Supporting information

Effect of fluorine on Palladium-catalyzed Cross-coupling Reactions of Aryl Bromides with Trifluoromethyl Aryl Ketones Via Difluoroenol Silyl or Monofluoroenol Silyl Ethers

Yong Guo and Jean'ne M. Shreeve*

Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, USA E-mail: jshreeve@uidaho.edu; Fax: 208 885-9146

General Methods. Difluoroenol silyl ethers¹ **2a-2e** and monofluoro silyl enol ether² **4** were prepared as described previously. Tri-n-butyltin fluoride and a 1M toluene solution of P(*t*-Bu)₃, were purchased from Aldrich Chemical Co. and used as received. Toluene was distilled under nitrogen over sodium prior to use. All other chemicals were used as received from commercial sources. ¹H NMR spectra were obtained on a 300- or 500-MHz spectrometer, and chemical shifts were recorded relative to a residual protonated solvent. ¹³C NMR spectra were obtained at 75.5 MHz on a 300-MHz instrument, and chemical shifts were recorded relative to the solvent resonance. Both ¹H NMR and ¹³C NMR chemical shifts are reported in parts per million relative to tetramethylsilane. ¹⁹F NMR chemical shifts are reported in parts per million from CFCl₃. The solvent was CDCl₃ unless otherwise stated. The purity of products was determined by CH&N elemental analyses. Column chromatography was carried out using ACROS silicagel (0.060-0.200 mm). Thin layer chromatography (TLC) was carried out on commercially available pre-coated plates (Whatman UV₂₅₄ silica).

General procedure for Pd-catalyzed arylation: A mixture containing a TMS enol ether (2 mmol), aryl halide (1 mmol), 5 mol % of Pd(OAc)₂ (11.2 mg), and Bu₃SnF (927 mg, 3 mmol) in toluene (1.5 mL) under a nitrogen atmosphere was treated with a solution of ¹Bu₃P (0.1 mL, 1M solution in toluene) at room temperature. The resulting mixture was heated to 85 °C and was stirred for 8 hours. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (20 mL) (when the precipitate of tin residue was formed, it was removed by decantation with ethyl acetate). The solution was concentrated and 5 mL of saturated KF solution and 5 mL ethyl acetate were added. The mixture was stirred for 1 hour. The resulting precipitate was removed by filtration. The organic layer of the filtrate was separated. The aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over anhydrous MgSO₄. After filtration and evaporation, the residue was purified by column chromatography on silica gel. PhCF₂COPh

2,2-Difluoro-1,2-diphenylethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.43. IR (film) 1704, 1254, 1130 cm⁻¹; ¹H NMR δ 7.42-7.48 (m, 5H), 7.56-7.63(m, 3H), 8.03(d, J = 8.1Hz, 2H); ¹⁹F NMR δ -97.5 (s); ¹³C NMR δ 117.0 (t, J = 253 Hz), 125.6 (t, J = 6.0 Hz), 128.6, 128.8, 130.3 (t, J = 3.0 Hz), 130.9 (t, J = 1.8 Hz), 132.2 (t, J = 1.4 Hz), 133.2 (t, J = 25.0 Hz), 134.2, 189.0 (t, J = 31.0 Hz); EI-MS (*m*/*z*, relative intensity) 232 (M⁺, 0.23), 105 (100), 77 (52). Anal. Calcd for C₁₄H₁₀F₂O: C, 72.41; H, 4.34. Found: C, 72.18; H, 4.34.

