Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007 Luminescent Metallogel of Platinum(II) Terpyridyl Complexes: Interplay of Metal····Metal, π-π and Hydrophobic—Hydrophobic Interactions on Gel Formation

Anthony Yiu-Yan Tam, Keith Man-Chung Wong, Guoxin Wang and Vivian Wing-Wah Yam*

Supplementary Information

Experimental Procedures:

Synthesis of 1-OTf: [Pt(tpy)Cl]OTf^{2b,d} with 3,4,5-tri(dodecyloxy)phenylacetylene⁷ in the presence of a catalytic amount of CuI in degassed DMF and NEt₃. The resultant mixture was stirred overnight at room temperature. Upon addition of CH₃CN, the solution was stirred for further 10 minutes. The precipitate formed was filtered. Subsequent purification by the slow vapour diffusion of diethyl ether into a dichloromethane solution of 1-OTf yielded the pure form of the product as a red solid. 1-OTf: Yield = 244 mg (40 %). ¹H NMR (400 MHz, d⁶-DMSO, 353 K, δ /ppm): δ 9.25 (d, *J* = 4.7 Hz, 2H, terpyridyl H), 8.64-8.57 (m, 5H, terpyridyl H), 8.51-8.47 (dt, *J* = 1.4, 7.9 Hz, 2H, terpyridyl H), 7.96-7.92 (dt, *J* = 1.4, 7.1 Hz, 2H, terpyridyl H), 6.74 (s, 2H, -C₆H₂-), 4.03-4.00 (t, *J* = 6.4 Hz, 4H, -OCH₂-), 3.94-3.91 (t, *J* = 6.4 Hz, 2H, -OCH₂-), 1.77-1.68 (m, 6H, -CH₂-), 1.51-1.47 (m, 6H, -CH₂-), 1.29-1.27 (m, 48H, -CH₂-), 0.89-0.85 (m, 9H, -CH₃); IR (Nujol, *v*/cm⁻¹): 2115 (w) *v*(C=C), 1164 (s) *v*(S=O); Positive-ion FAB-MS: m/z 1082 [M - OTf]⁺; elemental analysis calcd (%) for C₆₀H₈₈N₃F₃O₆SPt· CH₃CN·3CH₃CH₂OCH₂CH₃: C 60.09, H 8.16, N 4.33; found: C 59.89, H 7.79, N 3.91.

1-PF₆: Yield = 162 mg (27 %). ¹H NMR (400 MHz, d⁶-DMSO, 353 K, δ /ppm): δ 9.22 (d, *J* = 4.7 Hz, 2H, terpyridyl H), 8.62-8.55 (m, 5H, terpyridyl H), 8.50-8.45 (dt, *J* = 1.4, 7.9 Hz, 2H, terpyridyl H), 7.94-7.90 (dt, *J* = 1.4, 7.9 Hz, 2H, terpyridyl H), 6.73 (s, 2H, -C₆H₂-), 4.02-3.99 (t, *J* = 6.3 Hz, 4H, -OCH₂), 3.92-3.89 (t, *J* = 6.3 Hz, 2H, -OCH₂), 1.77-1.64 (m, 6H, -CH₂-), 1.51-1.41 (m, 6H, -CH₂-), 1.38-1.26 (m, 48H, -CH₂-), 0.88-0.83 (m, 9H, -CH₃); IR (Nujol, *v*/cm⁻¹): 2122 (w) *v*(C=C), 751 (s) *v*(P - F); Positive-ion FAB-MS: m/z 1082 [M - PF₆]⁺; elemental analysis calcd (%) for C₅₉H₈₈N₃F₆O₃PPt·1.5H₂O: C 57.31, H 7.26, N 3.40; found: C 57.25, H 7.20, N 3.58.

