Formation of 4,5-disubstituted 1,3-dimethyl-3,4-dihydropyrimidin-2(1H)-ones

General Procedure – Homocoupling Reaction

To a suspension of 1,3-dimethylurea (0.22g, 2.5mmol) in anhydrous toluene (3ml) over 4\AA molecular sieves, the desired aldehyde was added (5mmol) and the solution stirred under nitrogen at room temperature. To this solution, boron trifluoride diethylethereate (63µL, 0.25mmol, 10mol%) was added and the solution heated to reflux and stirred for between 2 and 4 hours and followed by TLC.

The reaction solution was diluted to approximately three times the volume with ethyl acetate and the molecular sieves removed. The solvent was removed *in vacuo* and the resulting oil purified by column chromatography without work-up.

Modification: In the case of low yielding reaction or when using monosubstituted ureas, 3eq. of aldehyde was added to refluxing solution of urea, BF₃.Et₂O in toluene.

General Procedure – Cross-over Reaction

To a suspension of the 1,3-dimethylurea (0.22g, 2.5mmol) in anhydrous toluene (3ml) over 4Å molecular sieves, the desired aldehydes were added (both at 2.5mmol) and the solution stirred under nitrogen at room temperature. To this solution, boron trifluoride diethylethereate (63μ L, 0.25mmol, 10mol%) was added and the solution heated to reflux and stirred for between 2 and 4 hours and followed by TLC.

The reaction solution was diluted to approximately three times the volume with ethyl acetate and the molecular sieves removed. The solvent was removed *in vacuo* and the resulting oil purified by column chromatography without work-up.

Scheme 2: Three-component coupling of monosubstituted ureas with aliphatic aldehydes and benzaldehyde

To a suspension of the desired monosubstituted urea (2.5mmol) in anhydrous toluene (3ml) over 4Å molecular sieves, the desired aliphatic aldehyde was added (2.5mmol) followed by benzaldehyde (0.51ml, 5mmol) and the solution stirred under nitrogen at room temperature. To this solution, boron trifluoride diethylethereate (63μ L, 0.25mmol, 10mol%) was added and the solution heated to reflux and stirred for 4 hours and followed by TLC.

The reaction solution was diluted to approximately three times the volume with ethyl acetate and the molecular sieves removed. The solvent was removed *in vacuo* and the resulting oil purified by column chromatography without work-up.

Pyrimidinone formation by Enamide Disproportionation

To degassed DME (3ml) Enamide **1** (0.325g, 1.7mmol, 1eq.) was dissolved and the solution heated to 60°C under an atmosphere of nitrogen. To the heated solution $BF_3.Et_2O$ (43µL, 0.17mmol, 10mol%) was added and the reaction stirred at 60°C for 4 hours and followed by TLC.

At complete reaction, water was added and the product extracted to ethyl acetate. The organic phase was isolated and dried over MgSO₄. The resulting organic solution was evaporated under reduced pressure to yield a yellow oil which was purified by column chromatography.

Spectroscopic Data

¹H NMR (270MHz, Toluene-d₈) δ = 7.20-6.90 (m, 10H, ArH), 5.82 (s, 1H, C=CHN), 4.26 (app. dd, 1H, PhCH₂CH), 2.82 (s, 3H, CH₂CHNCH₃), 2.72 (dd, J=3.96, 13.86, 1H, PhCH₂), 2.49 (s, 3H, C=CHNCH₃), 2.43 (dd, J=4.62, 13.53, 1H, PhCH₂); ¹³C NMR (68MHz, CDCl₃) δ = 154.1(C), 136.5 (C), 135.9 (C), 130.0 (CH), 128.9 (CH), 127.8 (CH), 127.7(CH), 126.6 (CH), 126.3 (CH), 124.1 (CH), 112.0 (CH), 61.5 (CH), 37.5 (CH₂), 35.0 (CH₃), 34.5 (CH₃); IR (cm⁻¹), 2923 (br), 1650 (br), 1598, 1494, 1452, 1341; HRMS: *m/z* (CI), 293.1654 [M+H]⁺

Table 1: Entry 2 (86%)