2,2-Difluoro-2-(4-methylphenyl)-1-phenylethanone: Isolated by column

chromatography eluting with hexane/ethyl acetate (100:1); R_F [hexanes / ethyl acetate, 10:1] = 0.47. IR (film) 1704, 1260 cm⁻¹; ¹H NMR δ 2.39 (s, 3H), 7.26 (d, J = 7.4 2H), 7.41-7.60 (m, 5H), 8.02 (d, J = 7.9 Hz, 2H); ¹⁹F NMR δ -97.1 (s); ¹³C NMR δ 21.3, 117.1 (t, J = 253 Hz), 125.6 (t, J = 5.9 Hz), 128.6, 129.5, 130.3 (t, J = 2.9 Hz), 130.4 (t, J= 25.2 Hz), 132.3, 134.1, 141.2 (t, J = 1.8 Hz), 189.1 (t, J = 31.2 Hz); EI-MS (m/z, relative intensity) 246 (M⁺, 1.49), 141 (12), 105 (100), 77 (27). Anal. Calcd for C₁₅H₁₂F₂O: C, 73.16; H, 4.91. Found: C, 72.83; H, 4.95.

$$^{t}Bu \longrightarrow CF_{2}COPh$$

2-(4-*tert***-Butylphenyl)-2,2-difluoro-1-phenylethanone:** Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.52. IR (film) 2964, 1705, 1263 cm⁻¹; ¹H NMR δ 1.34 (s, 9H), 7.46-7.58 (m, 7H), 8.06 (d, J = 7.4 Hz, 2H); ¹⁹F NMR δ -96.9 (s); ¹³C NMR δ 31.1, 34.8, 117.1 (t, J = 253 Hz), 125.4 (t, J = 5.9 Hz), 125.7, 128.6, 129.9, 130.3 (t, J = 2.9 Hz), 132.3, 134.1, 154.2 (t, J = 1.8 Hz), 189.1 (t, J = 31.2 Hz); EI-MS (m/z, relative intensity) 288 (M⁺, 1.15), 183 (14), 153 (11), 105 (100), 77 (31). Anal. Calcd for C₁₈H₁₈F₂O: C, 74.98; H, 6.29. Found: C, 74.99; H, 6.34.

2,2-Difluoro-2-(4-methoxyphenyl)-1-phenylethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (40:1); R_F [hexanes / ethyl acetate, 10:1] = 0.30. IR (film) 1703, 1608, 1514, 1250 cm⁻¹; ¹H NMR δ 3.82 (s, 3H), 6.96 (d, J =

8.5 Hz, 2H), 7.41-7.46 (m, 2H), 7.53-7.60 (m, 3H), 8.03 (d, J = 8.5 Hz, 2H); ¹⁹F NMR δ -96.2 (s); ¹³C NMR δ 55.3, 114.2, 117.1 (t, J = 253 Hz), 125.2 (t, J = 25.7 Hz), 127.3 (t, J = 5.9 Hz), 128.6, 130.2 (t, J = 2.9 Hz), 132.3 (t, J = 1.4 Hz), 134.1, 161.5 (t, J = 1.7 Hz), 189.2 (t, J = 31.4 Hz); EI-MS (*m*/*z*, relative intensity) (M⁺,), Anal. Calcd for C₁₅H₁₂F₂O₂: C, 68.70; H, 4.61. Found: C, 69.01; H, 4.55.

2,2-Difluoro-1-phenyl-2-(4-trifluoromethylphenyl)ethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.48. White solid; mp 46-48 °C ; IR (KBr) 1701, 1326, 1068 cm⁻¹; ¹H NMR δ 7.48 (m, 2H), 7.63 (m, 1H), 7.74 (s, 4H), 8.06 (d, J = 8.2 Hz, 2H); ¹⁹F NMR δ -63.0 (s, 3F), -97.9 (s, 2F); ¹³C NMR δ 116.5 (t, J = 255 Hz), 123.6 (q, J = 273 Hz), 125.8 (q, J = 3.7 Hz), 126.4 (t, J = 6.2 Hz), 128.8, 130.2 (t, J = 3.1 Hz), 131.9 (t, J = 2.0 Hz), 133.0 (q, J = 32.9 Hz), 134.5, 136.8 (t, J = 30.4 Hz), 137.2, 188.3 (t, J = 31.2 Hz); EI-MS (m/z, relative intensity) 300 (M⁺, 0.02), 105 (100), 77 (68). Anal. Calcd for C₁₅H₉F₅O: C, 60.01; H, 3.02. Found: C, 59.98; H, 2.90.