Synthesis of 2-OTf: [Pt(¹Bu₃tpy)Cl]OTf^{2b,d} reacted with 3,4,5-tri(dodecyloxy)phenylacetylene⁷ using a procedure similar to that for 1-OTf except that CH₂Cl₂ was used as the solvent. 2-OTf: Yield = 253 mg (71 %). ¹H NMR (300 MHz, d⁶-acetone, 298 K, δ /ppm): δ 9.24-9.22 (d, *J* = 6.0 Hz, 2H, terpyridyl H), 8.85 (s, 2H, terpyridyl H), 8.80-8.78 (d, *J* = 1.5 Hz, 2H, terpyridyl H), 7.96-7.93 (dd, *J* = 1.9, 6.0 Hz, 2H, terpyridyl H), 6.75 (s, 2H, -C₆H₂-), 4.04-4.00 (t, *J* = 6.3 Hz, 4H, -OCH₂-), 3.98-3.94 (t, *J* = 6.3 Hz, 2H)

2H, -OCH₂-), 1.85-1.70 (m, 6H, -CH₂-), 1.56-1.52 (m, 9H, -^{*t*}Bu; 6H, -CH₂-), 1.50 (s, 18H, -^{*t*}Bu), 1.37-1.28 (m, 48H, -CH₂-), 0.88-0.84 (m, 9H, -CH₃); IR (Nujol, ν/cm^{-1}): 2116 (w) $\nu(C=C)$, 1158 (s) $\nu(S=O)$; Positive-ion FAB-MS: m/z 1250 [M - OTf]⁺; elemental analysis calcd (%) for $C_{72}H_{112}N_3F_3O_6SPt \cdot CH_3CN \cdot 0.5CH_2Cl_2$: C 60.32, H 7.88, N 3.78; found: C 60.49, H 8.08, N 3.81.

N-(4-ethynylphenyl)-3,4,5-(trioctyloxy)benzamide: of **Synthesis** of То а solution 3,4,5-(trioctyloxy)benzoic acid^{6a} dissolved in dry CH₂Cl₂ (20 ml) was added dropwise SOCl₂ (2 ml). The resulting mixture was stirred at room temperature for 2 hours under nitrogen atmosphere. The excess SOCl₂ was distilled off under reduced pressure. In a 100-mL 2-necked round-bottomed flask equipped with a dropping funnel, 4-ethynylaniline was dissolved in dry CH₂Cl₂ (20 mL) and NEt₃ (2 mL). The acid chloride was transferred into the dropping funnel via cannula and then added dropwise at 0 °C. The mixture was gradually brought to room temperature and stirred for 12 hours. The mixture was washed with water and then dried over anhydrous Na2SO4. After removal of the solvent, the residue was purified by column chromatography on silica gel (5 % ethyl acetate in hexane) to give the pure product as a yellow solid (223 mg, 38 %). ¹H NMR (300 MHz, d¹-chloroform, 298 K, δ/ppm): δ 7.83 (s, 1H, -NH), 7.61-7.58 (d, J = 9.0 Hz, 2H, -C₆H₄-), 7.47-7.44 (d, J = 9.0 Hz, 2H, -C₆H₄-), 7.02 (s, 2H, -C₆H₂-), 4.00-3.98 (m, 6H, OCH₂), 3.00 (s, 1H, -C≡CH), 1.82-1.72 (m, 6H, -CH₂-), 1.48-1.45 (m, 6H, -CH₂-), 1.29-1.23 (m, 24H, -CH₂-), 0.90-0.85 (m, 9H, -CH₃); Positive-ion FAB-MS: m/z 606 [M + H]⁺; elemental analysis calcd (%) for C₃₉H₅₉NO₄: C 77.31, H 9.82, N 2.31; found C 77.15, H 9.62, N 2.54.

Synthesis of 3-OTF: $[Pt({}^{1}Bu_{3}tpy)Cl]OTf^{2b,d}$ reacted with *N*-(4-ethynylphenyl)-3,4,5-(trioctyloxy)benzamide using a procedure similar to that for 1-OTf except that CH₂Cl₂ was used as the solvent. 2-OTf: Yield = 163 mg (78 %). ¹H NMR (400 MHz, d⁶-acetone, 298 K, δ /ppm): δ 9.48 (s, 1H, -NH), 9.32-9.31 (d, *J* = 5.9 Hz, 2H, terpyridyl H), 8.82 (s, 2H, terpyridyl H), 8.77-8.76 (d, *J* = 2.0 Hz, 2H, terpyridyl H), 8.03-8.01 (dd, *J* = 2.0, 5.9 Hz, 2H, terpyridyl H), 7.79-7.77 (d, *J* = 8.5 Hz, 2H, -C₆H₄-), 7.50-7.48 (d, *J* = 8.5 Hz, 2H, -C₆H₄-), 7.31 (s, 2H, -C₆H₂-), 4.11-4.08 (t, *J* = 6.3 Hz, 4H, -OCH₂-), 4.05-4.02 (t, *J* = 6.3 Hz, 2H, -OCH₂-), 1.88-1.73 (m, 6H, -CH₂-),

