR (300 MHz, CDCl₃): δ = 8.11 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.58-7.50 (m, 1H), 7.43-7.37 (m, 1H), 7.17 (dd, J = 1.2, 5.1 Hz, 1H), 7.02-6.97 (m, 2H), 6.93-6.90 (m, 1H), 6.09 (t, J = 7.2 Hz, 1H), 5.55 (s, 1H), 5.48 (dd, J =

2H), 6.93-6.90 (m, 1H), 6.09 (t, J = 7.2 Hz, 1H), 5.55 (s, 1H), 5.48 (dd, J = 7.8, 13.3 Hz, 1H), 5.32 (dd, J = 6.7, 13.3 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.6$, 142.6, 132.6, 130.4, 129.6, 129.0, 127.5, 126.8, 125.0, 124.8, 123.7, 122.1, 118.3, 117.0, 78.7, 37.0 ppm; ESI-HRMS: .calcd. for C₁₆H₁₃NO₃S+Na 322.0508, found 322.0508.

4ai 69% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = -5.7$ (c = 0.60 in CHCl₃); 94% *ee*, determined by HPLC analysis [Daicel Chiralcel AS, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 7.25 min, t(minor) = 9.27 min]; ¹H NMR (300 MHz, CDCl₃): δ = 8.13 (d, *J* = 8.9 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 1H), 5.26 (s, 1H), 5.09-5.02 (m, 1H),

4.99-4.93 (m, 1H), 4.53-4.46 (m, 1H), 2.23-2.07 (m, 1H), 1.84-1.69 (m, 1H), 1.34-1.09 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.4$, 133.8, 129.4, 128.8, 127.1, 123.4, 122.5, 118.1, 117.7, 78.6, 36.5, 33.0, 20.9, 14.1 ppm; ESI-HRMS: .calcd. for C₁₅H₁₇NO₃+Na 282.1101, found 282.1090.

4ba 81% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 13:1); $[\alpha]_D{}^{20} = -47.9$ (c = 0.24 in CHCl₃); 91% *ee*, determined by HPLC analysis [Daicel Chiralcel AS, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t(minor) = 16.48 min, t(major) = 18.21 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.66$ (d, J = 8.9 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.38-7.24 (m, 6H), 7.01 (dd, J = 2.4, 8.9 Hz, 1H), 6.82 (d, J = 1000

8.7 Hz, 1H), 5.76 (t, J = 7.3 Hz, 1H), 5.46 (dd, J = 7.9, 13.2 Hz, 1H), 5.30 (dd, J = 6.9, 13.2 Hz, 1H), 5.23 (br.s, 1H), H), 3.87 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 158.9$, 152.0, 139.7, 134.4, 130.4, 129.8, 128.8, 127.4, 127.2, 125.0, 116.7, 115.8, 115.7, 102.0, 78.3, 55.2, 41.3 ppm; ESI-HRMS: .calcd. for C₁₉H₁₇NO₄+Na 346.1050, found 346.1055.

4bb 83% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 12:1); $[\alpha]_D{}^{20} = -51.0$ (c = 0.20 in CHCl₃); 95% *ee*, determined by HPLC analysis [Daicel Chiralcel AS, *n*-hexane/*i*-PrOH = 92/8, 1.0 mL/min, $\lambda = 254$ nm, t(minor) = 20.71 min, t(major) = 24.11 min]; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.67$ (d, J = 8.9 Hz, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.31-7.23 (m, 5H), 7.03 (dd, J = 2.4, 8.9 Hz, 1H), 6.82 (d, J = 1000

8.7 Hz, 1H), 5.69 (t, J = 7.3 Hz, 1H), 5.45 (dd, J = 8.1, 13.3 Hz, 1H), 5.30-5.23 (m, 2H), 3.89 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 159.0$, 151.9, 138.3, 130.5, 130.0, 129.2, 129.1, 128.8, 125.0, 116.3, 115.7, 115.6, 101.9, 78.3, 55.3, 40.8 ppm; ESI-HRMS: .calcd. for C₁₉H₁₆ClNO₄+H 358.0841, found 358.0844.

