Supporting Information for:

A Planar Chelating Bitriazole N-heterocyclic Carbene Ligand and its Rhodium(III) and Dirhodium(II) Complexes

Macarena Poyatos,^a William McNamara,^a Chris Incarvito,^a Eduardo Peris,^b* and Robert H. Crabtree^a*

^aYale Chemistry Department, 225 Prospect St., New Haven (CT), 06511, USA ^bDpto. de Química Inorgánica y Orgánica. Universitat Jame I., Av. Vicente Sos Bainat s/n, Castellón E-12071, Spain

S1. Synthesis and characterization of compounds 3-6

S2. Catalytic experiments

S3. Crystallographic data of compounds 4-6

S1. Synthesis and characterization of compounds 3-6

General procedures. All operations were carried out by using standard Schlenk techniques under nitrogen atmosphere. All NMR spectra were recorded at room temperature on Bruker spectrometers operating at 400 or 500 MHz (¹H NMR) and 100 or 125 MHz (¹³C NMR), respectively, and referenced using the residual proton solvent (¹H) or solvent (¹³C) resonance. $[Rh(CO)_2(OAc)]_2$, ¹ 4,4'-bi-1,2,4-triazole² were prepared according to the method described in the literature, and 1,1'-dimethyl-4,4'-bi-1,2,4-triazolium diiodide (**3-I**)³ was obtained by a modification of the previously reported procedure. All other reagents were used as received from commercial suppliers and used as received. Microanalyses were carried out by Atlantic Microlabs, Inc. (Norcross, GA). Electrospray mass spectra (ESI-MS) were recorded on a Micromass ZQ instrument using nitrogen as drying agent and nebulizing gas.

Synthesis of 1,1'-dimethyl-4,4'-bi-1,2,4-triazolium diiodide, 3-I. 4,4'-bi-1,2,4-triazole (500 mg, 3.5 mmol) and methyl iodide (2 mL) were dissolved in 10 mL of MeCN in a sealed tube. The mixture was heated at 100°C for 12h yielding an off-white solid that was filtered and washed with Et₂O. Yield 1.4g (93 %).¹H NMR (500 MHz, DMSO-d₆): δ 10.71 (s, 2H, NC*H*N), 9.79 (s, 2H, NC*H*N), 4.37 (s, 6H, C*H*₃). ¹³C NMR (125 MHz, DMSO-d₆): δ 144.42, 144.20 (NCHN), 40.41 (N-CH₃).

Synthesis of 1,1'-dimethyl-4,4'-bi-1,2,4-triazolium tetrafluoroborate, 3-BF₄. 4,4'-bi-1,2,4-triazole (300 mg, 2.2 mmol) and trymethyloxonium tetrafluoroborate (718 mg, 4.85 mmol) were placed together in a round bottom flask and dissolved in 10 mL of CH₃CN, the mixture was heated at reflux overnight. The desired salt was collected by filtration, washed several times with CH₂Cl₂ and dried under vacuum. Yield 710 mg (95 %). ¹H NMR (400 MHz, DMSO-d₆): δ 10.70 (s, 2H, NCHN), 9.74 (s, 2H, NCHN), 4.40 (s, 6H, CH₃). ¹³C NMR (125 MHz, CD₃CN): 142.9 (NCHN), 40.4 (N-CH₃). Anal. Calc. for C₆H₁₀N₆B₂F₈ (339.79): C, 21.21; H, 2.97; N, 24.73. Found: C, 21.20; H, 2.92; N, 24.46.

Synthesis of (bitz)RhI₃(CH₃CN), 4. A mixture of [RhCl(cod)]₂ (100 mg, 0.20 mmol), precursor 3-I (169 mg, 0.40 mmol) and KI (67 mg, 0.40 mmol) was heated at 50°C in degassed CH₃CN for

