### **Supporting Information**

# The Dramatic Acceleration Effect of Imidazolium Ionic Liquids on Electron Transfer Reactions

Doo Seong Choi,<sup>*a*</sup> Dong Hyun Kim,<sup>*a*</sup> Ueon Sang Shin,<sup>*a*</sup> Ravindra R. Deshmukh,<sup>*a*</sup> Sang-gi Lee,<sup>*b*</sup> Choong Eui Song<sup>*a*</sup>,\*

<sup>*a*</sup>Department of Chemistry, Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea)Fax: (+82) 31-290-7075; Tel: (+82) 31-290-5964. E-mail: <u>s1673@skku.edu</u> <sup>*b*</sup>Division of Nano Sciences (BK21)/Department of Chemistry, Ewha Womans University11-1 Deahyun-dong, Seodaemun-gu, Seoul, 120-750, Korea.

**General Remarks.**  $(C_5Me_5)_2Fe(II)$ ,  $(C_5Me_5)_2Co(II)$ ,  $Et_4NCl$ , thiazole, and 1bromobutane were purchased from Aldrich and used without further purification. The ILs, [bmim]X (bmim = 1-butyl-3-methylimidazolium cation; X = SbF<sub>6</sub>, PF<sub>6</sub>, NTf<sub>2</sub>, BF<sub>4</sub> and Cl), were purchased from C-Tri Co., Ltd., Korea, <u>www.c-tri.co.kr</u>) and used without further purification. [bmim]X (X = SbF<sub>6</sub>, PF<sub>6</sub>, NTf<sub>2</sub>, and BF<sub>4</sub>) were spectrometrically pure, nearly chloride-free (<5 ppm) and their water content was <100 ppm (determined by Karl-Fisher titration). [NBu<sub>4</sub>][SbF<sub>6</sub>] and *N*buthylthiazolium hexafluoroantimonate were prepared by the reaction of [NBu<sub>4</sub>]Cl and *N*-buthylthiazolium bromide, respectively, with KSbF<sub>6</sub>.

#### [NBu<sub>4</sub>][SbF<sub>6</sub>]:

<sup>19</sup>F NMR (282 MHz, d<sub>6</sub>-DMSO, CFCl<sub>3</sub> as an external standard): δ -120.1 (sextet,  $J_{(F-Sb(l=5/2)} = 1963$  Hz, octet,  $J_{(F-Sb(l=7/2)} = 1061$  Hz).

#### *N*-buthylthiazolium hexafluoroantimonate:

<sup>1</sup>H NMR (300 MHz, d<sub>6</sub>-DMSO, CFCl<sub>3</sub> as an external standard):  $\delta$  0.90 (t, *J* = 7.3 Hz, 3H), 1.26 (m, *J* = 7.3 Hz, 2H), 1.86 (m, *J* = 7.3 Hz, 2H), 4.5 (t, *J* = 7.3 Hz, 2H), 8.33 (d, *J* = 3.7 Hz, 1H), 8.56 (d, *J* = 3.7 Hz, 1H), 10.19 (s, 1H); <sup>13</sup>C NMR (75 MHz, d<sub>6</sub>-DMSO):  $\delta$  13.0, 18.6, 31.3, 54.1, 126.6, 136.8, 158.9; <sup>19</sup>F NMR (282 MHz, d<sub>6</sub>-DMSO):  $\delta$  -119.8 ppm (sextet, *J*<sub>(*F*-*Sb*(*I*=*5*/*2*) = 1954 Hz, octet, *J*<sub>(*F*-*Sb*(*I*=*7*/*2*) = 1079 Hz).</sub></sub>



**Figure.** UV-Vis spectra of a mixture of bis(pentamethylcyclopentadienyl)Co(II) (2 mg) with ILs (0.92 mmol) in  $CH_2Cl_2$  (10 mL) (after 5 min).

### Crystal X-ray crystallography data of 3-SbF<sub>6</sub>



### Single X ray crystal structure of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Fe(III)-SbF<sub>6</sub> (3-SbF<sub>6</sub>)

**Crystal data.**  $C_{20}H_{30}F_6F_1Sb_1$ , M = 562.04, Orthorhombic, a = 8.414(2), b = 10.307(3), c = 13.192(3) Å, U = 1144.0(5) Å<sup>3</sup>, T = 293(2) K, space group *Pnnm*, Z = 2,  $\mu$ (Mo-K $\alpha$ ) = 1.865 mm<sup>-1</sup>, 977 reflections collected, 620 unique ( $R_{int} = 0.0000$ ) which were used in all calculations. The final  $wR(F_2)$  was 0.1197.