¹H NMR (400MHz, Benzene-d₆) $\delta = 7.2$ -6.95 (m, 10H, ArH), 5.36 (s, 1H, C=CHN) 3.53 (app. dd, 1H, NCHCH₂), 3.00 (s, 2H, PhCH₂C=CH), 2.78 (s, 3H, NCH₃), 2.67 (s, 3H, NCH₃), 2.53 (m, 2H, CHCH₂CH₂), 1.67 (m, 1H, CHCH₂CH₂), 1.52 (m, 1H, CHCH₂CH₂); ¹³C NMR (100MHz, CDCl₃) $\delta = 154.7$ (C), 141.9 (C), 138.6 (C), 129.0 (CH), 128.7 (CH), 128.5 (CH), 128.4 (CH), 127.9 (CH), 126.8 (CH), 126.0 (CH), 111.4 (C), 66.9 (CH), 37.5 (CH₂), 34.9 (CH₃), 33.9 (CH₃), 32.7 (CH₂), 29.4 (CH₂); IR (cm⁻¹), 2924 (br), 1550, 1497; HRMS *m/z* (CI), 321.1967 [M+H]⁺

Table 1: Entry 3 (74%)

¹H NMR (400MHz, CDCl₃) $\delta = 5.70$ (s, 1H, NCH=C), 3.77 (app. dd, 1H, CH₂CHN), 2.93 (s, 3H, NCH₃), 2.86 (s, 3H, NCH₃), 1.68 (m, 1H, NCHCH₂), 1.56 (s, 3H, NCHCCH₃), 1.45 (m, 1H, NCHCH₂), 0.78 (t, J = 7.3, 3H, NCHCH₂CH₃); ¹³C NMR (100MHz, CDCl₃) $\delta = 155.0$ (C), 126.2 (CH), 107.8 (C), 63.8 (CH), 34.8 (CH₃), 33.8 (CH₃), 23.1 (CH₂), 17.0 (CH₃), 7.1 (CH₃); IR (cm⁻¹), 3373 (br, w), 2940, 1704, 1627, 1458; HRMS *m/z* (CI), 169.1341 [M+H]⁺

Table 1: Entry 4 (70%)

¹H NMR (400MHz, CDCl₃) δ = 5.65 (s, 1H, NC**H**=C), 3.76 (app. dd, 1H, CH₂C**H**N) 2.96 (s, 3H, NC**H**₃), 2.88 (s, 3H, NC**H**₃), 1.94 (m, 2H, NCHCC**H**₂), 1.59 (m, 1H, NCHC**H**₂), 1.40 (m, 1H, NCHC**H**₂), 1.26 (m, 1H, NCHCH₂C**H**₂), 1.00 (t, J= 7.3, 3H, CCH₂C**H**₃), 0.86 (t, J = 7.3, 3H, CHCH₂CH₂C**H**₃); ¹³C NMR (100MHz, CDCl₃) δ = 155.2 (C), 126.2 (CH), 124.9 (CH), 114.9 (C), 61.8 (CH), 35.0 (CH₃), 34.2 (CH₃), 33.8 (CH₂), 23.9 (CH₂), 16.8 (CH₂), 14.5 (CH₃), 12.4 (CH₃); IR (cm⁻¹), 3931 (w), 1647, 1464, 1239; HRMS *m/z* (CI), 197.1654 [M+H]⁺

Table 1: Entry 5 (87%)

¹H NMR (400MHz, CDCl₃) δ = 5.72 (s, 1H, NCH=C), 3.82 (app. dd, 1H, NCHCH₂), 3.02 (s, 3H, NCH₃), 2.94 (s, 3H, NCH₃), 1.94 (m, 2H, NCHCCH₂), 1.7-1.2 (m, 8H, 4 x CH₂), 0.94 (t, J=7.1, 3H, CCH₂CH₂CH₃), 0.90 (t, J=7.1, 3H, CHCH₂CH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) δ = 155.0 (C) 125.5 (CH), 112.8 (C), 61.4 (CH), 34.8 (CH₃), 34.0 (CH₃), 32.8 (CH₂), 30.8 (CH₂), 25.3 (CH₂), 23.0 (CH₂), 20.8 (CH₂), 14.1 (CH₃), 13.9 (CH₃); IR (cm⁻¹), 2926, 1651, 1466, 1246, 1061; HRMS *m/z* (CI), 225.1967 [M+H]⁺

Table 1: Entry 6 (62%)