3h under inert atmosphere. The suspension was then filtered through Celite and the solvent removed under high pressure. The crude solid was purified by column chromatography. Elution with a mixture 1:1 CH₂Cl₂/acetone afforded a red band containing compound **4** which was recrystallized in CH₃CN. Suitable crystals for X-ray diffraction studies were grown by slow evaporation of a solution of **3** in CH₃CN. Yield 200 mg (71 %). ¹H NMR (400 MHz, DMSO-d₆): δ 9.77 (s, 1H, NC*H*N), 9.75 (s, 1H, NC*H*N), 4.54 (s, 3H, N-C*H*₃), 4.27 (s, 3H, N-C*H*₃), 3.39 (s, 3H, C*H*₃CN). ¹³C NMR (125 MHz, DMSO-d₆): δ 166.5 (d, ¹*J*_{Rh-C} = 42.4 Hz, Rh-*C*), 158.2 (d, ¹*J*_{Rh-C}= 43.8 Hz, Rh-*C*), 134.3 (NCHN), 133.9 (NCHN), 116.8 (CH₃CN), 42.3 (N-CH₃), 38.5 (N-CH₃), 28.5 (*C*H₃CN). MS(ESI) m/z (%): 521.3 (100) [M-I-CH₃CN]⁺. Anal. Calc. for C₈H₁₁I₃N₇Rh (688.84)·CH₃CN: C, 16.45; H, 1.93; N, 15.35. Found: C, 16.14; H, 1.98; N, 15.95.

Synthesis of *cis*-[(bitz)₂RhI₂][I], 5. A mixture of [RhCl(cod)]₂ (100 mg, 0.20 mmol), precursor 3-I (334 mg, 0.8 mmol), NaOAc (100 mg), and KI (100 mg) was stirred at room temperature for 48 hours in CH₃CN under inert atmosphere. Afterwards, the suspension was filtered through Celite and the solvent removed under vacuum. The resulting orange residue was washed several times with a mixture 9:1 CH₂Cl₂/CH₃CN, giving the desired compound as a pale yellow solid. Suitable crystals for X-ray diffraction methods were obtained by slow diffusion of Et₂O into a solution of 5 in CH₃CN. Yield 180 mg (55 %). ¹H NMR (500 MHz, CD₃CN): δ 9.98 (s, 2H, NC*H*N), 9.75 (s, 2H, NC*H*N), 4.67 (s, 6H, N-C*H*₃), 3.46 (s, 6H, N-C*H*₃). ¹³C NMR (125 MHz, CD₃CN): δ 167.6 (d, ¹*J*_{Rh-C} = 34.9 Hz, Rh-*C*), 162.7 (d, ¹*J*_{Rh-C}= 43.6 Hz, Rh-*C*), 135.5 (NCHN), 135.0 (NCHN), 42.3 (N-CH₃), 38.9 (N-CH₃). MS(ESI) m/z (%): 685. 3 (80) [M]⁺, 559.6 (20) [M-I]⁺. Anal. Calc. for C₁₂H₁₆I₃N₁₂Rh (811.95): C, 17.75; H, 1.99; N, 20.70. Found: C, 17.80; H, 2.05; N, 21.10.

Synthesis of $[Rh(\mu-bitz)(CH_3CN)_3]_2[BF_4]_4$, 6. $[Rh(CO)(OAc)_2]_2$ (75 mg, 0.17 mmol), precursor **3-BF**₄ (116 mg, 0.34 mmol) and NaOAc (28.2 mg, 0.34 mmol) were placed together in a Schlenk tube and 5 mL of degassed CH₃CN were added. The resulting dark red solution was stirred at room temperature for 12 hours. Afterwards, the suspension was filtered and the solvent removed under high pressure giving a dark orange solid. Compound 6 was obtained as a yellow solid after recrystallization from CH₂Cl₂/Et₂O. Suitable crystals for X-ray diffraction studies were obtained by slow diffusion of Et₂O into a solution of compound 6 in CH₃CN. Yield 134 mg

(70 %). ¹H NMR (400 MHz, DMSO-d₆): δ 9.69 (s, 2H, NC*H*N), 9.54 (s, 2H, NC*H*N), 4.49 (s, 6H, N-C*H*₃), 3.58 (s, 6H, N-C*H*₃), 2.81 (s, 6H, C*H*₃CN), 2.35 (s, 6H, C*H*₃CN). ¹³C NMR (125 MHz, CD₃CN): δ 161.7 (d, ¹*J*_{Rh-C} = 51.1 Hz, Rh-*C*), 161.1 (d, ¹*J*_{Rh-C} = 53.6, Rh-*C*), 141.4 (NCHN), 139.3 (NCHN), 42.1 (N-CH₃), 40.1 (N-CH₃). Anal. Calc. for C₂₄H₃₄B₄F₁₆N₁₈Rh₂ (1127.69)·2CH₂Cl₂: C, 24.07; H, 2.95; N, 19.43. Found: C, 23.44; H, 2.92; N, 20.16.

