Electronic Supplementary Information

A New Diastereoselective Aza-Allyl – Michael Addition – Ring Closure Reaction Sequence and its Application in the Construction of Six Contiguous Stereogenic Centres

Magdaline Minopoulos,^{*a*} Philip C. Andrews,^{*a*} Steven D. Bull,^{*b*} Benjamin H. Fraser,^{*a*} and Paul Jensen^{*c*}

^a School of Chemistry, Monash University, Clayton, Melbourne, Vic 3800, Australia ^b Department of Chemistry, University of Bath, BA2 7AY, UK. ^c School of Chemistry, University of Sydney, NSW 2006, Australia.

Supporting Figure 1: Coupling constants used in aiding assignment of the relative stereochemistry of the cyclohexyl substituents of aminocyclohexane *2*.

Supporting Figure 2: ¹H-NMR spectrum of aminocyclohexane 2.

Supporting Figure 3: ¹³C-NMR spectrum of aminocyclohexane 2.

Supporting Figure 4: ¹H-¹H COSY spectrum of aminocyclohexane *2*.

Supporting Figure 5: ¹H-¹H NOESY spectrum used in aiding determination of the relative stereochemistry of the cyclohexyl ring substituents of aminocyclohexane **2**

Supporting Figure 6: ¹H-NMR spectrum of mono-*tert*-butyl ester 5.

Supporting Figure 7: ¹³C-NMR spectrum of mono-*tert*-butyl ester 5.