¹H NMR (400MHz, CDCl₃) δ = 5.68 (s, 1H, NCH=C), 3.72 (app. dd, 1H, NCHCH₂), 3.05 (s, 3H, NCH₃), 2.99 (s, 3H, NCH₃), 2.21 (m, 1H, CH=CCH(CH₃)₂), 1.73 (m, 1H, CH₂CH(CH₃)₂), 1.52 (m, 1H, NCHCH₂), 1.38 (m, 1H, NCHCH₂), 1.09 (d, J=6.6, 3H, CCH(CH₃)₂), 1.06 (d, J=6.6, 3H, CCH(CH₃)₂), 0.94 (d, J=6.6, 3H, CH₂CH(CH₃)₂), 0.91 (d, J=6.6, 3H, CH₂CH(CH₃)₂); ¹³C NMR (100MHz, CDCl₃) δ = 155.3 (C), 123.7 (CH), 122 (C), 58.9 (CH), 42.4 (CH), 35.2 (CH₃), 34.8 (CH₃), 29.0 (CH₂), 24.6 (CH₃), 22.9 (2xCH₃), 20.6 (CH₃); IR (cm⁻¹), 2955, 2344 (w, br), 1651, 1464, 1242, 1045; HRMS *m/z* (CI), 225.1967 [M+H]⁺

Table 1: Entry 7 (88%)

¹H NMR (400MHz, CDCl₃) $\delta = 5.72$ (s, 1H, NCH=C), 3.82 (app. dd, 1H, NCHCH₂), 3.01 (s, 3H, NCH₃), 2.93 (s, 3H, NCH₃), 1.94 (m, 2H, NCHCCH₂), 1.7-1.2 (m, 12H, 6 x CH₂), 0.93 (t, J=7.1, 3H, CCH₂CH₂CH₃), 0.89 (t, J=7.1, 3H, CHCH₂CH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) $\delta = 155.0$ (C) 125.3 (CH), 113.0 (C), 61.5 (CH), 34.8 (CH₃), 34.0 (CH₃), 32.1 (CH₂), 31.0 (CH₂), 30.4 (CH₂), 29.8 (CH₂), 22.8 (CH₂), 22.7 (CH₂), 22.5 (CH₂), 14.2 (CH₃), 14.0 (CH₃); IR (cm⁻¹), 2926, 1650, 1465, 1246, 1061; HRMS m/z (CI), 253.2280 [M+H]⁺

Table 1: Entry 8 (86%)

¹H NMR (400MHz, CDCl₃) $\delta = 5.72$ (s, 1H, NCH=C), 3.82 (app. dd, 1H, NCHCH₂), 3.01 (s, 3H, NCH₃), 2.93 (s, 3H, NCH₃), 1.92 (m, 2H, NCHCCH₂), 1.7-1.2 (m, 16H, 8 x CH₂), 0.92 (t, J=7, 3H, CCH₂CH₂CH₃), 0.89 (t, J=7, 3H, CHCH₂CH₂CH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) $\delta = 155.0$ (C) 125.3 (CH), 113.0 (C), 61.5 (CH), 34.8 (CH₃), 34.0 (CH₃), 31.9 (CH₂), 31.6 (CH₂), 31.1 (CH₂), 30.7 (CH₂), 29.6 (CH₂), 27.3 (CH₂), 23.1 (CH₂), 22.8 (CH₂), 22.6 (CH₂), 14.2 (CH₃), 14.1 (CH₃); IR (cm⁻¹), 2928, 1650, 1465, 1256, 1058; HRMS m/z (CI), 281.2593 [M+H]⁺

Table 1: Entry 9 (76%)

¹H NMR (400 MHz, CDCl₃) δ = 5.80-5.65 (m, 2H, 2xCH₂=CH), 5.75 (s, 1H, NCH=C), 5.1-4.9 (m, 4H, 2xCH₂=CH), 3.82 (app. dd, 1H, NCHCH₂), 2.97 (s, 3H, NCH₃), 2.89 (s, 3H, NCH₃), 2.66 (m, 2H, CCH₂), 2.03 (m, 2H, CH2=CHCH₂CH₂), 1.72 (m, 1H, NCHCH₂), 1.54 (m, 1H, CCHCH₂); ¹³C NMR (100MHz, CDCl₃) δ = 154.2 (C), 138.0 (CH), 135.1 (CH), 126.8 (CH), 117.0 (CH₂), 114.7 (CH₂), 60.7 (CH), 35.3 (CH₂), 34.8 (CH₃), 34.0 (CH₃), 29.9 (CH₂), 27.3 (CH₂); IR (cm⁻¹), 3348 (w, br), 2930 (w), 1737, 1635, 1485, 1262, 910; HRMS *m/z* (CI), 221.1654 [M+H]⁺