¹ J. M. Wilson, G. J. Sunley, H. Adams, A. Haynes, J. Organomet. Chem., 2005, 690, 6089.

² R. K. Bartlett, I. Humphrey, J. Chem. Soc. (C) 1967, 1664.

³ M. L. Castellanos, M. Llinas, M. Bruix, J. de Mendoza, M. R. Martin, J. Chem. Soc. Perkin Trans., 1985, 1209.

S2. Catalytic Experiments

Typical Procedure for Catalytic Transfer Hydrogenation. A mixture of the substrate (0.5 mmol), catalyst (1 or 0.1 mol % *vs.* substrate), ^tBuOK (0.05 mmol) and ⁱPrOH (10 mL) was heated to reflux under inert atmosphere. Aliquots (0.2 mL) were taken at the desired times, quenched with pentane and filtered through a short path of SiO₂. The filtrate was evaporated to dryness (non volatile substrates) and analysed by ¹H NMR spectroscopy, using 1,3,5-trimethoxybenzene as internal standard. Table 1 shows selected data for transfer hydrogenation from ⁱPrOH/^tBuOK using complexes **4** and **6** as catalysts.

Table 1. Selected results on catalytic hydrogenation of C=O and C=N groups via hydrogen transfer from ⁱPrOH/^tBuOK at 82°C

entry	catalyst	substrate	time(h)	cat. loading (mol %)	yield (%) ^a	TON ^b
1	4	acetophenone	3	1	>98	98
2	4	acetophenone	12	0.1	>98	980
3	4	benzophenone	6	1	>98	98
4	4	benzophenone	24	0.1	25	250
5	4	benzylidene aniline	6	1	90	90
6	4	cyclohexanone	48	1	>98	98
7	4	cyclohexanone	48	0.1	40	400
8	6	acetophenone	4	0.7	>98	140
9	6	benzophenone	3.5	0.7	>98	140

^aYields were determined by ¹H NMR spectroscopy, using 1,3,5-methoxybenzene as internal standard. ^bTON=(mmol of product)/(mmol of catalyst)

S3. Crystallographic data of compounds 4-6

S3.1 Crystallographic data of compound 4

Figure 1. Molecular structure of compound **4**. 30 % probability chosen for the ellipsoids. Selected bond distances (Å) and angles (°): Rh(1)-C(1) 1.977(5), Rh(1)-C(4) 1.976(5), Rh(1)-I(1) 2.6734(7), Rh(1)-I(2) 2.7316(6), Rh(1)-N(7) 2.074(5); and C(1)-Rh(1)-C(4) 79.4(2)

	Т	able	1.	Crystal	data	and	structure	refinement	for	compound	4.
--	---	------	----	---------	------	-----	-----------	------------	-----	----------	----

Empirical formula	$C_8 H_{11} I_3 N_7 Rh$	
Formula weight	688.85	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbcn	
Unit cell dimensions	a = 27.320(6) Å	α= 90°.
	b = 8.2040(16) Å	β= 90°.
	c = 15.373(3) Å	$\gamma = 90^{\circ}$.
Volume	3445.7(12) Å ³	
Z	8	
Density (calculated)	2.656 g/cm ³	
Absorption coefficient	63.65 cm ⁻¹	
F(000)	2496	
Crystal size	0.10 x 0.10 x 0.08 mm ³	
Theta range for data collection	2.59 to 28.27°.	
Index ranges	-36<=h<=36, -10<=k<=	10, -20<=l<=20

Reflections collected	7923
Independent reflections	4241 [R(int) = 0.0363]
Completeness to theta = 28.27°	99.3 %
Absorption correction	None
Max. and min. transmission	0.6299 and 0.5686
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4241 / 0 / 173
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0356, wR2 = 0.0765
R indices (all data)	R1 = 0.0644, wR2 = 0.0832
Largest diff. peak and hole	0.868 and -1.232 e.Å ⁻³

