2D warp-and-woof interwoven networks constructed by helical

chains with different chirality

Yuhua Feng, Yang Guo, Yan OuYang, Zhanquan Liu, Daizheng Liao,* Peng Cheng, Shiping Yan and Zonghui Jiang.

Department of Chemistry, Nankai University. Tianjin 300071, P.R. China.

Email: liaodaizheng@yahoo.com.cn

Contents:

1. Experimental Section

2. The spin Hamiltonian and simulated formula of susceptibility data of 1

and **2**.

3. Crystallographic data tables

4. Figures

Experimental Section

Physical Measurements: The infrared spectrum was obtained on a Bruker Tensor 27 Fourier transform infrared spectroscopy in the 4000-400 cm⁻¹ regions, using KBr pellets. Elemental analysis for C, H and N were carried out on a Perkin–Elmer elemental analyzer model 240. X-ray powder

diffraction was performed on a D/Max-2500 X-ray powder diffractometer. Variable temperature magnetic susceptibilities were measured on SQUID magnetometer between 2 and 300 K in a magnetic field of 2000 Oe. The molar magnetic susceptibility was corrected from the sample holder and diamagnetic contributions of all constituent atoms by using Pascal's constants. Single crystal X-ray diffraction data collection was collected on a AapexII CCD area detector equipped with a graphite-monochromated Mo*K* α radiation ($\gamma = 0.71070$ Å). The crystal structure was solved by a direct method and refined on F^2 by the SHELX-97 program.

Materials: All starting materials were analytical grade, purchased from commercial sources and used without further purification. K[Au(CN)₂] and K[Ag(CN)₂] were kindly provided by Professor Zhanquan Liu (Department of Chemistry, Nankai University).

 H_2 salen (salen = N, N'-ethylene bis-salicylideneaminato) was prepared by a literature method (J.H. Billman, L. Dorman, C. Linneaus, *J. Med. Chem.* 1963, **6**, 701). And [Mn(salen)(H_2O)₂]ClO₄ was prepared by the reaction of Mn(OOCCH₃)₃, H_2 salen and NaClO₄ (molar ratio 1:1:1.5) in a solution of 1:1 methanol/ H_2O . [Mn(acacen)Cl] (acacen = N,N'-ethylene bis(acetylacetonylideneiminate) was prepared according to the literature: L.J.

Boucher and V.W. Day, Inorg. Chem., 1977, 16, 1360.

Caution! Since the complexes of perchloride are potentially explosive, only small amounts of the materials should be handled with care.

Synthesis of Coordination Polymer:

{**Mn(salen)**[**Au(CN)**₂](**H**₂**O)**}_n (1): An aqueous solution (5 mL) of K[Au(CN)₂] (0.03 g, 0.1mmol) was slowly added to a dark brown methanol solution (20 mL) of [Mn(salen)(H₂O)₂]ClO₄ (0.045 g, 0.1 mmol) with stirring. After the resulting solution had been filtered and evaporated slowly at room temperature for about two months in a dark place, dark brown crystals suitable for X-ray analysis were collected, washed with minimum methanol and water, dried under vacuum. Yield: 0.03 g, ca. 60% based on Mn(III). IR (KBr): $v_{C=N}$ (cyanide) 2145 cm⁻¹, $v_{C=N}$ (imine) 1625 cm⁻¹

{Mn(acacen)[Ag(CN)₂])}_n (2) was prepared by the same method to 1 except that Mn(Acen)Cl (0.032 g, 0.1 mmol) and K[Ag(CN)₂] (0.02 g, 0.1mmol) were used. Yield: 0.02 g, ca. 50% based on Mn(III). IR (KBr): $v_{C=N}$ (cyanide) 2148 cm⁻¹, $v_{C=N}$ (imine) 1586 cm⁻¹. Elemental analysis: C28H36Ag2Mn2N8O4, Calcd: C 38.46, H 4.15, N 12.82, Found: C 38.18%, H 4.03%, N 12.52%.

The spin Hamiltonian of 1 and magnetic simulated formula of 1 and 2.