4ca 72% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = -41.3$ (c = 0.21 in CHCl₃); 90% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 11.40 min, t(major) = 13.53 min]; ¹H NMR (300 MHz, DMSO): δ = 10.31 (s, 1H), 8.07-8.04 (m, 2H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.55 (dd, *J* = 2.1, 9.2 Hz, 1H), 7.37 (d, *J* = 7.2 Hz, 2H),

7.30-7.26 (m, 2H), 7.24-7.16 (m, 2H), 5.71-5.64 (m, 1H), 5.60-5.51 (m, 2H) ppm; ¹³C NMR (75 MHz, DMSO): $\delta = 153.8$, 139.9, 131.7, 130.3, 129.8, 129.5, 128.6, 128.4, 127.5, 126.7, 124.8, 120.0, 117.0, 115.4, 77.9, 59.7 ppm; ESI-HRMS: calcd. for C₁₈H₁₄BrNO₃-H 370.0084, found 370.0090.

4cb 77% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = -43.7$ (c = 0.26 in CHCl₃); 90% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 11.73 min, t(major) = 14.65 min]; ¹H NMR (300 MHz, DMSO): δ = 10.36 (s, 1H), 8.08-8.06 (m, 2H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.56 (dd, *J* = 2.0, 9.2 Hz, 1H), 7.44-7.28 (m, 4H), 7.22 (d, *J* =

8.9 Hz, 1H), 5.71-5.63 (m, 1H), 5.58-5.56 (m, 2H) ppm; ¹³C NMR (75 MHz, DMSO): δ = 153.8, 138.9, 131.6, 130.3, 129.7, 129.6, 129.4, 128.8, 128.4, 124.8, 119.9, 116.6, 115.5, 77.5, 59.7 ppm; ESI-HRMS: calcd. for C₁₈H₁₃BrClNO₃-H 403.9695, found 403.9690.

4db 67% yield (catalyzed by **1b** derived from quinine); yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = +33.9$ (c = 0.26 in CHCl₃); 80% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, λ = 254 nm, t(major) = 9.39 min, t(minor) = 25.47 min]; ¹H NMR (300 MHz, CDCl₃): δ =

7.94-7.91 (m, 1H), 7.82-7.79 (m, 1H), 7.55-7.49 (m, 2H), 7.46 (d, J = 8.2 Hz, 1H), 7.32-7.25 (m, 4H), 7.19 (d, J = 8.6 Hz, 1H), 5.69 (br.s, 1H), 5.43 (t, J = 8.1 Hz, 1H), 5.18-5.08 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 148.3$, 137.4, 133.8, 133.5, 129.2, 128.3, 126.5, 126.2, 125.3, 124.5, 121.7, 119.9, 119.7, 77.9, 42.7 ppm; ESI-HRMS: calcd. for C₁₈H₁₄ClNO₃+Na 350.0554, found 350.0560.

5aa 64% yield; white solid; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D{}^{20} = +301.0$ (c = 0.30 in CHCl₃); >99.5% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 6.01 min, t(minor) = 10.33 min]; ¹H NMR (300 MHz, CDCl₃): δ = 7.85-7.80 (m, 4H), 7.36-7.27 (m, 18H), 5.73 (d, *J* = 4.3 Hz, 2H), 5.29 (d, *J* = 4.2 Hz, 2H), 5.13 (s, 1H) ppm; ¹³C NMR (75

MHz, CDCl₃): $\delta = 156.9$, 142.0, 130.2, 130.0, 129.8, 128.9, 128.8, 128.1, 127.2, 126.7, 123.0, 122.9, 120.3, 111.7, 104.0, 51.0 ppm; ESI-HRMS: calcd. for C₃₆H₂₇NO₃+Na 544.1883, found 544.1888.

5ab 63% yield; white solid; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{20} = +292.4$ (c = 0.35 in CHCl₃); >99.5% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 6.60 min, t(minor) = 11.82 min]; ¹H NMR (300 MHz, DMSO): δ = 8.86 (s, 1H), 7.87 (d, *J* = 8.6 Hz, 4H), 7.42-7.34 (m, 6H), 7.31-7.23 (m, 10H), 5.79 (d, *J* = 4.0 Hz, 2H), 5.25 (d, *J* = 3.7 Hz,

2H) ppm; ¹³C NMR (75 MHz, DMSO): δ = 156.8, 141.4, 131.5, 129.9, 129.8, 129.5, 129.2, 128.9, 128.8, 126.9, 122.8, 122.2, 120.5, 111.8, 103.7, 49.0 ppm; ESI-HRMS: calcd. for C₃₆H₂₅Cl₂NO₃+Na 612.1104, found 612.1095.

