Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

(Electronic Supplementary Information)

One-pot Synthesis of Furocoumarins through Cascade Addition-Cyclization-Oxidation

Gang Cheng and Youhong Hu*

Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zu Chong Zhi Road, Shanghai 201203, China. Fax: +86-21-5080-5896; Tel: +86-21-5080-5896; E-mail: yhhu@mail.shcnc.ac.cn

Table of contents

- S-1 Table of contents and general details
- S-1 General experimental procedures
- S-2 Formation of (6) from intermediate D
- S-3 Formation of furocoumarin(4) from (6)
- S-3 Synthesis of 3-Phenylethynyl-4*H*-benzopyran-4-one (7) using this acid catalyzed method.
- S-3 Synthesis of substituted furocoumarins
- S-9 References
- S-10 X-ray crystal structure of 4

General details

:

¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were determined in CDCl₃ unless otherwise specified. Chemical shifts are reported in ppm from internal TMS (δ). Melting points (uncorrected) were determined on a Buchi-510 capillary apparatus. High resolution mass spectra were recorded on a Finnigan MAT 95 mass spectrometer (ESI) and a Finnigan-4201 spectrometer (EI). Column chromatography was performed with 200-300 mesh silica gel using flash column techniques. All the solvents and reagents were used directly as obtained commercially unless otherwise noted.

General experimental procedures for the synthesis of furocoumarins:

Synthesis of **4**: A solution of of **3** (60 mg, 0.24 mmol), CH₃SO₃H (0.025 mL, 0.38 mmol) and H₂O (0.04 mL, 2.2 mmol) in DMF (1.5 mL) was heated at 90°C for 0.5 h, and then CuCl₂ (67mg, 0.50 mmol) was added. The reaction mixture was stirred at 90°C for 20 h at the same temperature. After complete consumption of the intermediate as determined by TLC, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (30 mL). The organic layer was washed with water (30 mL × 3) and brine (10 mL) and then dried over MgSO₄. Upon removal of the solvent, the residue was purified by column chromatography (silica gel, 2:1 petroleum ether/CH₂Cl₂) to afford 57 mg (89%) of compound **4**.

Formation of 6 by protect intermediate D with TBSCl

Compound 6

A mixture of **3** (60 mg, 0.24 mmol), CH₃SO₃H (0.025 mL, 0.38 mmol) and H₂O (0.04 mL, 2.2 mmol) in the DMF (2 mL) was stirred at 90 for 1 h. The mixture was diluted with ethyl acetate (30 mL), and washed with water (30 mL × 3) and brine (10 mL), dried over MgSO₄, and evaporated to afford intermediate as a coffee solid. The mixture of this solid, TBDMSCl (41 mg, 1.2 equiv) and imidazole (23 mg, 1.5 equiv) in DMF was stirred for 2 h, diluted with ethyl acetate (30 mL) and washed with water (30 mL × 3) and brine (10 mL). After the organic layer was dried over MgSO₄ and concentrated, the residue was purified by flash chromatography (silica gel, 15:1 petroleum ether/ethyl acetate) to afford 72 mg of **6** (80% from **3**) as a colorless colloid. ¹H NMR (CDCl₃): δ = 9.92 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 2H), 7.53 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.46-7.37 (m, 3H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.16-7.09 (m, 2H), 7.01 (d, *J* = 8.1 Hz, 1H), 0.83 (s, 9H), 0.07 (s, 6H); ¹³C NMR (CDCl₃): δ = 186.90, 159.27, 154.56, 153.83, 131.53, 129.61, 128.74, 128.25, 125.58, 124.18, 121.64, 120.89, 120.81, 102.66, 25.49, 18.05, -4.55; MS (EI): m/z 378 (M⁺, 8), 321 (100), 293 (25), 247 (23); HRMS (EI) m/z calcd for (M⁺) C₂₃H₂₆O₃Si: 378.1651; found: 378.1651.

Formation of furocoumarin(4) from (6)

A mixture of **6** (27.3 mg, 0.072 mmol), CH₃SO₃H (0.03 mL, 0.46 mmol) and CuCl₂ (21.3 mg, 0.158 mmol) in DMF (2 mL) was stirred at 90 for 12 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (30 mL), washed with water (30 mL \times 3) and brine (10 mL). The organic layer was dried over MgSO₄, filtered and concentrated. 8 mg of **4** (42%) was obtained after flash chromatograph.

Synthesie of 3-Phenylethynyl-4*H*-benzopyran-4-one (7) using this acid catalyzed method.

Compound 7^1 .