2-[3,5-Bis(trifluoromethyl)phenyl]-2,2-difluoro-1-phenylethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); R_F [hexanes / ethyl acetate, 10:1] = 0.52. IR (film) 1704, 1281, 1231, 1184, 1139 cm⁻¹; ¹H NMR δ 7.51-7.56 (m 2H), 7.66-7.71(m, 1H), 8.04 (s, 3H), 8.12 (d, J = 8.2, 2H); ¹⁹F NMR δ -63.0 (s, 6F), -

97.2 (s, 2F); ¹³C NMR δ 116.1 (t, J = 257 Hz), 122.8 (q, J = 273 Hz), 124.8 (m), 126.6 (m), 128.9, 130.3 (t, J = 3.2 Hz), 131.4 (t, J = 2.7 Hz), 132.3 (q, J = 34.6 Hz), 134.9, 135.6 (t, J = 26.0 Hz), 187.7 (t, J = 32.1 Hz); EI-MS (m/z, relative intensity) 367(M⁺-1, 0.06), 349 (5), 105 (100), 77 (61). Anal. Calcd for C₁₆H₈F₈O: C, 52.19; H, 2.19. Found: C, 51.97; H, 2.04.

Methyl 3-(1,1-difluoro-2-oxo-2-phenylethyl)benzonate: Isolated by column chromatography eluting with hexane/ethyl acetate (40:1 to 30:1); R_F [hexanes / ethyl acetate, 10:1] = 0.25. IR (film) 1727, 1704, 1229 cm⁻¹; ¹H NMR δ 3.94 (s, 3H), 7.44-7.61 (m, 4H), 7.77-7.80 (m, 1H), 8.03-8.07 (m, 2H), 8.17 (d, *J* = 7.7 Hz, 1H), 8.30 (s, br., 1H); ¹⁹F NMR δ -97.4 (s); ¹³C NMR δ 52.3, 116.6 (t, *J* = 255 Hz), 128.7, 128.9, 129.0, 130.1 (t, *J* = 5.9 Hz), 130.2 (t, *J* = 3.1 Hz), 131.0, 131.9 (t, *J* = 1.4 Hz), 133.7 (t, *J* = 25.5 Hz), 134.3, 134.4, 166.0, 188.5 (t, *J* = 31.3 Hz); EI-MS (*m*/*z*, relative intensity) 290 (M⁺, 0.02), 259 (9), 105 (100), 77 (40). Anal. Calcd for C₁₆H ₁₂F₂O₃: C, 66.21; H, 4.17. Found: C, 66.12; H, 4.13.

2-(4-Cyanophenyl)-2,2-difluoro-1-phenylethanone: Isolated by column

chromatography eluting with hexane/ethyl acetate (40:1 to 30:1); R_F [hexanes / ethyl acetate, 10:1] = 0.23. White solid; mp 78-80.5 °C; IR (KBr) 2230, 1703, 1240 cm⁻¹; ¹H NMR δ 7.49 (t, J = 7.7 Hz, 2H), 7.62-7.99 (m, 5H), 8.05 (d, J = 7.4 Hz, 2H); ¹⁹F NMR δ -98.2 (s); ¹³C NMR δ 115.0 (t, J = 1.8 Hz), 116.3 (t, J = 256 Hz), 117.7, 126.8 (t, J = 6.2

Hz), 128.9, 130.2 (t, *J*=3.1 Hz), 131.6 (t, *J* = 2.0 Hz), 132.5, 134.7, 137.5 (t, *J*=25.4 Hz), 188.0 (t, *J* = 31.3 Hz); EI-MS (*m*/*z*, relative intensity) 238 (M⁺-F, 0.16), 105 (100), 77 (53). Anal. Calcd for C₁₅H₉F₂NO: C, 70.04; H, 3.53; N, 5.45. Found: C, 69.76; H, 3.41, N, 5.47.