#### Table 1. Crystal data and structure refinement for Fenew.

| Identification code                     | fenew                                             |
|-----------------------------------------|---------------------------------------------------|
| Empirical formula                       | $C_{20}H_{30}F_6F_1Sb_1$                          |
| Formula weight                          | 562.04                                            |
| Temperature                             | 293(2) K                                          |
| Wavelength                              | 0.71073 Å                                         |
| Crystal system                          | Orthorhombic                                      |
| Space group                             | Pnnm                                              |
| Unit cell dimensions                    | $a = 8.414(2) \text{ Å}$ _ = 90°.                 |
|                                         | $b = 10.307(3)$ Å _ = 90°.                        |
|                                         | $c = 13.192(3) \text{ Å} = 90^{\circ}.$           |
| Volume                                  | 1144.0(5) Å <sup>3</sup>                          |
| Ζ                                       | 2                                                 |
| Density (calculated)                    | 1.632 Mg/m <sup>3</sup>                           |
| Absorption coefficient                  | 1.865 mm <sup>-1</sup>                            |
| F(000)                                  | 562                                               |
| Crystal size                            | $0.34\times0.28\times0.14\ mm^3$                  |
| Theta range for data collection         | 2.51 to 24.98°.                                   |
| Index ranges                            | $0 \le h \le 10, 0 \le k \le 12, -15 \le l \le 0$ |
| Reflections collected                   | 977                                               |
| Independent reflections                 | 977 [ $R(int) = 0.0000$ ]                         |
| Completeness to theta = $24.98^{\circ}$ | 93.0 %                                            |
| Absorption correction                   | Empirical                                         |
| Max. and min. transmission              | 0.4967 and 0.1954                                 |
| Refinement method                       | Full-matrix least-squares on $F^2$                |

| Data / restraints / parameters                         | 977 / 0 / 76                         |
|--------------------------------------------------------|--------------------------------------|
| Goodness-of-fit on $F^2$                               | 1.124                                |
| Final <i>R</i> indices [ <i>I</i> >2sigma( <i>I</i> )] | R1 = 0.0449, wR2 = 0.1197            |
| <i>R</i> indices (all data)                            | R1 = 0.0785, wR2 = 0.1624            |
| Extinction coefficient                                 | 0.0007(7)                            |
| Largest diff. peak and hole                            | 0.585 and $-0.724$ e.Å <sup>-3</sup> |

# Table 2. Atomic coordinates ( $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for FE.

U(eq) х y Z  $\overline{\text{Sb}(1)}$ 0 5000 57(1) 0 5000 -5000 Fe(1) 5000 36(1) F(1) 2136(9) 449(8) 5000 128(3) F(2) -1251(4)364(7)4002(3) 107(2) -5071(8) C(1) 2519(12) 5000 63(3) 3049(8) 4129(5) C(2) -4372(7)64(2) C(3) 3927(8) -3281(6) 4454(5)64(2) C(4) 1541(15) -6287(11)5000 127(6) C(5) 2693(12) -4717(11)3041(6) 122(4) 4667(12) -2235(9) 3793(8) 119(4) C(6)

