Supplementary Information

Complementary face-to-face dimer formation from *meso*-aryl subporphyrins bearing a 2-carboxyphenyl group

Yasuhide Inokuma and Atsuhiro Osuka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502,

Japan

Contents

- 1. Experimental procedure
- 2. ¹H NMR spectra
- 3. UV/vis absorption and fluorescence spectra
- 4. ESI-TOF mass spectra
- 5. References

1. Experimental procedure

General

All reagents and solvents were of commercial reagent grade and were used without further purification. ¹H, ¹¹B, and ¹³C NMR spectra were recorded on a JEOL delta-600 spectrometer, and chemical shifts were reported as the delta scale in ppm relative to internal standards (CHCl₃ ($\delta = 7.26$ ppm for ¹H, 77.16 ppm for ¹³C), and an external standard, BF₃·OEt₂ in CDCl₃ ($\delta = 0.00$ ppm for ¹¹B)). Spectroscopic grade solvents were used for all spectroscopic studies without further purification. UV/visible absorption spectra were recorded on a Shimadzu UV-3100 spectrometer. Fluorescence spectra were recorded on a Shimadzu RF-5300PC spectrometer with spectroscopic grade solvents. Relative fluorescence quantum yields were determined with a reference to that of 8-amino-1-naphthalenesulfonic acid ($\Phi_f =$ 0.37 in ethanol). ESI-TOF-MS spectra were recorded on a BRUKER DALTONICS micro TOF LC using positive-ion mode. Thin layer chromatography (TLC) was performed on a silica gel sheet, MERCK silica gel 60 F₂₅₄. Preparative separations were performed by silica gel gravity column chromatography (Wako gel C-300) or size exclusion gel permeation chromatography (GPC) (Bio-Rad Bio-Beads S-X1, packed with THF in a 6 × 40 cm gravity column).

Pyridine–tri-*N*-pyrrolylborane (1)¹ and methoxo(5,10,15-tri(4-bromophenyl)subporphyrinato)boron(III) (5)² were prepared by the reported procedure.¹ Dry toluene was purchased from Wako (Toluene, Dehydrated) and was used as received. Dry diisopropylamine was distilled from CaH₂.

Scheme S1.

Methoxo(5,10-diphenyl-15-(4-(2-methoxycarbonylphenylethynyl)phenyl)subporphyrinato)bo ron(III) (3)

To a suspension of pyridine-tri-N-pyrrolylborane (1) (3.00 g, 10.4 mmol) in 1,2-dichlorobenzene 400 ml, were added benzaldehyde (2.12 ml, 20.8 mmol) and 4-bromobenzaldehyde (1.93 g, 10.4 mmol), and the mixture was cooled to 0 °C with an ice/water bath. After dropwise addition of trifluoroacetic acid (1.07 ml, 14.4 mmol) via syringe, the solution was stirred for 1 h at 0 °C under N_2 . The acid was quenched with 0.90 ml of pyridine, and then the resulting solution was refluxed for 1 h under aerobic conditions. After the solution was cooled to room temperature, the solvent was removed in vacuo. To the residual black tar, a mixture of THF/MeOH (1:1) 50 ml was added and heated at 50 °C for 10 min. After the removal of insoluble materials by filtration, the solvent was once evaporated, then the residue was mounted onto a GPC column $(8 \times 50 \text{ cm}, \text{ packed with THF})$ with a minimal amount of THF. Polymeric byproducts that eluted first was removed and the yellowish fractions that eluted around R_{f} =0.50 on TLC (silica gel; eluent: CH₂Cl₂/hexane/ether=1:2:1) were collected. Further purification by silica gel column chromatography (eluent: $CH_2Cl_2/hexane/ether=1:2:1$) gave a crude mixture of subporphyrins as orange-brown solid. A 50 ml Schlenk tube was charged with the subporphyrin mixture, dry toluene (12 ml) and diisopropylamine (3 ml), copper(I) iodide (5 mg, 26.3 μ mol), dichlorobis(triphenylphosphine)palladium(II) (15 mg, 21.4 μ mol), and excess methyl The resulting solution was deoxygenated via three 2-ethynylbenzoate (ca. 0.2 ml). freeze-pump-thaw cycles, and then stirred at 80 °C for 12 h under Ar atmosphere. After passing through a short Celite[®] column(2×4 cm), the solvent was evaporated to dryness. The residual solid was once dissolved in a mixture of $CH_2Cl_2/MeOH$ (1:1, 20 ml) and then the solvent was evaporated again. The residue was chromatographed on silica gel (eluent: CH_2Cl_2 /hexane/ether=1:2:1) to give triphenylsubporphyrin as the first fraction ($R_f=0.54$), and