2,2-Difluoro-2-(4-nitrophenyl)-1-phenylethanone: Isolated by column

chromatography eluting with hexane/ethyl acetate (40:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.33. White solid; mp 89.5-91.5 °C; IR (KBr) 1700, 1524, 1349, 1240 cm⁻¹; ¹H NMR δ 7.48-7.54 (m, 2H), 7.63-7.69 (m, 1H), 7.78-7.81 (m, 2H), 8.06-8.09 (m, 2H), 8.33 (d, J = 9.1 Hz, 2H); ¹⁹F NMR δ -97.8 (s); ¹³C NMR δ 116.3 (t, J = 256 Hz), 123.8, 127.3 (t, J = 6.1 Hz), 128.9, 130.2 (t, J = 3.2 Hz), 131.6 (t, J = 2.3 Hz), 134.8, 139.2 (t, J= 25.3 Hz), 149.4, 187.9 (t, J = 31.3 Hz); EI-MS (m/z, relative intensity) 276 (M⁺-1, 0.01), 105 (100), 77 (60). Anal. Calcd for C₁₄H₉F₂NO₃: C, 60.66; H, 3.27; N, 5.05. Found: C, 60.54; H, 3.08, N 5.08.

2-(4-Acetylphenyl)-2,2-difluoro-1-phenylethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (40:1 to 30:1 to 20:1); R_F [hexanes / ethyl acetate, 10:1] = 0.15. White solid; mp 76.5-78 °C; IR (KBr) 1686, 1236 cm⁻¹; ¹H NMR δ 2.62 (s, 3H), 7.44-7.49 (m, 2H), 7.59-7.64 (m, 1H), 7.72 (d, J = 8.4 Hz, 2H), 8.04 (d, J = 8.4, 4H); ¹⁹F NMR δ -98.0 (s); ¹³C NMR δ 26.7, 116.6 (t, J = 255 Hz), 126.1 (t, J = 6.0 Hz), 128.6, 128.7, 130.2 (t, J = 3.0 Hz), 131.9 (t, J = 1.7 Hz), 134.4, 137.3 (t, J = 25.0 Hz), 138.9 (t, *J* = 1.6 Hz), 188.4 (t, *J* = 31.0 Hz), 197.1; EI-MS (*m/z*, relative intensity) 274 (M⁺, 0.16), 105 (100), 77 (60). Anal. Calcd for C₁₆H₁₂F₂O₂: C, 70.07; H, 4.41. Found: C, 70.04; H, 4.17.

2,2-Difluoro-1-phenyl-2-(2-thienyl)ethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.38. IR (film) 1704, 1240 cm⁻¹; ¹H NMR δ 7.03-7.07 (m, 1H), 7.30-7.33 (m, 1H), 7.45-7.52 (m, 3H), 7.59-7.64 (m, 1H), 8.07 (d, J = 7.9 Hz, 2H); ¹⁹F NMR δ -86.9 (s); ¹³C NMR δ 115.2 (t, J = 251 Hz), 127.3, 128.7, 128.9 (t, J = 5.8 Hz), 129.2 (t, J = 1.6 Hz), 130.4 (t, J = 3.0 Hz), 132.0 (t, J = 1.4 Hz) 134.4, 134.7 (t, J = 29.5 Hz), 187.9 (t, J = 30.8 Hz); EI-MS (m/z, relative intensity) 238 (M⁺, 1.03), 105 (100), 77 (54). Anal. Calcd for C₁₂H₈F₂OS: C, 60.49; H, 3.38. Found: C, 60.70; H, 3.32.