A mixture of **3** (90 mg, 0.37 mmol), CH₃SO₃H (0.038 mL, 0.58 mmol) and CH₃OH (1 mL, 2.2 mmol) in dry DMF (2 mL) was stirred at 90 for 10 h under N₂ atmosphere. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (30 mL), washed with water (30 mL × 3) and brine (10 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated. 99 mg (97%) of **7** was obtained. ¹H NMR (CDCl₃): δ = 7.77-7.72 (m, 2H), 7.65 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.45-7.38 (m, 2H), 7.21-7.33 (m, 2H), 7.06-7.12 (m, 2H), 6.74 (s, 1H), 6.34 (s, 1H), 3.56 (s, 3H). The characterization data of 7 is identical with the report in the literature.

Synthesis of substituted furocoumarins

Compound 2a

Followed the general procedures and purified by flash chromatography (silica gel, 2:1 petroleum ether/CH₂Cl₂) to afford 59 mg of **2a** (89%) as a white solid: m.p. 205-206°C; ¹H NMR (CDCl₃): δ = 7.95 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.52 (td, *J* = 7.7, 1.4 Hz, 1H), 7.45 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.37 (td, *J* = 7.7, 1.4 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.11 (s, 1H), 2.41 (s, 3H). ¹³C NMR (CDCl₃): δ = 158.22, 156.83, 156.51, 152.47, 139.28, 130.38, 129.63, 126.16, 124.47, 124.43, 120.68, 117.28, 112.75, 112.47, 101.81, 21.36; MS (EI): m/z 276 (M⁺, 100); Elemental analysis (%) calcd for C₁₈H₁₂O₃ : C 78.25, H 4.38; found: C 77.92, H 4.38.

Compound 4^2

Followed the general procedure and purified by flash chromatography (silica gel, 2:1 petroleum ether/CH₂Cl₂) to afford 57 mg of compound **4** (89%) as a white solid: m.p. 175-176°C; ¹H NMR (CDCl₃): δ = 7.98 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.83 (d, *J* = 7.5 Hz, 2H), 7.58-7.48 (m, 4H), 7.44-7.36 (m, 2H), 7.19 (s, 1H); ¹³C NMR (CDCl₃): δ = 158.02, 156.59, 156.35, 152.37, 130.45, 128.99, 128.86, 128.66, 124.43, 124.31, 120.60, 117.17, 112.49, 112.84, 102.42. MS (EI): m/z 262 (M⁺, 100); IR (KBr): v=1734, 1631, 1487, 1425, 1056, 962, 916, 746cm⁻¹; Elemental analysis (%) calcd for C₁₇H₁₀O₃ : C 77.85, H 3.84; found: C 77.58, H 3.88.

Compound 4a

A mixture of **3** (60 mg, 0.24 mmol), CH₃SO₃H (0.025 mL, 0.38 mmol) and H₂O (0.04 mL, 2.2 mmol) and CuCl₂ (67 mg, 0.50 mmol) in the DMF (1.5 mL) was stirred at 90 for 20 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (30 mL), washed with water (30 mL × 3) and brine (10 mL). The organic layer was dried over MgSO₄, filtered and concentrated. 22 mg of **4** (35%) and 29 mg of **4a** (40%) was obtained after flash chromatograph (silica gel, 2:1 petroleum ether/CH₂Cl₂). **4a:** ¹H NMR (CDCl₃): $\delta = 8.10-8.04$ (m, 2H), 7.95 (dd, J = 8.0, 1.6 Hz,

1H), 7.61-7.36 (m, 6H). ¹³C NMR (CDCl₃): δ = 156.00, 155.20, 152.39, 149.56, 131.20, 129.24, 128.65, 127.49, 125.36, 124.62, 120.60, 117.13, 111.84, 110.00, 109.92; MS (EI): m/z 296 (M+, 100), 297 (32), 298 (18);

Compound 9a

Followed the general procedures and purified by flash chromatography (silica gel, 2:1 petroleum ether/ethyl acetate) to afford 51.8 mg of **9a** (74%) as a white solid: m.p. 181-183°C; ¹H NMR (CDCl₃): δ = 7.95 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.76 (d, *J* = 9.0 Hz, 2H), 7.52 (td, *J* = 7.8, 1.5 Hz, 1H), 7.46 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.38 (td, *J* = 7.8, 1.6 Hz, 1H), 7.05 (s, 1H), 7.01 (d, *J* = 9.0 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (CDCl₃): δ = 160.36, 156.74, 156.31, 152.42, 130.23, 126.08, 124.44, 121.76, 120.57, 117.27, 114.43, 112.79, 112.56, 100.88, 55.35; MS (EI): m/z 292 (M⁺, 84), 277 (62), 149 (47), 135 (100); Elemental analysis (%) calcd for C₁₈H₁₂O₄: C 73.97, H 4.14; found: C 73.88, H 4.43.