Rh(1)-C(1)	1.977(5)	N(7)-Rh(1)-I(2)	85.23(11)
Rh(1)-C(4)	1.976(5)	I(3)-Rh(1)-I(2)	91.495(19)
Rh(1)-N(7)	2.074(5)	I(1)-Rh(1)-I(2)	94.710(18)
Rh(1)-I(3)	2.6632(6)	C(1)-N(1)-C(2)	111.3(4)
Rh(1)-I(1)	2.6734(7)	C(1)-N(1)-N(4)	115.3(4)
Rh(1)-I(2)	2.7316(6)	C(2)-N(1)-N(4)	133.4(4)
N(1)-C(1)	1.348(6)	C(2)-N(2)-N(3)	105.7(4)
N(1)-C(2)	1.358(6)	C(1)-N(3)-N(2)	112.8(4)
N(1)-N(4)	1.374(6)	C(1)-N(3)-C(3)	127.4(4)
N(2)-C(2)	1.293(7)	N(2)-N(3)-C(3)	119.8(4)
N(2)-N(3)	1.369(6)	C(5)-N(4)-N(1)	134.1(4)
N(3)-C(1)	1.329(6)	C(5)-N(4)-C(4)	110.9(4)
N(3)-C(3)	1.431(7)	N(1)-N(4)-C(4)	114.8(4)
N(4)-C(5)	1.347(7)	C(5)-N(5)-N(6)	104.9(4)
N(4)-C(4)	1.372(6)	C(4)-N(6)-N(5)	112.7(4)
N(5)-C(5)	1.301(7)	C(4)-N(6)-C(6)	129.7(4)
N(5)-N(6)	1.393(6)	N(5)-N(6)-C(6)	117.6(4)
N(6)-C(4)	1.326(6)	C(7)-N(7)-Rh(1)	176.1(4)
N(6)-C(6)	1.455(6)	N(3)-C(1)-N(1)	102.2(4)
N(7)-C(7)	1.128(6)	N(3)-C(1)-Rh(1)	142.2(4)
C(7)-C(8)	1.474(8)	N(1)-C(1)-Rh(1)	115.5(4)
		N(2)-C(2)-N(1)	108.0(4)
C(1)-Rh(1)-C(4)	79.4(2)	N(6)-C(4)-N(4)	102.3(4)
C(1)-Rh(1)-N(7)	96.41(18)	N(6)-C(4)-Rh(1)	142.9(4)
C(4)-Rh(1)-N(7)	175.84(18)	N(4)-C(4)-Rh(1)	114.8(4)
C(1)-Rh(1)-I(3)	85.15(14)	N(5)-C(5)-N(4)	109.1(5)
C(4)-Rh(1)-I(3)	87.33(15)	N(7)-C(7)-C(8)	179.6(7)
N(7)-Rh(1)-I(3)	92.19(12)		
C(1)-Rh(1)-I(1)	88.55(14)		
C(4)-Rh(1)-I(1)	88.27(15)		
N(7)-Rh(1)-I(1)	91.80(12)		
I(3)-Rh(1)-I(1)	172.884(19)		
C(1)-Rh(1)-I(2)	176.31(14)		

Table 2. Bond lengths [Å] and angles $[\circ]$ for 4.

C(4)-Rh(1)-I(2)

98.91(14)

S3.2 Crystallographic data of compound 5

Figure 2. Molecular structure of the cation of **5**. 30 % probability chosen for the ellipsoids. Selected bond distances (Å) and angles (°): Rh(1)-C(4) 2.002(6), Rh(1)-C(1) 2.043(6), Rh(1)-C(7) 1.991(6), Rh(1)-C(10) 2.049(7); and C(4)-Rh(1)-C(1) 78.6(3), C(7)-Rh(1)-C(10) 79.3(2)

	Table 1. C	rystal data	and structure	refinement	for com	pound 5.
--	------------	-------------	---------------	------------	---------	----------

Empirical formula	$C_{18}H_{29}I_3N_{13}ORh$		
Formula weight	927.15		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 11.691(2) Å	α= 90°.	
	b = 9.883(2) Å	β=97.77(3)°.	
	c = 26.375(5) Å	$\gamma = 90^{\circ}$.	
Volume	3019.4(10) Å ³		
Z	4		
Density (calculated)	2.040 g/cm ³		
Absorption coefficient	36.69 cm ⁻¹		
F(000)	1760		
Crystal size	$0.20 \ x \ 0.10 \ x \ 0.08 \ mm^3$		
Theta range for data collection	2.20 to 29.06°.		
Index ranges	-15<=h<=15, -13<=k<=13, -35<=l<=35		