15 (70%)

¹H NMR (400 MHz, CDCl₃) δ = 5.68 (m, 2H, CHCCH₂CHCH), 5.65 (s, 1H, NCH=C), 3.76 (dd, J=9.7, 3.17, 1H, NCHCH₂), 2.99 (s, 3H, NCH₃), 2.92 (s, 3H, NCH₃), 2.64 (m, 2H, NCHCCH₂), 2.01 (m, 1H, NCHCH₂), 1.98 (m, 2H, NCHCH₂CH₂), 1.46 (m, 1H, NCHCH₂); ¹³C NMR (100MHz, CDCl₃) δ = 154.0 (C), 129.9 (CH), 129.4 (CH), 124.4 (CH), 112.2 (C), 64.8 (CH), 34.7 (CH₃), 33.6 (CH₃), 31.9 (CH₂), 31.4 (CH₂), 24.8 (CH₂); IR (cm⁻¹), 3385 (w, br), 2928 (w), 1699, 1634 (s), 1482, 1419, 1266; HRMS *m/z* (CI), 192.1341 [M+H]⁺

Table `1: Entry 10 (25%)

¹H NMR (400 MHz, CDCl₃) δ = 5.69 (s, 1H, NCH=C), 3.87 (app. dd, 1H, NCHCH₂), 3.60-3.35 (m, 4H, 2xNCH₂), 2.90 (s, 3H, NCH₃), 2.83 (s, 3H, NCH₃), 2.78-2.63 (m, 2H, CH=CCH₂), 2.23 (m, 2H, CHCH₂CH₂), 1.89 (s, 6H, COCCH₃), 1.88 (s, 6H, COCCH₃), 1.8-1.4 (m, 2H, NCHCH₂); ¹³C NMR (100MHz, CDCl₃) δ = 172.3 (C), 172.1 (C), 154.5 (C), 137.2 (C), 137.1 (C), 128.2 (CH), 108.0 (C), 59.8 (CH), 37.8 (CH₂), 35.9 (CH₂), 34.7 (CH₃), 34.0 (CH₃), 29.5 (CH₂), 28.4 (CH₂), 22.9 (CH₂), 8.8 (2xCH₃); IR (cm⁻¹), 2943 (w), 1694, 1644, 1404, 728; HRMS *m/z* (CI), 443.2294 [M+H]⁺

Table 1: Entry 11 (51%)

¹H NMR (400 MHz, Acetone-d₆) δ = 7.30-6.95 (m, 10H, Ar**H**), 5.51 (s, 1H, C=C**H**), 4.16 (dd, J= 3.4, 11.6, 1H, NCHC**H**₂), 3.67 (dd, J= 11.7, 13.9, 1H, NCHCH₂), 2.66 (dd, J= 3.2, 11.6, 1H, NCHC**H**₂), 2.64 (s, 3H, NC**H**₃), 2.37 (s, 3H, NC**H**₃); ¹³C NMR (100MHz, CDCl₃) δ = 138.5 (C), 137.5 (C), 129.4 (CH), 128.9 (CH), 128.5 (CH), 128.3 (CH), 127.4 (CH), 126.4 (CH), 126.3 (CH), 125.6 (CH), 116.3 (C), 69.6 (CH), 40.5 (CH₃), 37.4 (CH₂), 36.2 (CH₃); IR (cm⁻¹), 3061 (w), 1738 (w, br), 1638, 1335, 1253, 1146; HRMS *m/z* (CI), 329.1323 [M+H]⁺

Table 1: Entry 12 (53%)