S3

the target subporphyrin **3** as the second fraction (R_f =0.35). Recrystallization from CH₂Cl₂/MeOH yielded triphenylsubporphyrin (79 mg, 1.5%) and subporphyrin **3** (85 mg, 1.2%), both as orange crystalline solids.

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.15 (d, *J* = 4.6 Hz, 2H, β-H), 8.14 (d, *J* = 4.6 Hz, 2H, β-H), 8.13 (s, 2H, β-H), 8.09 (d, *J* = 8.2 Hz, 2H, phenylene-H^f), 8.07 (d, *J* = 8.3 Hz, 4H, Ph-*o*-H), 8.04 (d, *J* = 7.9 Hz, 1H, H^a), 7.91 (d, *J* = 8.2 Hz, 2H, phenylene-H^e), 7.75 (d, *J* = 7.7 Hz, 1H, H^d), 7.71 (t, *J* = 7.8 Hz, 4H, Ph-*m*-H), 7.62 (t, *J* = 7.6 Hz, 2H, Ph-*p*-H), 7.56 (t, *J* = 7.6 Hz, 1H, H^c), 7.44 (t, *J* = 7.8 Hz, 1H, H^b), 4.04 (s, 3H, COOMe), and 0.85 (s, 3H, axial-OMe); ¹¹B NMR (193 MHz, CDCl₃) δ (ppm) –15.2 (s, 1B); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 166.8 (carbonyl), 141.3, 141.1 (2C), 137.7, 137.3, 134.2, 133.4, 133.3, 132.1(2C), 131.9, 130.7, 128.8, 128.2, 128.0, 123.9, 123.0, 122.6, 122.5, 122.2, 120.9, 119.7, 94.3 (acetylene), 89.9 (acetylene), 52.4 (ester-OCH₃), and 47.0 (axial-OCH₃); HR-ESI TOF-MS (positive mode) *m*/*z* = 628.2193 (calcd. for C₄₃O₂H₂₇N₃B₁ = 628.2198 [*M*-OMe]⁺); UV-vis (in CH₂Cl₂) λ [nm](ε [M⁻¹cm⁻¹]) 379(154000), 464(13000), and 491(13000); Fluorescence (in CH₂Cl₂, $\lambda_{ex} = 379$ nm); λ_{max} [nm] = 530, $\Phi_{F} = 0.20$.

Reagents and conditions: (a) PdCl₂(PPh₃)₂, Cul, toluene/iPr₂NH at 80 °C for 12 h (b) Pd(PPh₃)₄, Et₃N/HCOOH, toluene at 100 °C for 2 h

Methoxo(5,10-diphenyl-15-(4-(*trans*-2-methoxycarbonylstyryl)phenyl)subporphyrinato)boro n(III) (6)