U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| Sb(1)-F(1)#1                                                                | 1.856(8)               |  |
|-----------------------------------------------------------------------------|------------------------|--|
| Sb(1)-F(1)                                                                  | 1.856(8)               |  |
| Sb(1)-F(2)                                                                  | 1.868(4)               |  |
| Sb(1)-F(2)#2                                                                | 1.868(4)               |  |
| Sb(1)-F(2)#1                                                                | 1.868(4)               |  |
| Sb(1)-F(2)#3                                                                | 1.868(4)               |  |
| Fe(1)-C(1)#4                                                                | 2.089(10)              |  |
| Fe(1)-C(1)                                                                  | 2.009(10)<br>2.089(10) |  |
| Fe(1)- $C(2)$                                                               | 2.009(10)              |  |
| Fe(1) - C(2) = 5                                                            | 2.106(6)               |  |
| Fe(1) - C(2) # 4                                                            | 2.106(6)               |  |
| $F_{0}(1) - C(2) \# 2$                                                      | 2.100(0)<br>2.106(6)   |  |
| $F_{0}(1) - C(2) \# 5$                                                      | 2.100(0)<br>2.115(6)   |  |
| Fe(1)-C(3)#3<br>Fe(1) C(3)#4                                                | 2.115(0)<br>2.115(6)   |  |
| Fe(1)-C(3)#4<br>$F_{2}(1) C(3)$                                             | 2.115(0)<br>2.115(6)   |  |
| Fe(1)-C(3)<br>$F_{2}(1)-C(2)\#2$                                            | 2.115(0)<br>2.115(6)   |  |
| $\Gamma C(1) - C(3) \# 2$                                                   | 2.113(0)<br>1.429(9)   |  |
| C(1)-C(2)#2                                                                 | 1.428(8)               |  |
| C(1)-C(2)                                                                   | 1.428(8)               |  |
| C(1)-C(4)                                                                   | 1.499(14)              |  |
| C(2)-C(3)                                                                   | 1.412(9)               |  |
| C(2)-C(5)                                                                   | 1.509(9)               |  |
| C(3)-C(3)#2                                                                 | 1.439(13)              |  |
| C(3)-C(6)                                                                   | 1.521(10)              |  |
| C(4)-H(4A)                                                                  | 0.9600                 |  |
| C(4)-H(4B)                                                                  | 0.9600                 |  |
| C(4)-H(4C)                                                                  | 0.9600                 |  |
| C(5)-H(5A)                                                                  | 0.9600                 |  |
| C(5)-H(5B)                                                                  | 0.9600                 |  |
| C(5)-H(5C)                                                                  | 0.9600                 |  |
| C(6)-H(6A)                                                                  | 0.9600                 |  |
| C(6)-H(6B)                                                                  | 0.9600                 |  |
| C(6)-H(6C)                                                                  | 0.9600                 |  |
|                                                                             |                        |  |
| F(1)#1-Sb(1)-F(1)                                                           | 180.000(1)             |  |
| F(1)#1-Sb(1)-F(2)                                                           | 89.2(3)                |  |
| F(1)-Sb(1)-F(2)                                                             | 90.8(3)                |  |
| F(1)#1-Sb(1)-F(2)#2                                                         | 89.2(3)                |  |
| F(1)-Sb(1)-F(2)#2                                                           | 90.8(3)                |  |
| F(2)-Sb(1)-F(2)#2                                                           | 89.6(3)                |  |
| F(1)#1-Sb(1)-F(2)#1                                                         | 90 8(3)                |  |
| F(1)-Sb(1)-F(2)#1                                                           | 89 2(3)                |  |
| F(2)-Sb(1)-F(2)#1                                                           | 180,000(1)             |  |
| F(2)#2-Sh(1)-F(2)#1                                                         | 90 4(3)                |  |
| F(1)#1-Sb(1)-F(2)#3                                                         | 90.8(3)                |  |
| F(1)-Sh(1)-F(2)#3                                                           | 89 2(3)                |  |
| $F(2)_{Sh}(1)_{F(2)\#2}$                                                    | 90.2(3)                |  |
| $F(2)#2_Sb(1) - F(2)#2$                                                     | 180.000(1)             |  |
| $\Gamma(2)$ #2-30(1)- $\Gamma(2)$ #3<br>$\Gamma(2)$ #1 Sb(1) $\Gamma(2)$ #2 | 80.6(2)                |  |
| 1'(2)#1-30(1)-F(2)#3                                                        | 09.0(3)                |  |