5ac 57% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{20} = +317.9$ (c = 0.24 in CHCl₃); >99.5% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH =

90/10, 1.0 mL/min, λ = 254 nm, t(major) = 6.32 min, t(minor) = 11.70 min]; ¹H NMR (300 MHz, DMSO): δ = 8.85 (s, 1H), 7.86 (d, *J* = 8.9 Hz, 4H), 7.38-7.13 (m, 16H), 5.78 (d, *J* = 4.0 Hz, 2H), 5.25 (d, *J* = 3.9 Hz, 2H) ppm; ¹³C NMR (75 MHz, DMSO): δ = 161.2 (d, ¹*J*_{*C,F*} = 241.5 Hz), 156.7, 138.6, 130.0, 129.8 (d, ³*J*_{*C,F*} = 5.2 Hz), 129.6, 129.2, 128.9, 126.8, 122.8, 122.3, 120.8, 115.6 (d, ²*J*_{*C,F*} = 21.2 Hz), 111.8, 103.8, 49.0 ppm; ESI-HRMS:

calcd. for C₃₆H₂₅F₂NO₃+Na 580.1695, found 580.1621.

5ah 61% yield; white solid; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{20} = +283.4$ (c = 0.34 in CHCl₃); >99.5% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 6.19 min, t(minor) = 8.40 min]; ¹H NMR (300 MHz, CDCl₃): δ = 7.82-7.78 (m, 4H), 7.48 (d, *J* = 7.9 Hz, 2H), 7.36-7.25 (m, 6H), 7.20 (t, *J* = 3.1 Hz, 2H), 6.95 (d, *J* = 3.4 Hz, 4H), 5.75 (d, *J* = 4.2

Hz, 2H), 5.59 (d, J = 4.2 Hz, 2H), 5.05 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.6$, 145.2, 130.4, 130.2, 129.8, 128.8, 127.1, 126.8, 125.5, 124.9, 123.2, 122.9, 119.7, 111.7, 103.9, 45.9 ppm; ESI-HRMS: calcd. for C₃₂H₂₃NO₃S₂+Na 556.1012, found 556.1004.

5ai 52% yield; white solid; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{20} = +285.5$ (c = 0.40 in CHCl₃); >99.5% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 4.85 min, t(minor) = 6.21 min]; ¹H NMR (300 MHz, CDCl₃): δ = 7.81 (d, *J* = 8.1 Hz, 2H), 7.76-7.68 (m, 4H), 7.48-7.43 (m, 2H), 7.32-7.27 (m, 2H), 7.17 (d, *J* = 8.8 Hz, 2H), 5.61 (d, *J* = 2.9 Hz,

2H), 4.87 (s, 1H), 4.11-3.94 (m, 2H), 2.10-1.96 (m, 2H), 1.82-1.75 (m, 2H), 1.55-1.40 (m, 4H), 0.96 (t, J = 7.4 Hz, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.3$, 130.2, 129.7, 129.2, 129.0, 126.6, 122.8, 122.4, 121.1, 111.8, 102.7, 100.0, 44.8, 35.6, 19.6, 14.1 ppm; ESI-HRMS: calcd. for C₃₀H₃₁NO₃+Na 476.2196, found 476.2201.

5bb 67% yield; white solid; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{20} = +63.2$ (c = 0.22 in CHCl₃); >99.5% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 9.09 min, t(minor) = 19.00 min]; ¹H NMR (300 MHz, CDCl₃): δ = 7.72-7.68 (m, 4H), 7.29 (d, *J* = 8.6 Hz, 4H), 7.21 (d,

J = 8.5 Hz, 4H), 7.10 (d, J = 8.7 Hz, 2H), 6.92 (dd, J = 2.4 Hz, 8.9 Hz, 2H), 6.51 (d, J = 2.4 Hz, 2H), 5.63 (d, J = 4.4 Hz, 2H), 5.19 (d, J = 4.4 Hz, 2H), 5.05 (br.s, 1H), 3.65 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 158.4$, 157.3, 140.2, 133.1, 131.3, 130.4, 130.0, 129.6, 129.1, 125.2, 119.0, 115.6, 109.0, 103.8, 101.5, 55.0, 50.4 ppm; ESI-HRMS: calcd. for C₃₈H₂₉Cl₂NO₅+Na 672.1315, found 672.1325.