A 50 ml Schlenk flask was charged with methoxo(5,10,15-tri(4-bromophenyl)-subporphyrinato)boron(III) (5) (100 mg, 135 μ mol), copper(I) iodide (1.4 mg, 7.1 μ mol), dichlorobis(triphenylphosphine)palladium(II) (5 mg, 7.1 μ mol), dry toluene (6 ml), dry diisopropylamine (5 ml), and methyl 2-ethynylbenzoate (30.4 mg, 190 μ mol). The mixture was

degassed via three freeze-pump-thaw cycles. The resulting solution was stirred at 80 °C under Ar for 12 h. After cooling of the reaction mixture to room temperature, it was passed through a short Celite[®] column, and the solvent was evaporated. Residual solid was placed again in a 50 ml Schlenk flask. Tetrakis(triphenylphosphine)palladium(0) (50 mg, 43.3 µmol), dry toluene (13 ml), triethylamine (0.25 ml), and formic acid (0.25 ml) were added to the flask under nitrogen atmosphere, and the mixture was stirred at 100 °C for 2 h under inert atmosphere. After cooling to room temperature, the resulting solution was diluted with CH₂Cl₂ (ca. 30 ml), washed with sat. NaHCO₃ ag. (50 ml \times 3 times), and dried over anhydrous Na₂SO₄. After the evaporation of the solvent to dryness, the axial ligand of subporphyrins was fixed as methoxo-form by heating in a mixture of $CH_2Cl_2/MeOH$ (1:1) at 50 °C for 10 min. The mixture was chromatographed on silica gel (eluent: CH₂Cl₂/hexane/ether=1:2:1) to give triphenylsubporphyrin as the first fraction ($R_{i}=0.54$), and the target subporphyrin 5 as the fraction $(R_f = 0.37).$ Recrystallization from $CH_2Cl_2/MeOH$ second vielded triphenylsubporphyrin (6 mg, 8.9%) and subporphyrin 6 (21 mg, 24%) as both orange crystalline solids.

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.22 (d, *J* = 16.1 Hz, 1H, vinyl-H^e), 8.16 (d, *J* = 4.6 Hz, 2H, β-H), 8.14 (d, *J* = 4.6 Hz, 2H, β-H) 8.12 (s, 2H, β-H), 8.09-8.06 (m, 6H, Ph-*o*-H and phenylene-H^h), 8.00 (d, *J* = 7.8 Hz, 1H, H^a), 7.88 (d, *J* = 7.8 Hz, 2H, phenylene-H⁸), 7.83 (d, *J* = 8.2 Hz, 1H, H^d), 7.70 (t, *J* = 7.8 Hz, 4H, Ph-*m*-H), 7.62 (t, *J* = 7.8 Hz, 2H, Ph-*p*-H), 7.59 (t, *J* = 7.5 Hz, 1H, H^c), 7.38 (t, *J* = 7.8 Hz, 1H, H^b), 7.21 (d, *J* = 16.1 Hz, 1H, vinyl-H^f), 3.98 (s, 3H, COOMe), and 0.85 (s, 3H, axial-OMe)); ¹¹B NMR (193 MHz, CDCl₃) δ (ppm) –15.2 (s, 1B); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 168.0 (carbonyl), 141.2, 141.0 (2C), 139.4, 137.4, 137.1, 136.9, 133.7, 133.4, 132.4 (C-H^c), 131.0 (2C, vinyl C-H^f and aryl-C-H^a), 128.8 (2C), 128.5 (vinyl C-H^e), 127.9, 127.5 (C-H^b), 127.3 (2C), 122.4 (3C), 120.7, 120.3, 52.4 (ester-OCH₃), and 47.0 (axial-OCH₃); HR-ESI TOF-MS (positive mode) m/z = 630.2350 (calcd. for C₄₃O₂H₂₉N₃B₁ = 630.2355 [*M*-OMe]⁺); UV-vis (in CH₂Cl₂) λ [nm](ϵ [M⁻¹cm⁻¹]) 380(151000), 464(14000), and 492(15000); Fluorescence (in CH₂Cl₂, $\lambda_{ex} = 380$ nm); λ_{max} [nm] = 535, $\Phi_{F} = 0.20$.