Methyl 3-[2-(4-tert-butylphenyl)-1,1-difluoro-2-oxo]benzoate: Isolated by column chromatography eluting with hexane/ethyl acetate (40:1); $R_{\rm F}$ [hexanes / ethyl acetate, 50:1] = 0.32. IR (film) 2963, 1728, 1700, 1230 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.33 (s, 9H), 3.94 (s, 3H), 7.48 (d, J = 8.8 Hz, 2H), 7.55 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.99 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 7.7 Hz, 1H), 8.31 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -97.4 (s); ¹³C NMR (CDCl₃, 75.5 MHz) δ 30.9, 35.2, 52.3, 116.6 (t, J = 264 Hz), 125.3, 125.5, 125.7, 126.9 (t, J = 6.2 Hz), 129.0, 130.1 (t, J = 5.9 Hz), 130.3 (t, J = 3.0 Hz), 130.9, 131.9 (t, J = 1.6 Hz), 158.5, 166.0, 188.0 (t, J = 31.0 Hz); EI-MS (m/z,

relative intensity) 345 (M⁺-1, 0.01), 161 (100). Anal. Calcd for C₂₀H₂₀F₂O₃: C, 69.35; H, 8.32. Found: C, 69.01; H, 5.71.

1-(4-*tert***-Butylpheyl)-2,2-difluoro-2-(2-thienyl)ethanone:** Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); R_F [hexanes / ethyl acetate, 10:1] = 0.44. IR (film) 2964, 1699, 1604, 1240, 1103 cm⁻¹; ¹H NMR δ 1.34 (s, 9H), 7.03-7.07 (m, 1H), 7.30-7.32 (m, 1H), 7.46-7.56 (m, 3H), 8.02 (d, J = 8.4 Hz, 2H); ¹⁹F NMR δ -86.8 (s); ¹³C NMR δ 30.9, 35.3, 115.1 (t, J = 251 Hz), 125.7, 127.2, 128.8 (t, J = 5.8 Hz), 129.0 (t, J = 1.7 Hz), 129.3 (t, J = 1.5 Hz), 129.6 (t, J = 2.3 Hz), 130.4 (t, J = 3.0 Hz), 135.0 (t, J = 29.5 Hz), 158.5, 187.4 (t, J = 30.5 Hz); EI-MS (*m/z*, relative intensity) 294 (M⁺, 0.02), 161 (100). Anal. Calcd for C₁₆H₁₆F₂OS: C, 65.28; H, 5.48. Found: C, 64.97; H, 5.39.

2-(4-Cyanophenyl)-2,2-difluoro-1-(4-methoxylphenyl)ethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (20:1); R_F [hexanes / ethyl acetate, 10:1] = 0.15. White solid; mp 97.5-99.5 °C; IR (KBr) 2231, 1597, 1247 cm⁻¹; ¹H NMR δ 3.89 (s, 3H), 6.96 (d, J = 7.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 8.06 (d, J = 7.0 Hz, 2H); ¹⁹F NMR δ -98.2 (s); ¹³C NMR δ 55.6, 114.2, 114.8 (t, *J* = 1.9 Hz), 116.4 (t, *J* = 256 Hz), 117.8, 124.4 (t, *J* = 2.2 Hz), 126.7 (t, *J* = 6.2 Hz), 132.4, 132.8 (t, *J* = 3.3 Hz), 137.9 (t, *J* = 25.4), 164.8, 186.2 (t, *J* = 30.7); EI-MS (*m/z*, relative

intensity) 287 (M⁺, 0.14), 135 (100), 77 (15). Anal. Calcd for C₁₆H₁₁F₂NO₂: C, 66.90; H, 3.86; N, 4.88. Found: C, 66.70; H, 3.75, N, 4.89.