¹H NMR (400 MHz, CDCl₃) δ = 7.30-6.95 (m, 10H, ArH), 5.57 (s, 1H, C=CH), 3.30 (m, 1H, NCHCH₂), 2.96 (s, 3H, NCH₃), 2.81 (m, 2H, NCHCH₂CH₂), 2.51 (m, 2H, CHCCH₂), 2.49 (s, 3H, NCH₃), 2.35 (m, 1H, NCHCH₂), 1.84 (m, 1H, NCHCH₂); ¹³C NMR (100MHz, CDCl₃) δ = 141.3 (C), 138.3 (C), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 127.4 (CH), 126.6 (CH), 125.9 (CH), 114.8 (C), 64.7 (CH), 38.4 (CH₃), 37.9 (CH₂), 35.6 (CH₃), 32.0 (CH₂), 31.5 (CH₂); IR (cm⁻¹), 2927 (w, br), 1662 (w), 1494, 1453, 1344, 1163; HRMS *m/z* (CI), 357.1636 [M+H]⁺

Table 1: Entry 13 (52%)

¹H NMR (400 MHz, CDCl₃) δ = 5.57 (s, 1H, C=CH), 3.67 (dd, J= 4.4, 11, 1H, NCHCH₂), 2.98 (s, 3H, NCH₃), 2.66 (s, 3H, NCH₃), 1.75 (m, 2H, NCHCH₂), 1.61 (s, 3H, CHCCH₃), 0.99 (t, J= 7.3, 3H, NCHCH₂CH₃); ¹³C NMR (100MHz, CDCl₃) δ = 126.1 (CH), 112.3 (C), 68.2 (CH), 36.1 (CH₃), 35.7 (CH₃), 23.0 (CH₂), 17.7 (CH₃), 10.4 (CH₃); IR (cm⁻¹), 2971 (w), 1738 (w), 1455, 1339, 1161; HRMS *m/z* (CI), 205.1010 [M+H]⁺

Table 2: Entry 2 (76%)

¹H NMR (270MHz, CDCl₃) δ = 7.31-7.03 (m, 10H, ArH), 6.40 (s, 1H, PhC=CH), 4.58 (app dd, 1H, CH₃NCH), 3.16 (s, 3H, PhCCHNCH₃), 3.09 (s, 3H, PhCH₂CH₂CHNCH₃), 2.60 (m, 2H PhCH₂), 1.92 (m, 2H, PhCH₂CH₂); ¹³C NMR (68MHz, CDCl₃) δ = 154.5 (C), 141.5 (C), 136.4 (C), 128.9 (CH), 128.4 (CH), 128.3 (CH), 127.8 (CH), 126.6 (CH), 125.9 (CH), 124.7 (CH), 112.9 (C), 60.3 (CH), 35.3 (CH₃), 34.6 (CH₃), 33.9 (CH₂), 29.9 (CH₂); IR (cm⁻¹) 2927, 1703, 1646, 1599, 1446, 1342; HRMS *m/z* (CI), 307.1810 [M+H]⁺

Table 2: Entry 4 (55%)

¹H NMR (400 MHz, CDCl₃) δ = 7.32-7.12 (m, 5H, Ar**H**), 6.38 (s, 1H, C=C**H**), 4.46(app. dd, 1H, NC**H**CH₂), 3.09 (s, 3H, NC**H**₃), 3.00 (s, 3H, NC**H**₃), 1.72 (m, 1H, CHC**H**₂), 1.50 (m, 1H, CHC**H**₂), 0.81 (t, J= 7.3, 3H, NCHCH₂C**H**₃); ¹³C NMR (100MHz, CDCl₃) δ = 154.5 (C), 136.4 (C), 128.7 (CH), 127.5 (CH), 126.3 (CH), 124.4 (CH), 112.3 (C), 61.0 (CH), 35.1 (CH₃), 34.2 (CH₃), 24.4 (CH₂), 7.5 (CH₃); IR (cm⁻¹), 2963 (w), 1646, 1462, 1337, 1254, 1062; HRMS *m/z* (CI), 231.1497 [M+H]⁺

Table 2: Entry 5 (45% NMR Yield)

NMR data for mixture of products and only quoted data for diagnostic protons, **a** and **b**. ¹H NMR (400MHz, CDCl₃) $\delta = 6.34$ (s, **A**, NCHb=C), 6.23 (s, **B**, NCHb=C), 4.63 (app. t, **B**, NCHaCH2), 4.35 (app. t, **A**, NCHaCH₂)

Table 3: Entry 1 (67%)