General procedure for hydrolysis of esters

Ester (3 or 6) was dissolved in a mixture of THF/MeOH/8 M NaOH aq. (3/2/1; ca. 2 mM for subporphyrin), and the solution was stirred at room temperature for overnight. The mixture was diluted with water (equal volume of the solution), acidified with 10% hydrochloric acid, and extracted with CH₂Cl₂. The combined organic phase was washed twice with water, dried over anhydrous Na₂SO₄, and evaporated to dryness. Residual orange solid was dissolved in a mixture of CH₂Cl₂/MeOH (1/1), and evaporated again to dryness. Resulting solid was recrystallized from CH₂Cl₂/hexane to give pure carboxylic acid (4 or 7) as orange flakes.

Methoxo (5, 10-diphenyl-15-(4-(2-carboxyphenylethynyl)phenyl) subporphyrinato) boron (III)

(4)

Purification and handling of this compound require meticulous care. In an alcoholic solution, 2-tolancarboxylic acid unit undergoes isomerization by heating. Thus, evaporation of the solvent must be done at r.t. without heating the solution.

According to the general procedure, 36 mg of carboxylic acid 4 was obtained from 41 mg (62 μ mol) of ester 3 in 90% yield.

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.14 (d, J = 4.6 Hz, 2H, β-H), 8.13-8.11 (s and d, 4H, β-H), 8.10 (d, J = 7.8 Hz, 1H, H^a), 8.07 (d, J = 8.3 Hz, 2H, phenylene-H^f), 8.06 (d, J = 7.6 Hz, 4H, Ph-o-H), 7.90 (d, J = 8.3 Hz, 2H, phenylene-H^e), 7.75 (d, J = 7.6 Hz, 1H, H^d), 7.70 (t, J = 7.8 Hz, 4H, Ph-*m*-H), 7.61 (t, J = 7.6 Hz, 2H, Ph-*p*-H), 7.57 (t, J = 7.6 Hz, 1H, H^c), 7.45 (t, J = 7.8 Hz, 1H, H^b), and 0.83 (s, 3H, axial-OMe); ¹¹B NMR (193 MHz, CDCl₃) δ (ppm) –15.2 (s, 1B); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 168.6 (carbonyl), 141.0, 140.8 (2C), 137.3, 136.9, 134.0, 133.1, 133.0, 132.5, 131.9, 131.7, 130.7, 128.7, 128.1, 127.9, 123.6, 123.1, 122.5, 122.4, 122.1, 120.9, 119.7, 94.0 (acetylene), 89.9 (acetylene), and 46.4 (axial-OCH₃); HR-ESI TOF-MS (positive mode) m/z =614.2045 (calcd. for C₄₂O₂H₂₅N₃B₁ = 614.2041 [*M*-OMe]⁺); UV-vis (in CH₂Cl₂) λ [nm](ε [M⁻¹cm⁻¹]) 379(163000), 463(14000), and 491(15000); Fluorescence (in CH₂Cl₂, $\lambda_{ex} = 379$ nm); λ_{max} [nm] = 528, $\Phi_{\rm F} = 0.17.$

Proton peak of -COOH was not observed due to weak and broadened signal.

Methoxo(5,10-diphenyl-15-(4-(trans-2-carboxystyryl)phenyl)subporphyrinato)boron(III) (7)

According to the general procedure, 18 mg of carboxylic acid 7 was obtained from 20 mg (30 μ mol) of ester 6 in 92% yield.