2,2-Difluoro-1-(4-methoxyphenyl)-2-(4-nitrophenyl)ethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (20:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.17. Pale yellow solid; mp 85-87°C; IR (film) 1688, 1600, 1261cm⁻¹; ¹H NMR (500 MHz) δ 3.90 (s, 3H), 6.96 (d, J = 9 Hz, 2H), 7.79 (d, J = 9 Hz, 2H), 8.08 (d, J = 9 Hz, 2H), 8.32 (d, J = 9 Hz, 2H); ¹⁹F NMR (470 MHz) δ -97.8 (s); ¹³C NMR δ 55.6, 114.2, 116.4 (t, J = 256 Hz), 123.8, 124.3 (t, J = 2.2 Hz), 127.2 (t, J = 6.1 Hz), 132.8 (t, J = 3.3 Hz), 139.6 (t, J = 25.4 Hz), 149.3, 164.8, 186.2 (t, J = 30.7 Hz); EI-MS (*m/z*, relative intensity) 307(M⁺, 0.18), 135 (100), 77 (14). Anal. Calcd for C₁₅H₁₁F₂NO₄: C, 58.64; H, 3.61; N, 4.56. Found: C, 58.34; H, 3.66, N, 4.56.

2,2-Difluoro-2-phenyl-1-(4-trifluoromethylphenyl)ethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); R_F [hexanes / ethyl acetate, 10:1] = 0.51. IR (film) 1715, 1325, 1134, 1167 cm⁻¹; ¹H NMR) δ 7.46-7.52 (m, 3H), 7.59-7.62 (m, 2H), 7.72 (d, J = 8.4 Hz, 2H), 8.14 (d, J = 8.2 Hz, 2H); ¹⁹F NMR δ -63.5 (s, 3F), -98.0 (2F); ¹³C NMR δ 116.8 (t, J = 254 Hz), 123.3 (q, J = 273 Hz), 125-127 (m), 128.9, 130.5 (t, J = 3.1 Hz), 131.2 (t, J = 1.8 Hz), 132.4 (t, J = 24.8 Hz), 135.0(m), 135.3 (q, J = 32.9 Hz), 137.2, 188.2 (t, J = 32.2); EI-MS (*m/z*, relative intensity) 300 (M⁺, 0.50), 173 (100), 145 (45), 127 (31). Anal. Calcd for C₁₅H₉F₅O: C, 60.01; H, 3.02. Found: C, 59.64; H, 2.97.

2,2-Difluoro-2-phenyl-1-(2-thienyl)ethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (100:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.34. IR (film) 1678, 1410, 1258, 1128, 1061 cm⁻¹; ¹H NMR δ 7.16 (t, J = 4.4 Hz, 1H), 7.42-7.55 (m, 3H), 7.60-7.70 (m, 2H), 7.76 (d, J = 4.9 Hz, 1H), 7.96-7.98 (m, 1H); ¹⁹F NMR δ - 99.3 (s); ¹³C NMR δ 116.6 (t, J = 254 Hz), 125.7 (t, J = 6.1 Hz), 128.7, 128.8, 131.0 (t, J = 1.8 Hz), 132.9 (t, J = 25.3 Hz), 135.9 (t, J = 4.8 Hz), 136.4 (t, J =1.1 Hz), 138.1, 182.3 (t, J =32.7); EI-MS (m/z, relative intensity) 238 (M+, 3.24), 127 (20), 111 (100), 39 (45). Anal. Calcd for C₁₂H₈F₂OS: C, 60.49; H, 3.38. Found: C, 60.57; H, 3.25. PhCHFCOPh **5a**