5cc 64% yield; white solid; $R_f = 0.1$ (petroleum ether/EtOAc = 20:1); $[\alpha]_D^{20} = +234.8$ (c = 0.23 in CHCl₃); >99.5% *ee*, determined by HPLC analysis [Daicel Chiralcel AD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 18.50 min, t(major) = 24.79 min]; ¹H NMR (300 MHz, CDCl₃):

δ = 7.96 (d, J = 1.7 Hz, 2H), 7.69 (d, J = 8.9 Hz, 2H), 7.34 (dd, J = 1.9, 8.9 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.21-7.13 (m, 6H), 6.99 (t, J = 8.6 Hz, 4H), 5.61 (d, J = 4.3 Hz, 2H), 5.22 (d, J = 4.2 Hz, 2H), 5.14 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 162.1 (d, ¹ $J_{C,F} = 244.8$ Hz), 157.0, 137.2, 131.0, 130.8, 130.2, 129.6 (d, ³ $J_{C,F} = 8.1$ Hz), 129.4, 128.5, 124.5, 120.4, 116.8, 115.9 (d, ² $J_{C,F} = 21.3$ Hz), 112.7, 104.0, 50.0 ppm; ESI-HRMS: calcd. for C₃₆H₂₃Br₂F₂NO₃+Na 735.9905, found 735.9910.

4cc was obtained as a minor product in 23% yield; yellow oil; $R_f = 0.1$ (petroleum ether/EtOAc = 15:1); $[\alpha]_D^{20} = -44.0$ (c = 0.26 in CHCl₃); 91% *ee*, determined by HPLC analysis [Daicel Chiralcel OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 11.95 min, t(major) = 12.91 min]; ¹H NMR (300 MHz, DMSO): δ = 10.36 (s, 1H), 8.10-8.07 (m, 2H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.56 (dd, *J* = 2.1, 9.2

Hz, 1H), 7.44-7.39 (m, 2H), 7.22 (d, J = 8.9 Hz, 1H), 7.11 (t, J = 8.9 Hz, 2H), 5.70-5.63 (m, 1H), 5.59-5.49 (m, 2H) ppm; ¹³C NMR (75 MHz, DMSO): $\delta = 161.0$ (d, ${}^{I}J_{C,F} = 241.5$ Hz), 153.7, 136.0, 135.9, 131.6, 130.3, 129.7, 129.5 (d, ${}^{3}J_{C,F} = 8.0$ Hz), 128.7, 124.8, 120.0, 116.9, 115.5, 115.2 (d, ${}^{2}J_{C,F} = 21.2$ Hz), 77.9, 59.7 ppm; ESI-HRMS: calcd. for C₁₈H₁₃BrFNO₃-H 387.9990, found 387.9987.

Crystal data and absolute configuration of enantiopure *p*-Tosylate of 4ah

In order to determine the absolute configuration of the F-C product catalysed by bifunctional 1a, the oily chiral adduct 4ah was converted to the corresponding *p*-tosylate. Then enantiopure crystals suitable for X-ray analysis were obtained from a mixture of EtOAc and *n*-hexane. Its absolute configuration was determined to be (*S*), therefore the absolute configuration of the tertiary carbon center of 4ah was (*S*) (thermal ellipsoids are shown at 30% probability).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Identification code	4ah tosylate
Empirical formula	C23 H19 N O5 S2
Formula weight	453.51
Temperature	290(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	a = 10.090(2) A alpha = 90 deg.
	b = 10.883(2) A beta = 101.95(2) deg.
	c = 20.027(4) A gamma = 90 deg.
Volume	2151.5(7) A^3
Z, Calculated density	4, 1.400 Mg/m^3
Absorption coefficient	0.283 mm^-1
F(000)	944
Crystal size	0.48 x 0.40 x 0.26 mm
Theta range for data collection	1.04 to 25.50 deg.
Limiting indices	-12<=h<=12, -13<=k<=13, -24<=l<=24
Reflections collected / unique	9211 / 7999 [R(int) = 0.0192]
Completeness to theta $= 25.50$	100.0 %
Absorption correction	Empirical
Max. and min. transmission	0.9837 and 0.9296
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7999 / 1 / 562
Goodness-of-fit on F^2	0.886
Final R indices [I>2sigma(I)]	R1 = 0.0439, $wR2 = 0.0786$
R indices (all data)	R1 = 0.0856, wR2 = 0.0868
Absolute structure parameter	-0.02(6)
Extinction coefficient	0.0058(4)
Largest diff. peak and hole	0.230 and -0.346 e.A^-3