¹H NMR (400MHz, CDCl₃) $\delta = 5.59$ (s, 1H, NCH=C), 5.14 (br.s, 1H, NH), 3.82 (app.t, 1H, NHCH), 2.92 (s, 3H, NCH₃), 1.81 (m, 2H, NHCHCH₂), 1.25-1.05 (m, 8H, 4 x CH₂), 0.88 (t, J=7.3, 3H, CHCCH₂CH₂CH₃), 0.86 (t, J=7.3, 3H, NCHCH₂CH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) $\delta = 154.7$ (C), 124.6 (CH), 114.2 (C), 54.3 (CH), 35.1 (CH₂), 34.0 (CH₃), 32.3 (CH₂), 25.9 (CH₂), 22.5 (CH₂), 20.5 (CH₂), 14.0 (CH₃), 13.7 (CH₃); IR (cm⁻¹), 3313 (w, br), 2957, 2871, 1697 (s), 1464; HRMS *m/z* (CI), [M+H]⁺

Table 3: Entry 2 (59%)

¹H NMR (400MHz, CDCl₃) δ = 7.4-7.15 (m, 10H, ArH), 6.32 (s, 1H, NCH=C), 5.01 (br.s, 1H, NH), 4.65 (app. dt, J=5.9, 2.8, 1H, NHCH), 3.02 (s, 3H, NCH₃), 2.90 (dd, J=13.6, 3.0, 1H, NCHCH₂), 2.70 (dd, J=13.6, 8.7, 1H, NCHCH₂); ¹³C NMR (100MHz, CDCl₃) δ = 153.9 (C), 136.6 (C), 135.8 (C), 129.6 (CH), 128.9 (CH), 128.5 (CH), 127.1 (CH), 126.8 (CH), 126.7 (CH), 124.5 (CH), 114.1 (C), 55.3 (CH), 42.4 (CH₂), 34.4 (CH₃); IR (cm⁻¹), 3233 (w), 2511 (w, br), 2159, 2027, 1976, 1666 (s), 1452, 1266; HRMS *m/z* (CI), 279.1497 [M+H]⁺

Table 3: Entry 3 (56%)

¹H NMR (400MHz, CDCl₃) δ = 7.4-7.05 (m, 15H, ArH), 6.56 (s, 1H, NCH=C), 5.31 (br.s, 1H, NH), 4.84 (ddd, J=3.75, 3.42, 2.69, 1H, NHCH), 2.95 (dd, J=13.5, 3.63, 1H, NCHCH₂), 2.84 (dd, J=13.5, 7.26, 1H, NCHCH₂); ¹³C NMR (100MHz, CDCl₃) δ = 153 (C), 140.6 (C), 136.5 (C), 135.9 (C), 130.1 (CH), 129.1 (CH), 129.0 (CH), 128.6 (CH), 127.3 (CH), 127.1 (CH), 127.0 (CH), 127.0 (CH), 126.5 (CH), 125.0 (CH), 114.7 (C), 55.2 (CH), 42.7 (CH₂); IR (cm⁻¹), 3663 (w, br), 3219 (w, br), 2513 (br), 2160, 1030, 1977, 1682, 1230, 749; HRMS *m/z* (CI), 341.1654 [M+H]⁺

Table 3: Entry 4 (62%)

¹H NMR (400MHz, CDCl₃) δ = 7.38-7.20 (m, 5H, ArH), 6.02 (s, 1H, CHNPh), 4.98 (br.s, 1H, NH), 4.00 (app. dt, J=6.1, 2.9, 1H, NHCH), 1.97 (m, 2H, NHCHCH₂), 1.65-1.3 (m, 8H, 4 x CH₂), 0.93 (t, J=7.1, 3H, NCHCH₂CH₂CH₂CH₃), 0.92 (t, J=7.1, NCHCCH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) δ = 153.4 (C), 141.2 (C), 129.0 (CH), 126.4 (CH), 126.2 (CH), 124.7 (CH), 115.3 (C), 54.6 (CH), 35.4 (CH₂), 32.5 (CH₂), 26.1 (CH₂), 22.7 (CH₂), 20.7 (CH₂), 14.2 (CH₃), 13.9 (CH₃); IR (cm⁻¹), 2928 (w), 1694, 1673, 1419, 1267, 1233, 755; HRMS *m/z* (CI), 273.1967 [M+H]⁺

13 (Table 4, Entry1) (60%)

