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General: Phosphate buffer (50 mM, pH 7.4 ) prepared with bidistilled water was used for all 
experiments. Stock solutions of the dyes (0.5 mM), [Cp*RhCl2]2 (0.5 mM Rh), cAMP, AMP, 
ADP, ATP, GTP, PPi and PPi/cAMP (5.0 mM) were prepared with the buffer. The dyes 
Gallocyanine (Acros), Mordant Yellow 10 (Aldrich), Evans Blue (Aldrich) and the 
nucleotides cAMP (Fluka), AMP disodium salt (Fluka), ADP disodium salt (Fluka), ATP 
disodium salt (Aldrich), GTP disodium salt (Fluka) and sodium pyrophosphate decahydrate 
(Acros) were used as received. All spectra were measured after 1 h equilibration time with a 
Lambda 40 spectrometer (Perkin Elmer). 
 
UV/Vis Titrations. To reveal the spectroscopic changes generated upon coordination of the 
dyes 2, 3, and 4 to the Rh complex 1, the following experiment was performed: the solutions 
of the respective dye (final concentrations: 40 µM for 2 and 3, 20 µM for 4) and 1 (final Rh 
concentration: 40 µM) were mixed in a cuvette and the UV-Vis spectrum was measured after 
an equilibration time of 1 hour.  The same experiment was performed without complex 1.  
The difference between the spectrum of the pure dye and the dye-Rh complex was calculated. 
To determine the association constant between the Rh complex and Mordant Yellow 10 (2), 
UV/Vis titration experiments were performed.  The titration data were fitted to a 1:1 binding 
algorithm using the program DATAN 3.1, trial version (www.multid.se).  The metal binding 
constant for Mordant Yellow 10 (2) was determind to be K = 3.7 (± 0.3) x 104 M-1.  
Experimental conditions: [2] = 25 µM, [1] = 0 – 25 µM, 50 mM phosphate buffer, pH 7.4. 

 
Figure S1. UV-Vis spectra of solutions of 2 (40 µM) upon addition of a variable amount of 
complex 1 (final Rh concentration: 0, 10, 20, 30, 40, and 50 µM).  The spectra were recorded 
in H2O (50 mM phosphate buffer, pH 7.4) after equilibration. 
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Figure S2. UV-Vis spectra of solutions of 4 (20 µM) upon addition of a variable amount of 
complex 1 (final Rh concentration: 0, 10, 20, 30, 40, and 50 µM).  The spectra were recorded 
in H2O (50 mM phosphate buffer, pH 7.4) after equilibration. 
 
Multicomponent indicator displacement assay with ADP, GTP and ATP. The respective 
analyte (final concentration: 0.5 mM) was mixed with the solution of the sensor (final 
concentrations: [Mordant Yellow 10] = [Gallocyanine] = 40 µM, [Evans Blue] = 20 µM, [Rh] 
= 120 µM).  A blank experiment was performed with no nucleotide being added.  After the 
equilibration time of 1 hour the UV-Vis spectrum in the region 350-800 nm was recorded.  
The difference between the blank measurement and the respective analytes was calculated. 
 
The discrimination of cAMP, AMP, ADP, ATP, GTP and PPi with a multicomponent 
indicator displacement assay.  The respective analyte (final concentration: 1.0 mM) was 
mixed with the solution of the sensor (final concentrations: [Mordant Yellow 10] = 
[Gallocyanine] = 40 µM, [Evans Blue] = 20 µM, [Rh] = 120 µM).  Six independent 
measurements were performed for each analyte.  The intensities at five wavelengths (700, 
625, 600, 540 and 440 nm) were chosen as the input variables for the linear discriminant 
analysis. These wavelengths correspond approximately to the maxima in the difference 
spectra for the dyes 2 – 4.  The analysis was performed with the commercial statistics 
program SYSTAT (version 11.0).  A 100 % classification accuracy was achieved. 
 