Reflections collected	12618
Independent reflections	7790 [R(int) = 0.0379]
Completeness to theta = 29.06°	96.6 %
Absorption correction	None
Max. and min. transmission	0.7579 and 0.5274
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7790 / 0 / 327
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0500, wR2 = 0.1299
R indices (all data)	R1 = 0.0866, wR2 = 0.1444
Extinction coefficient	0.0038(3)
Largest diff. peak and hole	1.259 and -0.925 e.Å-3

Rh(1)-C(7)	1.991(6)	O(1)-C(16)	1.386(11)
Rh(1)-C(4)	2.002(6)	O(1)-C(17)	1.430(12)
Rh(1)-C(1)	2.043(6)	C(15)-C(16)	1.564(18)
Rh(1)-C(10)	2.049(7)	C(17)-C(18)	1.463(13)
Rh(1)-I(1)	2.7117(10)		
Rh(1)-I(2)	2.7142(7)	C(7)-Rh(1)-C(4)	95.1(2)
N(1)-C(1)	1.325(8)	C(7)-Rh(1)-C(1)	95.3(2)
N(1)-N(4)	1.365(7)	C(4)-Rh(1)-C(1)	78.6(3)
N(1)-C(2)	1.372(8)	C(7)-Rh(1)-C(10)	79.3(2)
N(2)-C(2)	1.306(9)	C(4)-Rh(1)-C(10)	96.3(2)
N(2)-N(3)	1.372(8)	C(1)-Rh(1)-C(10)	172.4(2)
N(3)-C(1)	1.346(8)	C(7)-Rh(1)-I(1)	86.45(17)
N(3)-C(3)	1.460(9)	C(4)-Rh(1)-I(1)	178.40(17)
N(4)-C(4)	1.370(7)	C(1)-Rh(1)-I(1)	100.81(19)
N(4)-C(5)	1.379(8)	C(10)-Rh(1)-I(1)	84.40(16)
N(5)-C(5)	1.281(9)	C(7)-Rh(1)-I(2)	179.44(18)
N(5)-N(6)	1.392(7)	C(4)-Rh(1)-I(2)	85.39(16)
N(6)-C(4)	1.308(8)	C(1)-Rh(1)-I(2)	85.08(17)
N(6)-C(6)	1.459(8)	C(10)-Rh(1)-I(2)	100.32(17)
N(7)-C(8)	1.362(8)	I(1)-Rh(1)-I(2)	93.09(3)
N(7)-C(7)	1.363(8)	C(1)-N(1)-N(4)	117.8(5)
N(7)-N(10)	1.393(7)	C(1)-N(1)-C(2)	112.5(5)
N(8)-C(8)	1.294(9)	N(4)-N(1)-C(2)	129.8(5)
N(8)-N(9)	1.419(7)	C(2)-N(2)-N(3)	105.3(5)
N(9)-C(7)	1.316(8)	C(1)-N(3)-N(2)	113.0(5)
N(9)-C(9)	1.444(8)	C(1)-N(3)-C(3)	128.3(6)
N(10)-C(10)	1.363(8)	N(2)-N(3)-C(3)	118.6(5)
N(10)-C(11)	1.364(8)	N(1)-N(4)-C(4)	114.9(5)
N(11)-C(11)	1.281(9)	N(1)-N(4)-C(5)	135.6(5)
N(11)-N(12)	1.372(7)	C(4)-N(4)-C(5)	109.4(5)
N(12)-C(10)	1.333(8)	C(5)-N(5)-N(6)	104.9(5)
N(12)-C(12)	1.457(8)	C(4)-N(6)-N(5)	113.4(5)
N(13)-C(13)	1.115(10)	C(4)-N(6)-C(6)	128.5(5)
C(13)-C(14)	1.482(13)	N(5)-N(6)-C(6)	117.9(5)

Table 2. Bond lengths [Å] and angles $[\circ]$ for 5.