¹H NMR (400MHz, CDCl₃) δ = 7.4-7.25 (m, 5H, ArH), 5.80 (s, 1H, MeNCH=C), 4.94 (s, 1H, NHCH), 4.92 (br.s, 1H, NH), 3.11 (s, 3H, NCH₃), 1.75 (m, 2H, NCHCCH₂), 1.37 (m, 2H, NCHCCH₂CH₂), 0.87 (t, J=7.3, 3H, NCHCCH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) δ = 153.4 (C), 143.0 (C), 129.0 (CH), 128.3 (CH), 127.1 (CH), 124.5 (CH), 113.9 (C), 60.0 (CH), 34.4 (CH₃), 32.5 (CH₂), 20.4 (CH₂), 13.8 (CH₃); IR (cm⁻¹), 3213 (w), 1255, 1667, 1449, 1401, 1236; HRMS *m/z* (CI), 230.1419 [M+H]⁺

13 (Table 4, Entry 3) (51%)

¹H NMR (400MHz, CDCl₃) δ = 7.20 (d, J=8.7, 2H, Ar), 6.86 (d, J=8.7, 2H, Ar), 5.76 (s, 1H, MeNCH=C), 4.88 (brs, 2H, NHCH), 3.80 (s, 3H, OCH₃), 3.08 (s, 3H, NCH₃), 1.72 (m, 2H, CHCCH₂CH₂), 1.35 (m, 2H, CHCCH₂CH₂) 0.84 (t, J=7.3, 3H, NCHCCH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) δ = 159.4 (C), 153.2 (C), 135.1 (C), 128.1 (CH), 124.2 (CH), 114.0 (CH), 59.2 (CH), 55.3 (CH₃), 34.2 (CH₃), 32.4 (CH₂), 20.2 (CH₂), 13.6 (CH₃); IR (cm⁻¹), 3214 (w), 2953 (w), 1673 (s), 1512, 1478, 1404, 1245, 1173, 1030; HRMS *m/z* (CI), 261.1600[M+H]⁺

13 (Table 4, Entry 2) (59%)

¹H NMR (400MHz, CDCl₃) δ = 7.32 (d, J=8.2, 2H, Ar), 7.22 (d, J=8.4, 2H, Ar), 5.78 (s, 1H, MeNCH=C), 5.11 (br. s, 1H, NH), 4.91 (s, 1H, NHCH), 3.08 (s, 3H, NCH₃), 1.70 (m, 2H, CHCCH₂CH₂), 1.33 (m, 2H, CHCCH₂CH₂) 0.85 (t, J=7.3, 3H, NCHCCH₂CH₂CH₃); ¹³C NMR (100MHz, CDCl₃) δ = 153.3 (C), 141.5 (C), 134.0 (C), 129.1 (CH), 128.5 (CH), 124.8 (CH), 113.4 (C), 59.3 (CH), 34.4 (CH₃), 32.4 (CH₂), 20.3 (CH₂), 13.7 (CH₃); IR (cm⁻¹), 3208 (w), 2957 (w), 1673 (s), 1481, 1401, 1266, 1086; HRMS *m/z* (CI), 265.1101 [M+H]⁺

¹H NMR (400MHz, CDCl₃) δ = 7.40-7.10 (m, 10H, Ar**H**), 5.80 (s, 1H, NC**H**=C), 5.08 (br.s, 1H, N**H**), 4.80 (br. s, 1H, NHC**H**), 3.17 (d, J=15.5, 1H, CH=CC**H**₂), 3.09 (s, 3H, NC**H**₃), 2.95 (d, J=15.4, 1H, CH=CC**H**₂); ¹³C NMR (100MHz, CDCl₃) δ = 153.2 (C), 142.6 (C), 138.2 (C), 129.0 (CH), 128.9 (CH), 128.6 (CH), 128.3 (CH), 127.2 (CH), 126.7 (CH), 126.2 (CH), 113.6 (C), 59.3 (CH), 36.9 (CH₂), 34.4 (CH₃); IR (cm⁻¹), 3212 (w), 1699 (s), 1668 (s), 1450, 1404, 760; HRMS *m/z* (CI), 279.1493 [M+H]⁺

100 90 80 Chemical Shift (ppm) 60 50 30 20

Table 1: Entry 2

Table 1: Entry 5

Table 1: Entry 11

Table 1: Entry 12

As 3:1 mixture of regioisomers

13 (Table 4, Entry1)

13 (Table 4, Entry3)

13 (Table 4, Entry4)