The susceptibility data of **1** was fitted by a formula including both single ion zero-field splitting (D) and intermolecular effects with the use of molecular field approximation (*zJ*) based on spin Hamiltonian (assume $g_{\parallel} = g_{\perp}$): $\hat{H} = D\hat{S}_z^2 + g_{\parallel}\beta H_z\hat{S}_z + g_{\perp}\beta(H_x\hat{S}_x + H_y\hat{S}_y) + 2zJ < S_z > \hat{S}_z$

The equation is:

$$\chi_{ZFS} = \frac{\chi_{\parallel} + 2\chi_{\perp}}{3}$$

$$\chi_{\parallel} = \frac{2N\beta^2 g^2}{KT} \frac{\exp(-D/KT) + 4\exp(-4D/KT)}{1 + 2\exp(-D/KT) + 2\exp(-4D/KT)}$$

$$\chi_{\perp} = \frac{2N\beta^2 g^2}{3D} \frac{9 - 7\exp(-D/KT) - 2\exp(-4D/KT)}{1 + 2\exp(-D/KT) + 2\exp(-4D/KT)}$$

$$\chi = \frac{\chi_{ZFS}}{1 - 2zJ\chi_{ZFS}/N\beta^2 g^2}$$

And **2** was fitted by a one-dimensional chain formula with A = 2.0000, B = 71.938, C = 10.482, D = 955.56:

$$\chi = \frac{N\beta^2 g^2}{KT} \frac{A + B(\frac{JJ}{KT})^2}{1 + C(\frac{JJ}{KT}) + D(\frac{JJ}{KT})^3}$$

Empirical formula	C72H58Au4Mn4N16O9
Formula weigh	2298.97
Temperature	293(2) K
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 13.382(5) Å alpha = 94.217(3) deg.
	b = 14.081(5) Å beta = 107.932(4) deg.
	c = 20.242(8) Å gamma = 90.853(6) deg.
Volume	3616(2) Å ³
Z, Calculated density	2, 2.111 g/cm ³
Absorption coefficient	8.824 mm ⁻¹
F(000)	2180
Crystal size	0.20 x 0.20 x 0.20 mm
Theta range for data collection	1.45 to 27.89 deg.
Reflections collected / unique	28281/17061 [R(int) = 0.0505]
Completeness to theta $= 27.89$	98.6%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.643 and 0.318
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	17061/0/947
Goodness-of-fit on F ²	0.965
Final R indices [I>2sigma(I)]	R1 = 0.0492, wR2 = 0.1009
R indices (all data)	R1 = 0.0840, wR2 = 0.1172
Extinction coefficient	0.00066(4)
Largest diff. peak and hole	1.582 and -2.144 e.Å ⁻³

Table S1. Crystal data and structure refinement for 1

Empirical formula	C28H36Ag2Mn2N8O4
Formula weight	874.27
Temperature	294(2) K
Crystal system, space group	Monoclinic, C2/c
Unit cell dimensions	a = 20.388(4) Å alpha = 90 deg.
	b = 20.161(4) Å beta = 105.690(3) deg.
	c = 17.384(3) Å gamma = 90 deg.
Volume	6880(2) Å ³
Z, Calculated density	8, 1.688 g/cm ³
Absorption coefficient	1.883 mm ⁻¹
F(000)	3488
Crystal size	0.22 x 0.18 x 0.16 mm
Theta range for data collection	1.45 to 25.01 deg.
Reflections collected / unique	17294 / 6047 [R(int) = 0.0405]
Completeness to theta $= 27.89$	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7527 and 0.6821
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	6047 / 0 / 407
Goodness-of-fit on F ²	1.029
Final R indices [I>2sigma(I)]	R1 = 0.0346, wR2 = 0.0661
R indices (all data	R1 = 0.0881, wR2 = 0.0857
Extinction coefficient	0.00049(2)
Largest diff. peak and hole	0.281 and -0.353 e.Å ⁻³