C(8)-N(7)-C(7)	111.8(5)	N(2)-C(2)-N(1)	107.3(6)
C(8)-N(7)-N(10)	133.0(5)	N(6)-C(4)-N(4)	103.0(5)
C(7)-N(7)-N(10)	115.2(5)	N(6)-C(4)-Rh(1)	142.2(4)
C(8)-N(8)-N(9)	104.7(5)	N(4)-C(4)-Rh(1)	114.8(4)
C(7)-N(9)-N(8)	112.8(5)	N(5)-C(5)-N(4)	109.3(6)
C(7)-N(9)-C(9)	130.3(6)	N(9)-C(7)-N(7)	102.3(5)
N(8)-N(9)-C(9)	116.9(5)	N(9)-C(7)-Rh(1)	141.8(5)
C(10)-N(10)-C(11)	111.4(6)	N(7)-C(7)-Rh(1)	115.9(4)
C(10)-N(10)-N(7)	116.4(5)	N(8)-C(8)-N(7)	108.5(6)
C(11)-N(10)-N(7)	132.2(5)	N(12)-C(10)-N(10)	100.5(5)
C(11)-N(11)-N(12)	104.9(5)	N(12)-C(10)-Rh(1)	146.2(5)
C(10)-N(12)-N(11)	114.4(5)	N(10)-C(10)-Rh(1)	113.3(4)
C(10)-N(12)-C(12)	127.1(6)	N(11)-C(11)-N(10)	108.7(6)
N(11)-N(12)-C(12)	118.5(5)	N(13)-C(13)-C(14)	177.4(10)
N(1)-C(1)-N(3)	102.0(5)	C(16)-O(1)-C(17)	110.0(9)
N(1)-C(1)-Rh(1)	113.7(4)	O(1)-C(16)-C(15)	107.1(11)
N(3)-C(1)-Rh(1)	144.2(5)	O(1)-C(17)-C(18)	109.7(10)

S3.3 Crystallographic data of compound 6

Figure 3. Molecular structure of the cation of 6. 30 % probability chosen for the ellipsoids. Selected bond distances (Å) and angles (°): Rh(1)-Rh(2) 2.6459(8), Rh(1)-C(7) 1.969(3), Rh(1)-C(13) 1.979(3), Rh(2)-C(16) 1.972(3), Rh(2)-C(10) 1.993(3), Rh(2)-Rh(1)-C(7) 90.90(9), Rh(2)-Rh(1)-C(13) 87.92(9)

Table 1. Crystal data and structure	refinement for	compound 6
-------------------------------------	----------------	------------

Empirical formula	$C_{26}H_{37}B_4F_{16}N_{19}Rh_2$		
Formula weight	1168.81		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 20.137(4) Å	α= 90°.	
	b = 11.200(2) Å	β=99.01(3)°.	
	c = 19.736(4) Å	$\gamma = 90^{\circ}$.	
Volume	4396.3(15) Å ³		
Z	4		
Density (calculated)	1.766 g/cm ³		
Absorption coefficient	8.67 cm ⁻¹		
F(000)	2320		
Crystal size	$0.15 \ x \ 0.15 \ x \ 0.08 \ mm^3$		
Theta range for data collection	2.26 to 29.01°.		

Index ranges -27<=h<=27, -15<=k<=15, -26<=l<=26 Reflections collected 20259 Independent reflections 11606 [R(int) = 0.0453] Completeness to theta = 29.01° 99.2 % Absorption correction None 0.9339 and 0.8810 Max. and min. transmission Full-matrix least-squares on F² Refinement method Data / restraints / parameters 11606 / 0 / 611 Goodness-of-fit on F² 1.006 Final R indices [I>2sigma(I)] R1 = 0.0449, wR2 = 0.0979R indices (all data) R1 = 0.0818, wR2 = 0.1095 0.723 and -0.825 e.Å-3 Largest diff. peak and hole