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.20 (d, *J* = 16.0 Hz, 1H, vinyl-H^e), 8.13 (d, *J* = 4.6 Hz, 2H, β-H), 8.10 (d, *J* = 4.6 Hz, 2H, β-H), 8.09 (s, 2H, β-H), 8.03 (d, *J* = 7.8 Hz, 2H, phenylene-H^h), 8.01 (d, *J* = 8.3 Hz, 4H, Ph-o-H), 7.99 (d, *J* = 7.8 Hz, 1H, H^a), 7.84 (d, *J* = 8.3 Hz, 2H, phenylene-H^g), 7.78 (d, *J* = 7.8 Hz, 1H, H^d), 7.66 (t, 7.6 Hz, 4H, Ph-*m*-H), 7.57 (t, *J* = 7.3 Hz, 2H, Ph-*p*-H), 7.52 (t, *J* = 7.1 Hz, 1H, H^e), 7.33 (t, *J* = 7.6 Hz, 1H, H^b), 7.16 (d, *J* = 16.0 Hz, 1H, vinyl-H^f), and 0.77 (s, 3H, axial-OMe); ¹¹B NMR (193 MHz, CDCl₃) δ (ppm) –15.2 (s, 1B); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 170.0 (carbonyl), 141.0, 140.9 (2C), 139.2, 137.2, 137.1, 136.6, 133.5, 133.2, 132.3, 131.2, 130.5, 129.2, 128.8, 128.7, 127.9, 127.4, 127.2, 127.1, 122.4 (2C), 122.3, 120.7, 120.4, and 46.6 (axial-OMe); HR-ESI TOF-MS (negative mode) *m*/*z* = 646.2300 (calcd. for C₄₃O₃H₂₉N₃B₁ = 646.2304 [*M*-H]⁻); UV-vis (in CH₂Cl₂) λ [nm](ε [M⁻¹cm⁻¹]) 381(159000), 464(15000), and 492(16000); Fluorescence (in CH₂Cl₂, λ_{ex} = 380 nm); λ_{max} [nm] = 533, Φ_F = 0.16.

Proton peak of -COOH was not observed due to weak and broadened signal.

Dimerization of subporphyrin-carboxylic acid 4

A 200 μ M toluene solution of subporphyrin 4 was refluxed for 12 h in a round-bottom flask equipped with a Dean-Stark trap under nitrogen atmosphere. Evaporation of the solvent to dryness gave subporphyrin dimer 8 quantitatively as an orange crystalline solid.

(Analytical sample was prepared by recrystallization of the product from CH₂Cl₂/hexane.)

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.27 (d, *J* = 4.6 Hz, 4H, β-H), 8.26 (s, 4H, β-H), 8.23 (d, *J* = 4.6 Hz, 4H, β-H), 8.14 (d, *J* = 7.3 Hz, 8H, Ph-*o*-H), 8.12 (d, *J* = 7.8 Hz, 4H, phenylene-H^t), 7.73 (t, *J* = 7.6 Hz, 8H, Ph-*m*-H), 7.71 (d, *J* = 7.8 Hz, 4H, phenylene-H^e), 7.64 (t, *J* = 7.4 Hz, 4H, Ph-*p*-H), 7.18 (d, *J* = 7.3 Hz, 2H, H^d), 7.07 (t, *J* = 7.4 Hz, 2H, H^c), 6.90 (t, *J* = 7.6 Hz, 2H, H^b), and 6.84 (d, *J* = 7.8 Hz, 2H, H^a); ¹¹B NMR (193 MHz, CDCl₃) δ (ppm) –15.2 (br s, 1B); HR-ESI TOF-MS (positive mode) m/z = 1249.3837 (calcd. for C₈₄O₄H₄₈N₆B₂Na₁= 1249.3839 [*M*+Na]⁺); UV-vis (in CH₂Cl₂) λ [nm](ε [M⁻¹cm⁻¹]) 379(293000), 463(27000), and 490(25000); Fluorescence (in CH₂Cl₂, $\lambda_{ex} = 379$ nm); λ_{max} [nm] = 524, $\Phi_{F} = 0.21$.

¹³C NMR spectrum could not be recorded due to the low solubility.

Dimerization of subporphyrin–carboxylic acid 7

A 100 μ M toluene solution of subporphyrin 7 was refluxed for 3 h in a round-bottom flask equipped with a Dean-Stark trap under nitrogen atmosphere. Evaporation of the solvent to dryness gave subporphyrin dimer **9** quantitatively as an orange crystalline solid. (Analytical sample was prepared by recrystallization of the product from CH₂Cl₂/hexane.)