Crystal data and structure refinement for racemic 5aa

Identification code	5aa
Empirical formula	C37 H31.50 N O4
Formula weight	554.13
Temperature	289(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, C2/c
Unit cell dimensions	a = 30.038(4) A alpha = 90 deg.
	b = 9.530(1) A beta = 124.57(1) deg.
	c = 24.662(4) A gamma = 90 deg.
Volume	5813.3(14) A^3
Z, Calculated density	8, 1.266 Mg/m^3
Absorption coefficient	0.082 mm^-1
F(000)	2340
Crystal size	0.56 x 0.34 x 0.28 mm
Theta range for data collection	1.65 to 25.50 deg.
Limiting indices	0<=h<=36, 0<=k<=11, -29<=l<=24
Reflections collected / unique	6867 / 5409 [R(int) = 0.0175]
Completeness to theta $= 25.50$	100.0 %
Absorption correction	None

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5409 / 2 / 413
Goodness-of-fit on F ²	0.864
Final R indices [I>2sigma(I)]	R1 = 0.0439, wR2 = 0.0515
R indices (all data)	R1 = 0.1273, wR2 = 0.0599
Extinction coefficient	0.00166(4)
Largest diff. peak and hole	0.179 and -0.158 e.A^-3

Plausible mechanism for thiourea-tertiary amine catalysed cascade reactions of Friedel-Craft product.

We have proposed a plausible mechanism for the novel domino reactions. As illustrated in above scheme, two molecular **4aa** might be concertedly activated by the bifunctional thiourea-tertiary amine catalyst, and serve as electrophile and nucleophile, respectively, to give intermediate **6**, which would produce **7** after removing a H₂O. The observed kinetic resolution might be attained in the presence of a chiral catalyst. Then one hydroxyl group would attack the adjacent nitrone functionality to generate the desired dihydrofuranyl-2-hydroxylamine structure. Finally, the nitro group of **8** might be substituted by the hydroxyl group to form the other dihydrofuranyl composition through the elimination of a nitrous acid (HNO₂).¹ In fact, the pH value of the solution of domino reactions is found to be much lower than that of the starting materials, which shows that the acidic compound is generated in the domino reactions. Moreover, a simple base (such as the arrangement of K₂CO₃ and 18-crown-6 or TMG) could smoothly promoted the same

domino reactions, indicating that one **4aa** (nitroalkane) would be deprotonated and react with the electrophilic nitro group of other **4aa**, and then the domino reactions would be facilitated. Nevertheless, the real reaction mechanism still remains to be explored.

Reference

 In a related reaction, 7-methyl-3-phenyl-4H-furo[3,2-b]-chromen-4-one rather than the dimerisation product observed in our reaction was obtained from 7-Methyl 4-hydroxycoumarin by condensing with nitrostyrene, see: F. H. Havaldar and S. S. Bhise, *Indian J. Heterocyclic Chem.* 2003, 13, 15.

NMR spectra and HPLC chromatograms

ppm

175

S16

0

20.00 cm 4.00 cm 200.000 ppm 10093.55 Hz -0.005 ppm -0.38 Hz 10.00025 ppm/cm 754.69641 Hz/cm

CPOPA NUC2 PCP02 PL2 PL12 PL13 SF02

62

rameters

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	19.104	695915	3.25	21546	5.64
2	24.790	20722681	96.75	360291	94.36

S29

ppm

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	9.390	815364	90.15	35992	95.05
2	25.470	89137	9.85	1873	4.95

	RT (min)	Area (V*sec)	% Area	Height (V)	% Height
1	6.601	4573572	99.97	246985	99.92
2	11.817	1596	0.03	-205	0.08

S51

50

| 100

150

ppm

20.00 cm 12.00 cm 00.005 ppm 093.93 Hz -0.500 ppm -37.73 Hz .02525 ppm/cm .58307 Hz/cm

10. 756.