Rh(1)-C(7)	1.969(3)	N(13)-C(17)	1.354(4)
Rh(1)-C(13)	1.979(3)	N(13)-C(16)	1.366(4)
Rh(1)-N(1)	2.072(3)	N(14)-C(17)	1.297(4)
Rh(1)-N(2)	2.079(3)	N(14)-N(15)	1.381(4)
Rh(1)-N(3)	2.164(3)	N(15)-C(16)	1.334(4)
Rh(1)-Rh(2)	2.6459(8)	N(15)-C(18)	1.462(4)
Rh(2)-C(16)	1.972(3)	N(16)-C(19)	1.128(4)
Rh(2)-C(10)	1.993(3)	N(17)-C(21)	1.128(4)
Rh(2)-N(16)	2.073(3)	N(18)-C(23)	1.129(4)
Rh(2)-N(17)	2.076(3)	C(1)-C(2)	1.481(5)
Rh(2)-N(18)	2.171(3)	C(3)-C(4)	1.454(5)
N(1)-C(1)	1.130(4)	C(5)-C(6)	1.462(5)
N(2)-C(3)	1.118(4)	C(19)-C(20)	1.468(6)
N(3)-C(5)	1.116(4)	C(21)-C(22)	1.456(5)
N(4)-C(7)	1.360(4)	C(23)-C(24)	1.466(5)
N(4)-C(8)	1.364(4)	B(1)-F(3)	1.362(6)
N(4)-N(7)	1.375(3)	B(1)-F(4)	1.373(6)
N(5)-C(8)	1.293(4)	B(1)-F(2)	1.384(6)
N(5)-N(6)	1.392(4)	B(1)-F(1)	1.392(6)
N(6)-C(7)	1.332(4)	B(2)-F(5)	1.338(6)
N(6)-C(9)	1.463(4)	B(2)-F(7)	1.378(6)
N(7)-C(11)	1.360(4)	B(2)-F(8)	1.379(6)
N(7)-C(10)	1.371(4)	B(2)-F(6)	1.389(6)
N(8)-C(11)	1.302(4)	B(3)-F(12)	1.372(5)
N(8)-N(9)	1.384(4)	B(3)-F(10)	1.375(5)
N(9)-C(10)	1.338(4)	B(3)-F(11)	1.378(5)
N(9)-C(12)	1.456(4)	B(3)-F(9)	1.396(5)
N(10)-C(13)	1.371(4)	B(4)-F(15)	1.331(6)
N(10)-C(14)	1.372(4)	B(4)-F(14)	1.369(5)
N(10)-N(13)	1.381(3)	B(4)-F(16)	1.378(6)
N(11)-C(14)	1.286(4)	B(4)-F(13)	1.382(5)
N(11)-N(12)	1.384(4)	C(25)-C(26)	1.468(6)
N(12)-C(13)	1.329(4)	C(26)-N(19)	1.099(5)
N(12)-C(15)	1.464(4)		

Table 2. Bond lengths [Å] and angles $[\circ]$ for 6.