Table S2. Crystal data and structure refinement for ${\bf 2}$

	1.070(0)		1.0(0(5)
Au(1)-C(2)	1.978(8)	Mn(3)-O(5)	1.869(5)
Au(1)-C(1)	1.996(8)	Mn(3)-O(6)	1.869(5)
$Au(1)-Au(4)^{+1}$	3.1497(13)	Mn(3)-N(13)	1.969(6)
Au(2)-C(4)	1.985(8)	Mn(3)-N(14)	1.971(7)
Au(2)-C(3)	2.000(8)	Mn(3)-N(8)#4	2.303(7)
Au(2)-Au(3)	3.0959(13)	Mn(3)-N(5)	2.382(7)
Au(3)-C(5)	2.010(8)	Mn(4)-O(7)	1.879(5)
Au(3)-C(6)	2.011(8)	Mn(4)-O(8)	1.881(5)
Au(4) - C(8)	1.076(8)	Mn(4) - N(15)	1.001(5) 1.077(6)
Au(4) - C(0)	1.970(3) 1.097(7)	Mn(4) N(16)	1.977(0)
Au(4) - C(7)	1.90/(7)	$M_{1}(4) - N(10)$	1.988(0)
Au(4)-Au(1)	3.149/(13)	Mn(4) - N(6)	2.318(6)
Mn(1)-O(1)	1.866(5)	Mn(4)-N(7)	2.328(6)
Mn(1)-O(2)	1.867(5)	N(1)-C(1)	1.141(10)
Mn(1)-N(9)	1.979(6)	N(2)-C(2)	1.150(9)
Mn(1)-N(10)	1.982(5)	N(3)-C(3)	1.125(9)
Mn(1)-N(1)	2.346(7)	N(4)-C(4)	1.134(9)
$Mn(1)-N(4)^{\#3}$	2.397(7)	N(4)-Mn(1)#5	2.397(7)
Mn(2)-O(4)	1.851(5)	N(5)-C(5)	1.128(9)
Mn(2)-O(3)	1.860(5)	N(6)-C(6)	1.107(8)
Mn(2)-N(12)	1 979(6)	N(7)-C(7)	1 136(8)
Mn(2)-N(11)	1 994(6)	N(8)-C(8)	1 155(9)
Mn(2) - N(2)	2318(7)	N(8)-Mn(3)#6	2303(7)
Mn(2) N(2)	2.318(7) 2.457(7)	14(0)-1411(3)#0	2.303(7)
VIII(2) - IV(3)	2.437(7)	O(7) M(4) M(10)	174.0(2)
C(2)-Au(1)-C(1)	1/5.8(3)	O(7)-Mn(4)-N(16)	1/4.0(2)
C(2)-Au(1)-Au(4)#1	91.6(2)	O(8)-Mn(4)-N(16)	92.2(2)
C(1)-Au(1)-Au(4)#1	84.4(2)	N(15)-Mn(4)-N(16)	81.4(3)
C(4)-Au(2)-C(3)	175.1(3)	O(7)-Mn(4)-N(6)	90.9(2)
C(4)-Au(2)-Au(3)	91.1(2)	O(8)-Mn(4)-N(6)	93.4(2)
C(3)-Au(2)-Au(3)	84.1(2)	N(15)-Mn(4)-N(6)	88.7(3)
C(5)-Au(3)-C(6)	175.2(3)	N(16)-Mn(4)-N(6)	89.5(2)
C(5)-Au(3)-Au(2)	90.6(2)	O(7)-Mn(4)-N(7)	93.9(2)
C(6)-Au(3)-Au(2)	85.5(2)	O(8)-Mn(4)-N(7)	90.8(2)
C(8)-Au(4)-C(7)	176.2(3)	N(15)-Mn(4)-N(7)	86.6(2)
C(8)-Au(4)-Au(1)#2	87.0(2)	N(16)-Mn(4)-N(7)	85 4(2)
C(7)-Au(4)-Au(1)#2	90.1(2)	N(6)-Mn(4)-N(7)	1735(2)
O(1)-Mn(1)-O(2)	92.6(2)	C(1)-N(1)-Mn(1)	173.3(2)
O(1) - Mn(1) - O(2) O(1) - Mn(1) - O(2)	92.0(2)	C(1) = N(1) = Mn(1) C(2) = N(2) Mn(2)	140.7(6)
O(1)-Mm(1)-N(9) O(2) Mm(1) N(0)	$\frac{92.0(2)}{174.2(2)}$	C(2) - N(2) - Mn(2)	149.7(0)
O(2)-MII(1)-N(9) O(1) M ₂ (1) N(10)	174.2(2)	C(3)-IN(3)-IVIII(2) $C(4) N(4) M_{12}(1)\#5$	131.7(7)
O(1)-Mn(1)-N(10)	1/3.7(2)	C(4)-N(4)-Mn(1)=0	149.4(7)
O(2)-Mn(1)-N(10)	92.7(2)	C(5)-N(5)-Mn(3)	148.8(7)
N(9)-Mn(1)-N(10)	82.3(3)	C(6)-N(6)-Mn(4)	155.8(7)
O(1)-Mn(1)-N(1)	92.3(2)	C(7)-N(7)-Mn(4)	154.5(6)
O(2)-Mn(1)-N(1)	95.1(2)	C(8)-N(8)-Mn(3)#6	147.1(7)
N(9)-Mn(1)-N(1)	87.2(3)	C(15)-N(9)-C(16)	122.4(7)
N(10)-Mn(1)-N(1)	83.9(2)	C(15)-N(9)-Mn(1)	124.4(6)
O(1)-Mn(1)-N(4)#3	98.2(2)	C(16)-N(9)-Mn(1)	113.2(5)
O(2)-Mn(1)-N(4)#3	93.3(2)	C(18)-N(10)-C(17)	122.8(6)
N(9)-Mn(1)-N(4)#3	83.4(3)	C(18)-N(10)-Mn(1)	125.5(5)
N(10)-Mn(1)-N(4)#3	84.8(2)	C(17)-N(10)-Mn(1)	111.6(5)
N(1)-Mn(1)-N(4)#3	166.2(2)	C(31)-N(11)-C(32)	123 4(7)
O(4)-Mn(2)-O(3)	92.4(2)	C(31)-N(11)-Mn(2)	125 7(5)
$O(4)_{Mp}(2)_{N(12)}$	91.9(2)	$C(32)_N(11)_Mn(2)$	110 0(5)
O(3) Mn(2) N(12)	172.9(2)	C(34) N(12) C(22)	1225(7)
O(3)-IVIII(2)-IN(12) O(4) Mn(2) N(11)	172.0(2)	C(34) - N(12) - C(33) $C(34) - N(12) - M_m(2)$	122.3(7) 126.0(5)
O(4)-IVIII(2)-IN(11) O(2) Mm(2) N(11)	173.0(2)	C(34) - N(12) - N(12)	120.0(3)
U(3)-MIN(2)-N(11)	92.0(2)	C(33)-IN(12)-IVIn(2)	111.2(3)
N(12)-Mn(2)-N(11)	83.1(3)	C(47)-N(13)-C(48)	122.8(7)
O(4)-Mn(2)-N(2)	95.4(2)	C(47)-N(13)-Mn(3)	124.3(6)
O(3)-Mn(2)-N(2)	94.9(2)	C(48)-N(13)-Mn(3)	112.9(5)