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.40 (d, *J* = 4.6 Hz, 4H, β -H), 8.30 (d, *J* = 4.6 Hz, 4H, β -H), 8.23 (s, 4H, β -H), 8.16 (d, *J* = 7.3 Hz, 8H, Ph-*o*-H), 8.01 (d, *J* = 7.8 Hz, 4H, phenylene-H^h), 7.73 (t, *J* = 7.6 Hz, 8H, Ph-*m*-H), 7.64 (t, *J* = 7.4 Hz, Ph-*p*-H), 7.60 (d, *J* = 7.8 Hz, 4H, phenylene-H^g), 7.19 (d, *J* = 8.3 Hz, 2H, H^d), 7.10 (t, *J* = 7.4 Hz, 2H, H^c), 7.00 (d, *J* = 8.2 Hz, 2H, H^a), 6.90 (t, *J* = 7.8 Hz, 2H, H^b), 6.58 (d, *J* = 16.0 Hz, 2H, vinyl-H^e or H^f), and 6.53 (d, *J* = 16.0 Hz, 2H, vinyl-H^e or H^f); ¹¹B

NMR (193 MHz, CDCl₃) δ (ppm) –15.3 (br s, 1B); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 165.9 (carbonyl), 141.5, 140.7, 140.4, 137.4, 137.2, 136.4, 133.7, 133.4 (2C), 131.5, 130.6, 130.2, 129.4, 129.3, 128.9, 128.1, 127.7, 126.8, 126.7, 122.7, 122.6 (2C), 121.9, and 121.0; HR-ESI TOF-MS (positive mode) m/z = 1253.4160 (calcd. for C₈₄O₄H₅₂N₆B₂Na₁= 1253.4152 [*M*+Na]⁺); UV-vis (in CH₂Cl₂) λ [nm](ε [M⁻¹cm⁻¹]) 382(313000), 464(31000), and 493(35000); Fluorescence (in CH₂Cl₂, $\lambda_{ex} = 383$ nm); λ_{max} [nm] = 533, $\Phi_{\rm F} = 0.20$.

Methanolysis of dimer 9

Dimer 9 was dissolved in a minimal amount of $CH_2Cl_2/MeOH$ (1:1) mixture. The solution was stirred at 40 °C for 15 min, and then the solvent was evaporated to give monomer 7 quantitatively.

2. ¹H NMR spectra

Figure S2. ¹H-¹H COSY NMR spectra of monomer 4 and dimer 8 in CDCl₃.

8.2 8.3

X : parts per Million : 13C

Figure S3. ¹³C-¹H COSY NMR spectra of 6 in CDCl₃.

100.0 200.0

140.0 139.0 138.0 137.0 136.0 135.0 134.0 133.0 132.0 131.0 130.0 129.0 128.0 127.0 126.0 125.0 124.0 123.0 122.0 121.0 120.0 119.0

(Figure S4. continnued)

3. UV/vis absorption and fluorescence spectra

Figure S5. UV-vis absorption spectra of subporphyrins in CH₂Cl₂.

Figure S6. Fluorescence spectra of subporphyrins in CH_2Cl_2 (excited at each λ_{max} (~380 nm)).

4. ESI-TOF mass spectra

Figure S7. ESI-TOF mass spectra of dimers (a) 8 and (b) 9 (positive mode).

(b) 1253.4160 $[M + Na]^+$ Observed 1253.4152 1253.4152 1253.4152 1250 1250 1250 1250 1260 12701280

5. References

- 1 P. Szarvas, B. Györi and J. Emri Acta. Chim. (Budapest), 1971, 70, 1.
- 2 Y. Inokuma, Z. S. Yoon, D. Kim and A. Osuka, *J. Am. Chem. Soc.*, 2007, **129**, 4747.