Compound 9b

Followed the general procedures and purified by flash chromatography (silica gel, 2:1 petroleum ether/CH₂Cl₂) to afford 57 mg of **9b** (72%) as a white solid: m.p. 204-206°C. ¹H NMR (CDCl₃): δ = 7.98 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.92 (d, *J* = 8.7 Hz, 2H), 7.73 (d, *J* = 8.7 Hz, 2H), 7.57 (td, *J* = 7.8, 1.6 Hz, 1H), 7.47 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.40 (td, *J* = 7.8, 1.6 Hz, 1H), 7.31 (s, 1H). ¹³C NMR (CDCl₃): δ = 157.81, 157.44, 154.78, 152.72, 131.98, 131.10, 130.82, 130.50, 126.04, 126.00, 125.15, 124.69, 124.54, 122.49, 120.86, 117.43, 112.37, 104.64; MS (EI): m/z 330 (M⁺, 100); HRMS (EI) m/z calcd for (M⁺) C₁₈H₉F₃O₃: 330.0504; found: 330.0501.

Compound 9c

Followed the general procedures and purified by flash chromatography (silica gel, 3:1 petroleum ether/CH₂Cl₂) to afford 37 mg of **9c** (60%) as a colorless colloid: ¹H NMR (CDCl₃): δ = 7.84 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.49 (td, *J* = 7.8, 1.7 Hz, 1H), 7.43 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.33 (td, *J* = 7.7, 1.7 Hz, 1H), 6.58 (s, 1H), 2.795 (t, *J* = 7.5 Hz, 2H), 1.76 (m, 2H), 1.39 (m, 4H), 0.93 (m, 3H); ¹³C NMR (CDCl₃): δ = 159.97, 158.25, 156.31, 152.10, 129.91, 124.20, 120.38, 117.00, 112.75, 111.26, 103.12, 31.05, 27.86, 27.16, 22.19, 13.81; MS (EI): m/z 256 (M⁺, 32), 199(100); HRMS (EI) m/z calcd for (M⁺) C₁₆H₁₆O₃: 256.1099; found: 256.1107.

Compound 9d

Followed the general procedures and purified by flash chromatography (silica gel, 8:1 petroleum ether/ ethyl acetate) to afford 45 mg of **9d** (77%) as a a white solid: m.p. 132-134°C. ¹H NMR (CDCl₃): δ = 7.86 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 6.56 (s, 1H), 1.39 (s, 9H). ¹³C NMR (CDCl₃): δ = 167.56, 158.40, 156.32, 152.16, 129.93, 124.16, 120.44, 117.02, 112.83, 111.04, 100.56, 33.01, 28.67; MS (EI): m/z 242 (M⁺, 27), 227(100); HRMS (EI) m/z calcd for (M⁺) C₁₅H₁₄O₃: 242.0943; found: 242.0947.

Compound 9e

Followed the general procedures and purified by flash chromatography (silica gel, 3:1 petroleum ether/ ethyl acetate) to afford 39 mg of **9e** (64%) as a white solid: m.p.

75-77°C; ¹H NMR (CDCl₃): δ = 7.83 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.52 (td, *J* = 7.8, 1.7 Hz, 1H), 7.44 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.35 (td, *J* = 7.7, 1.7 Hz, 1H), 6.69 (s, 1H), 3.00 (t, *J* = 7.2 Hz, 2H), 2.48 (t, *J* = 7.2 Hz, 2H), 2.14 (m, *J* = 7.2 Hz, 2H). ¹³C NMR (CDCl₃): δ = 157.85, 156.80, 156.74, 152.10, 130.33, 124.32, 120.41, 118.70, 116.98, 112.37, 111.04, 104.47, 26.63, 23.44, 16.34; MS (EI): m/z 253 (M⁺, 32), 199 (100), 149 (38); HRMS (EI) m/z calcd for (M⁺) C₁₅H₁₁NO₃: 253.0739; found: 253.0739.

Compound 9f

Followed the general procedures and purified by flash chromatography (silica gel, 2:1 petroleum ether/CH₂Cl₂) to afford 45 mg of **9f** (72%) as a white solid: m.p. 164-166°C; ¹H NMR (CDCl₃): δ = 7.78 (d, *J* = 7.6 Hz, 2H), 7.70 (s, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.30 (m, 2H), 7.13 (s, 1H), 2.46 (s, 3H); ¹³C NMR (100M, CDCl₃): δ = 158.29, 156.71, 156.23, 150.63, 134.34, 131.53, 128.95, 128.87, 128.80, 124.33, 120.32, 116.91, 112.21, 112.18, 102.47, 20.85; MS (EI): m/z 276 (M⁺, 100); Elemental analysis (%) calcd for C₁₈H₁₂O₃: C 78.25, H 4.38; found: C 78.11, H 4.42.