Table S3. Bond lengths [Å] and angles [deg] for 1.

N(12)-Mn(2)-N(2)	90.5(2)	C(50)-N(14)-C(49)	122.1(7)
N(11)-Mn(2)-N(2)	84.8(2)	C(50)-N(14)-Mn(3)	125.1(6)
O(4)-Mn(2)-N(3)	95.4(2)	C(49)-N(14)-Mn(3)	112.7(5)
O(3)-Mn(2)-N(3)	90.6(2)	C(63)-N(15)-C(64)	120.9(7)
N(12)-Mn(2)-N(3)	83.2(2)	C(63)-N(15)-Mn(4)	125.5(5)
N(11)-Mn(2)-N(3)	83.9(2)	C(64)-N(15)-Mn(4)	113.4(6)
N(2)-Mn(2)-N(3)	167.7(2)	C(66)-N(16)-C(65)	121.1(7)
O(5)-Mn(3)-O(6)	93.0(2)	C(66)-N(16)-Mn(4)	125.6(5)
O(5)-Mn(3)-N(13)	93.3(3)	C(65)-N(16)-Mn(4)	113.0(5)
O(6)-Mn(3)-N(13)	173.6(3)	C(9)-O(1)-Mn(1)	127.7(5)
O(5)-Mn(3)-N(14)	175.0(2)	C(24)-O(2)-Mn(1)	129.4(4)
O(6)-Mn(3)-N(14)	91.7(3)	C(25)-O(3)-Mn(2)	128.0(5)
N(13)-Mn(3)-N(14)	82.0(3)	C(40)-O(4)-Mn(2)	129.9(4)
O(5)-Mn(3)-N(8)#4	94.1(3)	C(41)-O(5)-Mn(3)	128.6(5)
O(6)-Mn(3)-N(8)#4	94.5(3)	C(56)-O(6)-Mn(3)	126.8(5)
N(13)-Mn(3)-N(8)#4	84.8(3)	C(57)-O(7)-Mn(4)	128.5(5)
N(14)-Mn(3)-N(8)#4	87.4(3)	C(72)-O(8)-Mn(4)	129.1(4)
O(5)-Mn(3)-N(5)	92.4(2)	N(1)-C(1)-Au(1)	171.3(8)
O(6)-Mn(3)-N(5)	96.5(2)	N(2)-C(2)-Au(1)	173.7(7)
N(13)-Mn(3)-N(5)	83.6(2)	N(3)-C(3)-Au(2)	172.5(8)
N(14)-Mn(3)-N(5)	85.3(3)	N(4)-C(4)-Au(2)	172.6(7)
N(8)#4-Mn(3)-N(5)	167.0(3)	N(5)-C(5)-Au(3)	173.5(8)
O(7)-Mn(4)-O(8)	93.8(2)	N(6)-C(6)-Au(3)	174.4(8)
O(7)-Mn(4)-N(15)	92.6(3)	N(7)-C(7)-Au(4)	172.3(7)
O(8)-Mn(4)-N(15)	173.2(2)	N(8)-C(8)-Au(4)	172.7(8)