1,2-Diphenyl-2-fluoroethanone: Isolated by column chromatography eluting with hexane/ethyl acetate (40:1); $R_{\rm F}$ [hexanes / ethyl acetate, 10:1] = 0.32. White solid; mp 59.5-61.5°C; IR (KBr) 1693 cm⁻¹; ¹H NMR δ 6.51 (d, J = 48.7 Hz), 7.38-7.55 (m, 8H), 7.93-7.96 (m, 2H); ¹⁹F NMR (470 MHz) δ -176.5 (d, J = 48.4 Hz); ¹³C NMR δ 93.9 (d, J = 186 Hz), 127.4 (d, J = 5.5 Hz), 128.7, 129.0 (d, J = 2.8 Hz), 129.1, 129.6 (d, J = 2.6 Hz), 133.8, 134.1, 134.3 (d, J = 19.9 Hz), 194.3 (d, J = 21.4 Hz); EI-MS (*m*/*z*, relative intensity) 214 (M⁺, 0.20), 105 (100), 77 (41). Anal. Calcd for C₁₄H₁₁FO: C, 78.49; H, 5.18. Found: C, 78.44; H, 5.06.

To TMSCI (2.2 g, 20 mmol) in DMF (24 ml) and Mg (972 mg, 40 mmol) cooled down to 0 °C under an nitrogen atmosphere, 1,1,1-trifluoro-2-octanone (910 mg, 5.0 mmol) was added dropwise and then stirred for an additional 3 hours. Hexane (20 ml) was added to the solution. The hexane layer was separated and hexane was removed under vacuum. The residue was diluted in toluene. The crude product in toluene was added to a mixture containing monobromobenzene (157 mg, 1 mmol), 5 mol % of Pd(OAc)₂ (11.2 mg), and Bu₃SnF (927 mg, 3 mmol) in toluene (1.5 mL) and a solution of 'Bu₃P (0.1 mL, 1M solution in toluene) under a nitrogen atmosphere. The resulting mixture was heated to 85 °C and was stirred for 8 hours. The isolation was as in general procedure. Because of much impurity generated in reaction process, pure **3s** was hard to obtain. The yield of **3s** was 6% based on ¹⁹F NMR analysis. The yield of 1,1-difluoro-2-octanone was 70%.

1,1-difluoro-1-phenyl-octanone: ¹⁹F NMR (CDCl₃) δ -106.6; GC-MS (*m/z*, relative intensity) 240 (M⁺, 0.03), 221(M⁺-F, 0.07), 163(M⁺-Ph, 0.12), 127(PhCF₂⁺, 24), 113 (C₆H₁₃CO⁺, 44), 85(C₆H₁₃⁺, 15), 77(Ph⁺, 7), 43 (C₃H₇⁺, 100).

Comparison experiment: A mixture containing a nonfluorinated TMS enol ether (1 mmol), difluoro enol ether **2a** (228 mg, 1 mmol), monobromobenzene (157 mg, 1 mmol), 5 mol % of Pd(OAc)₂ (11.2 mg), and Bu₃SnF (927 mg, 3 mmol) in toluene (1.5 mL) under a nitrogen atmosphere was treated with a solution of ^{*t*}Bu₃P (0.1 mL, 1M solution in toluene) at room temperature. The resulting mixture was heated to 85 °C and was stirred for 1 hours. After cooling to room temperature, the reaction mixture was diluted with

11

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2007

ethyl acetate (20 mL) (when the precipitate of tin residue was formed, it was removed by decantation with ethyl acetate). The solution was concentrated. The residue was added internal standard benzotrifluoride and 1,2-dichloroethane. The yields were reported based on NMR or GC-MS analysis.

Strating materials	Yield (%) ^a	relative rate
2a and 2g	3a (14) 3t (27)	3a/3t = 0.52
2a and 2h	3a (28) 3u (14)	3a/3u = 2.0
2a and 2i	3a (20) 3v (4)	3a/3v = 5.0
2a and 2j	3a (24) 3w (<1) ^b	3a/3w = >20
^a yield based on NMR analysis, ^b yield based on GC-MS		

Table S1: relative rate of silvl enol ethers

References

- 1 H. Amii, T. Kobayashi, Y. Hatamoto, K. Uneyama, Chem. Commun. 1999, 1323.
- 2 G. K. S. Prakash, J. Hu, G. A. Olah, J. Fluorine Chem. 2001, 112, 357.