C(7)-Rh(1)-C(13)	90.07(13)	C(8)-N(5)-N(6)	103.9(3)
C(7)-Rh(1)-N(1)	178.79(12)	C(7)-N(6)-N(5)	113.8(3)
C(13)-Rh(1)-N(1)	90.55(13)	C(7)-N(6)-C(9)	130.2(3)
C(7)-Rh(1)-N(2)	93.99(11)	N(5)-N(6)-C(9)	116.0(3)
C(13)-Rh(1)-N(2)	175.43(12)	C(11)-N(7)-C(10)	110.6(3)
N(1)-Rh(1)-N(2)	85.43(11)	C(11)-N(7)-N(4)	123.6(3)
C(7)-Rh(1)-N(3)	90.76(12)	C(10)-N(7)-N(4)	125.5(2)
C(13)-Rh(1)-N(3)	97.74(12)	C(11)-N(8)-N(9)	104.0(3)
N(1)-Rh(1)-N(3)	88.13(11)	C(10)-N(9)-N(8)	114.1(3)
N(2)-Rh(1)-N(3)	84.31(10)	C(10)-N(9)-C(12)	129.7(3)
C(7)-Rh(1)-Rh(2)	90.90(9)	N(8)-N(9)-C(12)	116.3(3)
C(13)-Rh(1)-Rh(2)	87.92(9)	C(13)-N(10)-C(14)	110.0(3)
N(1)-Rh(1)-Rh(2)	90.16(8)	C(13)-N(10)-N(13)	125.6(2)
N(2)-Rh(1)-Rh(2)	89.93(7)	C(14)-N(10)-N(13)	124.3(3)
N(3)-Rh(1)-Rh(2)	174.10(8)	C(14)-N(11)-N(12)	104.6(3)
C(16)-Rh(2)-C(10)	90.99(12)	C(13)-N(12)-N(11)	113.9(3)
C(16)-Rh(2)-N(16)	178.23(11)	C(13)-N(12)-C(15)	129.0(3)
C(10)-Rh(2)-N(16)	90.32(12)	N(11)-N(12)-C(15)	117.0(3)
C(16)-Rh(2)-N(17)	89.79(11)	C(17)-N(13)-C(16)	111.0(3)
C(10)-Rh(2)-N(17)	178.08(11)	C(17)-N(13)-N(10)	124.1(3)
N(16)-Rh(2)-N(17)	88.86(11)	C(16)-N(13)-N(10)	124.6(2)
C(16)-Rh(2)-N(18)	91.53(11)	C(17)-N(14)-N(15)	104.1(3)
C(10)-Rh(2)-N(18)	97.44(11)	C(16)-N(15)-N(14)	114.2(3)
N(16)-Rh(2)-N(18)	89.47(11)	C(16)-N(15)-C(18)	128.1(3)
N(17)-Rh(2)-N(18)	84.30(10)	N(14)-N(15)-C(18)	117.6(2)
C(16)-Rh(2)-Rh(1)	90.97(9)	C(19)-N(16)-Rh(2)	178.4(3)
C(10)-Rh(2)-Rh(1)	86.58(9)	C(21)-N(17)-Rh(2)	168.9(3)
N(16)-Rh(2)-Rh(1)	87.92(8)	C(23)-N(18)-Rh(2)	165.9(3)
N(17)-Rh(2)-Rh(1)	91.65(7)	N(1)-C(1)-C(2)	179.9(5)
N(18)-Rh(2)-Rh(1)	175.22(8)	N(2)-C(3)-C(4)	178.5(4)
C(1)-N(1)-Rh(1)	168.7(3)	N(3)-C(5)-C(6)	179.5(4)
C(3)-N(2)-Rh(1)	166.3(3)	N(6)-C(7)-N(4)	101.9(3)
C(5)-N(3)-Rh(1)	167.3(3)	N(6)-C(7)-Rh(1)	131.3(2)
C(7)-N(4)-C(8)	110.6(3)	N(4)-C(7)-Rh(1)	126.8(2)
C(7)-N(4)-N(7)	123.4(3)	N(5)-C(8)-N(4)	109.9(3)
C(8)-N(4)-N(7)	125.5(3)	N(9)-C(10)-N(7)	101.5(3)

N(9)-C(10)-Rh(2)	129.9(2)	F(2)-B(1)-F(1)	108.5(5)
N(7)-C(10)-Rh(2)	128.1(2)	F(5)-B(2)-F(7)	109.8(5)
N(8)-C(11)-N(7)	109.7(3)	F(5)-B(2)-F(8)	110.3(4)
N(12)-C(13)-N(10)	101.9(3)	F(7)-B(2)-F(8)	109.8(4)
N(12)-C(13)-Rh(1)	129.6(2)	F(5)-B(2)-F(6)	111.2(4)
N(10)-C(13)-Rh(1)	128.1(2)	F(7)-B(2)-F(6)	107.7(4)
N(11)-C(14)-N(10)	109.6(3)	F(8)-B(2)-F(6)	108.0(4)
N(15)-C(16)-N(13)	101.2(3)	F(12)-B(3)-F(10)	109.3(3)
N(15)-C(16)-Rh(2)	132.6(2)	F(12)-B(3)-F(11)	109.4(4)
N(13)-C(16)-Rh(2)	126.2(2)	F(10)-B(3)-F(11)	110.0(4)
N(14)-C(17)-N(13)	109.5(3)	F(12)-B(3)-F(9)	109.8(3)
N(16)-C(19)-C(20)	177.5(4)	F(10)-B(3)-F(9)	108.6(3)
N(17)-C(21)-C(22)	178.9(4)	F(11)-B(3)-F(9)	109.8(3)
N(18)-C(23)-C(24)	179.2(4)	F(15)-B(4)-F(14)	110.9(4)
F(3)-B(1)-F(4)	111.4(4)	F(15)-B(4)-F(16)	112.2(4)
F(3)-B(1)-F(2)	109.9(5)	F(14)-B(4)-F(16)	109.4(4)
F(4)-B(1)-F(2)	110.1(4)	F(15)-B(4)-F(13)	109.3(4)
F(3)-B(1)-F(1)	108.8(4)	F(14)-B(4)-F(13)	108.2(4)
F(4)-B(1)-F(1)	108.1(5)	F(16)-B(4)-F(13)	106.8(4)