Atrificial neural network multi-layer perception analysis.  Artificial neural networks 
(ANNs), especially the multi-layer perceptrons (MLP), are the main competitors to the state-
of-the-art partial least squares (PLS) methods in terms of flexibility of the model and 
robustness of the results.  In a number of applications it was observed that MLP outperforms 
PLS on non-linear problems.1  However, it requires an input feature selection procedure. In 
the present study, the input features (wavelengths) were selected manually according to the 
maximum variation of the intensities.   
 MLP is one of the most popular models of ANNs.  The main component of a MLP is the 
neuron, a unit which sums the inputs and performs a transformation via an activation function, 
which is responsible for non-linearity.  In our case, the hyper-tangent transfer function was 
used.  Neurons form a structure with some inputs representing exploratory variable, variable 
number of hidden layers including the activation function, and the outputs corresponding to 
the target variable(s).  The particular MLP structure used for our analysis contained five input 
neurons (the number of selected input wavelengths), five hidden neurons arranged in one 
layer, and two output neuron representing the target variables values - concentrations.  The 
structure of the MLP is presented in Figure S3. 

 

 S 2
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Figure S3. a) The structure of the MLP with five input neurons, one layer of five hidden 
neurons, and two outputs.  b) An example of the response surface at 625nm. 
 
The number of hidden neurons is subject to optimal configuration for a particular case study.  
In general, the complexity of the MLP must be consistent with the amount of information for 
training – there should be enough data to match the dependence.  Choosing too many hidden 
neurons may lead to over-fitting.  The MLP then loses its ability to generalize the information 
from the samples.  In the case of over-fitting, the complexity of the model is too high for the 
task.  The model fits the training data precisely; however it can not generalize when new 
samples are introduced.  To avoid the risk of an over-fitting, a 6-fold cross-validation error 
was considered.  This is a standard and commonly used approach in the model selection.  In 
the cross-validation procedure, a fraction of the available training data is not used for training 
but for the estimation of the validation error of the model.  In K-fold cross-validation, the data 
are split into K parts, each of them being consequently excluded from the training set and used 
to calculate the mean square error of the model.  The results are then averaged over all splits, 
and, if necessary, after several repetitions of the described procedure. 

The application of MLP proceeded first through the described structure selection phase.  
Then the model with the optimized structure was trained on the data, i.e. the weights of the 
neurons were adapted to minimize the mean squared error.  This training employed 
minimization of the quadratic mean square error (MSE) cost function for optimizing the 
summation weights at each neuron.  An error back-propagation algorithm was applied to 
calculate the gradient of the MSE and to adapt the weights.  The Levenberg-Marquardt 
algorithm was used for this purpose.  After the MLP was trained and the optimal weights were 
found, the predictions were computed by presenting the intensities at selected five 
wavelengths of the test samples to the MLP inputs.  The results at the outputs were then 
computed using the trained MLP. 

The software which implements the described MLP was developed in the research group 
of the Institute of Geomatics and Analysis of Risk, University of Lausanne.  It is distributed 
freely for academic use with the book.2  The authors are grateful to V. Timonin (Institute of 
Geomatics and Analysis of Risk, University of Lausanne) for providing the software.  The 
results of the calculations are listed in the following table. 
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Table S1. Real and predicted concentrations of ATP and PPi/cAMP as determined. 
 
 Concentrations added, 

mM 
Concentrations found, 
mM 

Absolute error,  
mM 

Entry ATP PPi/cAMP ATP PPi/cAMP ATP PPi/cAMP 
1 0.10 0.30 0.06 0.33 0.04 0.03 
2 0.10 0.70 0.06 0.73 0.04 0.03 
3 0.30 0.70 0.25 0.74 0.05 0.04 
4 0.30 0.90 0.25 0.90 0.05 0.00 
5 0.50 0.10 0.46 0.10 0.04 0.00 
6 0.50 0.30 0.46 0.32 0.04 0.02 
7 0.70 0.10 0.65 0.10 0.05 0.00 
8 0.70 0.50 0.65 0.46 0.05 0.04 
9 0.90 0.50 0.85 0.45 0.05 0.05 
10 0.90 0.70 0.86 0.80 0.04 0.10 
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