## Table 3. Bond lengths [Å] and angles [°] for FE.

| C(1)#4-Fe(1)-C(1)       | 180.000(1) |
|-------------------------|------------|
| C(1)#4-Fe(1)-C(2)       | 140.2(2)   |
| C(1)-Fe(1)-C(2)         | 39.8(2)    |
| C(1)#4-Fe(1)-C(2)#5     | 39.8(2)    |
| C(1)-Fe(1)-C(2)#5       | 140.2(2)   |
| C(2)-Fe(1)-C(2)#5       | 113.8(4)   |
| C(1)#4-Fe(1)-C(2)#4     | 39.8(2)    |
| C(1)-Fe(1)-C(2)#4       | 140.2(2)   |
| C(2)-Fe(1)-C(2)#4       | 180.0(3)   |
| C(2)#5-Fe(1)-C(2)#4     | 66.2(4)    |
| C(1)#4-Fe(1)-C(2)#2     | 140.2(2)   |
| C(1)-Fe(1)-C(2)#2       | 39.8(2)    |
| C(2)-Fe(1)-C(2)#2       | 66.2(4)    |
| C(2)#5-Fe(1)-C(2)#2     | 180.0(3)   |
| C(2)#4-Fe(1)-C(2)#2     | 113.8(4)   |
| C(1)#4-Fe(1)-C(3)#5     | 66.6(3)    |
| C(1)-Fe(1)-C(3)#5       | 113.4(3)   |
| C(2)-Fe(1)-C(3)#5       | 113.9(2)   |
| C(2)#5-Fe(1)-C(3)#5     | 39.1(3)    |
| C(2)#4-Fe(1)-C(3)#5     | 66.1(2)    |
| C(2)#2-Fe(1)-C(3)#5     | 140.9(3)   |
| C(1)#4-Fe(1)-C(3)#4     | 66.6(3)    |
| C(1)-Fe(1)- $C(3)$ #4   | 113.4(3)   |
| C(2)-Fe(1)-C(3)#4       | 140.9(3)   |
| C(2)#5-Fe(1)-C(3)#4     | 66.1(2)    |
| C(2)#4-Fe(1)-C(3)#4     | 39.1(3)    |
| C(2)#2-Fe(1)-C(3)#4     | 113.9(2)   |
| C(3)#5-Fe(1)-C(3)#4     | 39.8(4)    |
| C(1)#4-Fe(1)-C(3)       | 113.4(3)   |
| C(1)-Fe(1)-C(3)         | 66.6(3)    |
| C(2)-Fe(1)-C(3)         | 39.1(3)    |
| C(2)#5-Fe(1)-C(3)       | 113.9(2)   |
| C(2)#4-Fe(1)-C(3)       | 140.9(3)   |
| C(2)#2-Fe(1)-C(3)       | 66.1(2)    |
| C(3)#5-Fe(1)-C(3)       | 140.2(4)   |
| C(3)#4-Fe(1)-C(3)       | 180.000(1) |
| C(1)#4-Fe(1)-C(3)#2     | 113.4(3)   |
| C(1)-Fe(1)- $C(3)$ #2   | 66.6(3)    |
| C(2)-Fe(1)-C(3)#2       | 66.1(2)    |
| C(2)#5-Fe(1)-C(3)#2     | 140.9(3)   |
| C(2)#4-Fe(1)-C(3)#2     | 113.9(2)   |
| C(2)#2-Fe(1)-C(3)#2     | 39.1(3)    |
| C(3)#5-Fe(1)-C(3)#2     | 180.000(1) |
| C(3)#4-Fe(1)-C(3)#2     | 140.2(4)   |
| C(3)-Fe(1)- $C(3)$ #2   | 39.8(4)    |
| C(2)#2-C(1)-C(2)        | 107.2(8)   |
| C(2)#2- $C(1)$ - $C(4)$ | 126.4(4)   |
| C(2)-C(1)-C(4)          | 126.4(4)   |
| C(2)#2- $C(1)$ -Fe(1)   | 70.8(5)    |
| C(2)-C(1)-Fe(1)         | 70.8(5)    |
| $\sim / \sim / \sim /$  |            |