1.57-1.55 (m, 9H, -^{*t*}Bu; 6H, -CH₂-), 1.50 (s, 18H, -^{*t*}Bu), 1.41-1.33 (m, 24H, -CH₂-), 0.92-0.89 (m, 9H, -CH₃); IR (Nujol, *v*/cm⁻¹): 2114 (w) *v*(C≡C), 1164 (s) *v*(S=O); Positive-ion FAB-MS: m/z 1202 [M – OTf]⁺; elemental analysis calcd (%) for C₆₇H₉₈N₄F₃O₇SPt·0.5CH₂Cl₂: C 57.98, H 7.14, N 4.01; found: C 57.96, H 6.90, N 4.23.

Gelation Test: A weighted amount of the platinum metallogelator was suspended in a measured volume of a particular organic solvent inside a screw-capped sample vial. The suspension was heated until all the solids were dissolved. The sample vial was cooled in air to room temperature and then left to stand for overnight. The gelation properties were evaluated by the "stable-to-inversion of a test tube" method.

Complex	Medium (T/K)	Absorption Data	Emission
		$\lambda_{\rm max}/{\rm nm} (\varepsilon/{\rm dm}^3 {\rm mol}^{-1} {\rm cm}^{-1})$	$\lambda_{\rm em}/{\rm nm} \left(\tau_{\rm o}/{\rm \mu s} \right)$
1-OTf	DMSO (298)	267 (36820), 334 (13280), 349 (12225), 476 (4435)	780 ^a (< 0.1)
	Solid (298)		712 (0.15)
	Solid (77)		650 (2.75)
	Glass ^b (77)		565, 604 (11.00)
1- PF ₆	DMSO (298)	274 (37370), 334 (14165), 350 (13415), 470 (4495)	790 ^a (< 0.1)
	Solid (298)		643 (< 0.1)
	Solid (77)		604, 644 (5.60)
	Glass ^b (77)		566, 610 (14.00)
2- OTf	CH ₃ CN (298)	268 (36605), 326 (12385), 406 (3340), 454 (3920)	c
	Solid (298)		566, 607 (0.17)
	Solid (77)		560, 600 (4.80)
	Glass ^b (77)		560, 600 (13.50)
3- OTf	CH ₃ CN (298)	288 (22345), 308 (23105), 406 (2600), 454 (3095)	663 (< 0.1)
	Solid (298)		637 (0.20)
	Solid (77)		616 (2.70)
	Glass ^b (77)		554 (10.75)

Table S1	Photophysical data	of 1-OTf, 1-PF ₆ ,	2-OTf and 3-OTf
	1 2	, , , , , , , , , , , , , , , , , , , ,	

^a Emission band can only be observed at concentration $\ge 10^{-4}$ M.

^b In butyronitrile glass.

^c Non-emissive.

Figure S 1 UV-vis absorption spectral changes of **1**-OTf as concentration increases from $5 \ge 10^{-4}$ to $4.8 \ge 10^{-5}$ M. Inset: plot of the absorbance at 580 nm as a function of concentration.

Figure S 2 (a) UV-vis absorption spectra of **2**-OTf at room temperature (—) in gel form and 90

 $^{\rm o}C$ (---) in sol form and (b) emission spectra of 2-OTf at room temperature (—) in

gel form and 90 °C (---) in sol form.

Figure S 3 (a) UV-vis absorption spectra of $1-PF_6$ at various temperatures from 20 to 60 °C (*Saturation occurs even in 1mm-path length quartz cuvette due to the high concentration required for gelation) and (b) corrected emission spectra of the DMSO gel of $1-PF_6$ at various temperatures in the range of 20-42 °C.