Compound 9g

Followed the general procedures and purified by flash chromatography (silica gel, 2:1 petroleum ether/CH₂Cl₂) to afford 50 mg of **9**g (70%) as a white solid: m.p. 215-216°C; ¹H NMR (CDCl₃): δ = 7.93 (d, *J* = 2.2 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.53-7.37 (m, 5H), 7.17 (s, 1H); ¹³C NMR (CDCl₃): δ = 157.53, 157.19, 155.38, 150.77, 130.45, 130.11, 129.39, 129.04, 128.54, 124.57, 120.22, 118.76, 113.68, 113.116, 102.65; MS (EI): m/z 296 (M⁺, 100), 297 (32), 298 (18); Elemental analysis (%) calcd for C₁₇H₉ClO₃: C 66.82, H 3.06; found: C 68.75, H 3.02.

Compound 9h

Followed the general procedures and purified by flash chromatography (silica gel, 1:1 petroleum ether/CH₂Cl₂) to afford 26 mg of **9h** (37%) as a white solid and 16 mg of byproduct (20%). **9h**: m.p. 170-172°C; ¹H NMR (CDCl₃): $\delta = 7.79$ (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.3 Hz, 2H), 7.39 (d, J = 7.3 Hz, 1H), 7.34 (d, J = 9.0 Hz, 1H), 7.31 (d, J = 2.8 Hz, 1H), 7.14 (s, 1H), 7.06 (dd, J = 9.0, 2.8 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (CDCl₃): $\delta = 158.28$, 156.65, 156.48, 156.25, 147.01, 129.08, 128.94, 128.83, 124.47, 118.51, 118.46, 112.85, 112.59, 102.70, 102.65, 55.88; MS (EI): m/z 292 (M⁺, 100), 277(26), 249(24); Elemental analysis (%) calcd for C₁₈H₁₂ O₄: C 73.97, H 4.14; found: C 73.92, H 4.37.

Byproduct

¹H NMR (CDCl₃): δ = 7.83 (m, 2H), 7.50 (m, 2H), 7.43 (m, 1H), 7.30 (d, *J* = 2.8 Hz, 1H), 7.20 (s, 1H), 7.19 (d, *J* = 2.8 Hz, 1H), 3.93 (s, 3H); MS (EI): m/z 326 (M⁺, 100).

Compound 9i

After a mixture of **8j** (30 mg, 0.10 mmol), CH_3SO_3H (0.13 mL, 0.20 mmol) and H_2O (0.03 mL, 2.2 mmol) in the DMF (1 mL) was stirred at 90 for 2 h (until TLC analysis indicate complete conversion), $CuCl_2(40 \text{ mg}, 0.30 \text{ mmol})$ was added and the reaction mixture was stirred for 120 to continue for 40 h. After the solvent was removed under reduced pressure, the residue was dissolved in CH_2Cl_2 (40 mL), filtered through a short pad of silica, concentrated, and filtered, then washed with

THF and CHCl₃ to afford 16 mg (51%) of **9i** as light yellow solid: m.p. 278-280°C; ¹H NMR (CDCl₃): $\delta = 8.87$ (d, J = 2.3 Hz, 1H), 8.39 (dd, J = 8.7, 2.3 Hz, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 8.7 Hz, 1H), 7.57-7.42 (m, 3H), 7.23 (s, 1H); ¹³C NMR (CDCl₃): $\delta = 158.23$, 156.59, 155.55, 154.97, 144.19, 129.86, 129.22 128.27, 125.16, 124.86, 118.50, 116.98, 113.86, 113.12, 102.71; MS (EI): m/z 307 (M⁺, 100), 261(24); HRMS (EI) m/z calcd for (M⁺) C₁₇H₉NO₅: 307.0481; found: 307.0487.

References

- 1. T. Yao, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 11164;
- a) S. Tollari, G. Palmisano, S. Cenini, G. Cravotto, G. B. Giovenzana, A. Penoni, *Synthesis*, 2001, *5*, 735. b) K. Kobayashi, K. Sakashita, H. Akamatsu, K. Tanaka, M. Uchida, T. Uneda, T. Kitamura, O. Morikawa, H. Konishi, *Heterocycles*, 1999, *51*, 2881.

View of **4.** Ellipsoid probability: 50%.