| C(4)-C(1)-Fe(1)       | 125.3(7)  |
|-----------------------|-----------|
| C(3)-C(2)-C(1)        | 108.7(6)  |
| C(3)-C(2)-C(5)        | 125.5(8)  |
| C(1)-C(2)-C(5)        | 125.8(8)  |
| C(3)-C(2)-Fe(1)       | 70.8(3)   |
| C(1)-C(2)-Fe(1)       | 69.4(5)   |
| C(5)-C(2)-Fe(1)       | 127.0(5)  |
| C(2)-C(3)-C(3)#2      | 107.7(4)  |
| C(2)-C(3)-C(6)        | 127.2(7)  |
| C(3)#2-C(3)-C(6)      | 125.0(5)  |
| C(2)-C(3)-Fe(1)       | 70.1(3)   |
| C(3)#2- $C(3)$ -Fe(1) | 70.10(18) |
| C(6)-C(3)-Fe(1)       | 127.9(5)  |
| C(1)-C(4)-H(4A)       | 109.5     |
| C(1)-C(4)-H(4B)       | 109.5     |
| H(4A)-C(4)-H(4B)      | 109.5     |
| C(1)-C(4)-H(4C)       | 109.5     |
| H(4A)-C(4)-H(4C)      | 109.5     |
| H(4B)-C(4)-H(4C)      | 109.5     |
| C(2)-C(5)-H(5A)       | 109.5     |
| C(2)-C(5)-H(5B)       | 109.5     |
| H(5A)-C(5)-H(5B)      | 109.5     |
| C(2)-C(5)-H(5C)       | 109.5     |
| H(5A)-C(5)-H(5C)      | 109.5     |
| H(5B)-C(5)-H(5C)      | 109.5     |
| C(3)-C(6)-H(6A)       | 109.5     |
| C(3)-C(6)-H(6B)       | 109.5     |
| H(6A)-C(6)-H(6B)      | 109.5     |
| C(3)-C(6)-H(6C)       | 109.5     |
| H(6A)-C(6)-H(6C)      | 109.5     |
| H(6B)-C(6)-H(6C)      | 109.5     |
|                       |           |

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1 #2 x,y,-z+1 #3 -x,-y,z #4 -x+1,-y-1,-z+1 #5 -x+1,-y-1,z

| Table 4.   | Anisotropic displacement parameters (Å <sup>2</sup> x 10 <sup>3</sup> ) for FE.                                  |
|------------|------------------------------------------------------------------------------------------------------------------|
| The anisot | tropic displacement factor exponent takes the form: -2 $^{2}$ [ h <sup>2</sup> a* <sup>2</sup> U <sup>11</sup> + |
| + 2 h k a* | b* U <sup>12</sup> ]                                                                                             |

|                           | U11    | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U13    | U12    |
|---------------------------|--------|-----------------|-----------------|-----------------|--------|--------|
| $\overline{\text{Sb}(1)}$ | 71(1)  | 65(1)           | 35(1)           | 0               | 0      | -12(1) |
| Fe(1)                     | 39(1)  | 49(1)           | 20(1)           | 0               | 0      | 2(1)   |
| F(1)                      | 85(5)  | 100(5)          | 199(9)          | 0               | 0      | -22(4) |
| F(2)                      | 182(5) | 83(3)           | 56(3)           | -18(2)          | 14(3)  | -15(3) |
| C(1)                      | 41(5)  | 52(5)           | 96(8)           | 0               | 0      | 9(3)   |
| C(2)                      | 71(4)  | 82(4)           | 38(3)           | -6(3)           | -16(3) | 25(4)  |
| C(3)                      | 77(4)  | 56(3)           | 59(4)           | 16(3)           | 1(3)   | 10(3)  |
| C(4)                      | 66(7)  | 72(7)           | 243(19)         | 0               | 0      | -7(6)  |
| C(5)                      | 105(8) | 211(12)         | 50(5)           | -39(6)          | -33(5) | 43(7)  |
| C(6)                      | 134(8) | 92(6)           | 130(9)          | 68(6)           | 25(7)  | 17(5)  |

# Table 5. Hydrogen coordinates ( $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for FE.

|       | Х    | у     | Z    | U(eq) |
|-------|------|-------|------|-------|
| H(4A) | 1499 | -6636 | 4326 | 191   |
| H(4B) | 484  | -6092 | 5227 | 191   |
| H(4C) | 2015 | -6912 | 5447 | 191   |
| H(5A) | 2555 | -5639 | 2982 | 183   |
| H(5B) | 3559 | -4445 | 2618 | 183   |
| H(5C) | 1736 | -4287 | 2830 | 183   |
| H(6A) | 3954 | -1512 | 3743 | 178   |
| H(6B) | 4865 | -2579 | 3128 | 178   |
| H(6C) | 5651 | -1955 | 4089 | 178   |
|       |      |       |      |       |