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 x+1,y,z #3 x-1,y-1,z #4 x-1,y+1,z #5 x+1,y+1,z #6 x+1,y-1,z #1 x-1,y,z

Ag(1)-C(4)	2.054(6)	Mn(2)-N(2)#2	2.304(4)
Ag(1)-C(1)	2.066(6)	Mn(3)-O(4)	1.909(3)
Ag(1)-Ag(2)	3.0967(8)	Mn(3)-O(4)#3	1.909(3)
Ag(2)-C(2)	2.062(5)	Mn(3)-N(8)#3	1.986(4)
Ag(2)-C(3)	2.065(5)	Mn(3)-N(8)	1.986(4)
Mn(1)-O(1)	1.908(3)	Mn(3)-N(3)#3	2.298(4)
Mn(1)-O(2)	1.909(3)	Mn(3)-N(3)	2.298(4)
Mn(1)-N(6)	1.980(4)	O(1)-C(6)	1.291(5)
Mn(1)-N(5)	1.986(4)	O(2)-C(15)	1.299(5)
Mn(1)-N(4)#1	2.298(4)	O(3)-C(18)	1.290(5)
Mn(1)-N(1)	2.302(4)	O(4)-C(24)	1.303(5)
Mn(2)-O(3)#2	1.913(3)	N(1)-C(1)	1.127(5)
Mn(2)-O(3)	1.913(3)	N(2)-C(2)	1.127(5)
Mn(2)-N(7)	1.989(4)	N(3)-C(3)	1.129(5)
Mn(2)-N(7)#2	1.989(4)	N(4)-C(4)	1.128(5)
Mn(2)-N(2)	2.304(4)	N(4)-Mn(1)#4	2.298(4)
C(4)-Ag(1)-C(1)	175.25(19)	O(4)#3-Mn(3)-N(8)#3	92.59(17)
C(4)-Ag(1)-Ag(2)	83.69(13)	O(4)-Mn(3)-N(8)	92.59(17)
C(1)-Ag(1)-Ag(2)	91.57(14)	O(4)#3-Mn(3)-N(8)	175.70(16)
C(2)-Ag(2)-C(3)	176.08(18)	N(8)#3-Mn(3)-N(8)	84.2(3)
C(2)-Ag(2)-Ag(1)	89.91(13)	O(4)-Mn(3)-N(3)#3	89.93(13)
C(3)-Ag(2)-Ag(1)	86.18(13)	O(4)#3-Mn(3)-N(3)#3	91.27(14)
O(1)-Mn(1)-O(2)	91.48(13)	N(8)#3-Mn(3)-N(3)#3	87.26(15)
O(1)-Mn(1)-N(6)	92.91(15)	N(8)-Mn(3)-N(3)#3	91.47(15)
O(2)-Mn(1)-N(6)	175.06(15)	O(4)-Mn(3)-N(3)	91.27(14)
O(1)-Mn(1)-N(5)	175.73(14)	O(4)#3-Mn(3)-N(3)	89.93(13)
O(2)-Mn(1)-N(5)	92.19(15)	N(8)#3-Mn(3)-N(3)	91.47(15)
N(6)-Mn(1)-N(5)	83.52(17)	N(8)-Mn(3)-N(3)	87.26(15)
O(1)-Mn(1)-N(4)#1	89.12(14)	N(3)#3-Mn(3)-N(3)	178.3(2)
O(2)-Mn(1)-N(4)#1	91.71(14)	C(6)-O(1)-Mn(1)	126.9(3)
N(6)-Mn(1)-N(4)#1	90.64(14)	C(15)-O(2)-Mn(1)	126.6(3)
N(5)-Mn(1)-N(4)#1	88.58(15)	C(18)-O(3)-Mn(2)	126.5(3)
O(1)-Mn(1)-N(1)	90.40(14)	C(24)-O(4)-Mn(3)	127.2(3)
O(2)-Mn(1)-N(1)	89.23(14)	C(1)-N(1)-Mn(1)	152.9(5)
N(6)-Mn(1)-N(1)	88.46(15)	C(2)-N(2)-Mn(2)	153.5(4)
N(5)-Mn(1)-N(1)	91 84(15)	C(3)-N(3)-Mn(3)	1574(4)
N(4)#1-Mn(1)-N(1)	178 95(16)	C(4)-N(4)-Mn(1)#4	157 5(4)
O(3)#2-Mn(2)-O(3)	92 1(2)	C(13)-N(5)-C(11)	1214(4)
O(3)#2-Mn(2)-N(7)	174.40(16)	C(13)-N(5)-Mn(1)	126.5(3)
O(3)-Mn(2)-N(7)	92 28(17)	C(11)-N(5)-Mn(1)	111 9(3)
O(3)#2Mn(2)-N(7)#2	92.28(17)	C(8)-N(6)-C(10)	121 9(4)
O(3)-Mn(2)-N(7)#2	174 41(16)	C(8)-N(6)-Mn(1)	1250(3)
N(7)-Mn(2)-N(7)#2	83 5(3)	C(10)-N(6)-Mn(1)	112.9(3)
O(3)#2-Mn(2)-N(2)	88 80(14)	C(20)-N(7)-C(22)	121.9(5)
O(3)-Mn(2)-N(2)	90 55(14)	C(20) - N(7) - Mn(2)	125 8(4)
N(7)-Mn(2)-N(2)	87 70(15)	C(22)-N(7)-Mn(2)	123.0(1) 111 7(4)
N(7)#2-Mn(2)-N(2)	93.00(16)	C(26)-N(8)-C(28)	1231(5)
O(3)#2 ⁻ Mn(2)-N(2)#2	90 55(14)	C(26) - N(8) - Mn(3)	123.1(3) 124 9(4)
O(3)-Mn(2)-N(2)#2	88 80(14)	C(28)-N(8)-Mn(3)	1115(4)
N(7)-Mn(2)-N(2)#2	93 01(16)	$N(1)-C(1)-A\sigma(1)$	172 7(5)
N(7)#2-Mn(2)-N(2)#2	87 70(15)	$N(2) - C(2) - A \sigma(2)$	173 3(5)
N(2)-Mn(2)-N(2)#2	179 1(2)	$N(3)-C(3)-A\sigma(2)$	172.6(4)
O(4)-Mn(3)-O(4)#3	90 73(19)	$N(4)-C(4)-A\sigma(1)$	172.0(-7) 171 1(5)
O(4)-Mn(3)-N(8)#3	175 69(16)		.,(5)
	1,2.07(10)		

Table S4. Bond lengths [Å] and angles [deg] for 2.

 Symmetry transformations used to generate equivalent atoms:

 #1 -x+1/2,y-1/2,-z+1/2
 #2 -x,y,-z+1/2

 #3 -x+1,y,-z+1/2
 #4 -x+1/2,y+1/2,-z+1/2

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

Supporting figures

Figure S1. ORTEP diagram for 1 with partial atom labeling. (30% ellipsoids).

Figure S2. ORTEP diagram for **2** with partial atom labeling. (30% ellipsoids).

Figure S3. π - π interactions between adjacent 2D layers of 1.

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

Figure S4. X-ray powder diffraction patterns for **2**. (Black line: bulk sample of **2**; Red line: simulated patterns obtained from single-crystal structural data. The intensity of black line was adjusted for clarity)

Figure S5. IR spectrum of **2**. (Red line: bulk material, black line: single crystal. The red line has been shifted along Y-axes for clarity)