Supporting Information Binder, Kirsch

Iterative approach to polyketide-type structures: stereoselective synthesis of 1,3-polyols utilizing the catalytic asymmetric Overman esterification

Jörg T. Binder, Stefan F. Kirsch^{*}

Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany

Supporting Information

Representative experimental procedures, and copies of ¹H and ¹³C NMR of **2**, **3**, **5-11**, **14**, and **15**. Copies of HPLC traces used to determine enantiopurity for **2** and **14**.

General experimental details: All commercially available chemicals were used without further purification. (+)-COP-OAc and (-)-COP-OAc were purchased from Aldrich and purified by column chromatography on silica (100% CH₂Cl₂) prior to usage. All reactions were performed under argon. CH₂Cl₂ was dried according to published procedures.¹

¹H NMR spectra were obtained on 500 MHz FT-NMR, 360 MHz FT-NMR and 250 MHz FT-NMR spectrometers. ¹³C NMR spectra were recorded at 90.6 MHz. Chemical shifts are reported in ppm relative to solvent signal. Multiplicity is indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); dd (doublet of doublets); quin (quintet). Flash chromatography was performed with E. Merck silica gel (43–60 μ m). The eluent used is reported in parentheses (P = pentane). Thin-layer chromatography (TLC) was performed on precoated glass-backed plates (Merck Kieselgel 60 F₂₅₄), and components were visualized by observation under UV light or by treating the plates with KMnO₄/H₂SO₄ followed by heating. HPLC determination of enantiopurity was carried out on a Dionex using a Chiralcel[®] OJ-H column (250 mm x 4.6 mm). All HPLC analyses used to determine enantiomeric purity were calibrated with samples of the racemate.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

Synthesis of (*R*)-5-Phenylpent-1-en-3-yl benzoate (2).

(Z)-Ethyl 5-phenylpent-2-enoate

To a solution of ethyl (diphenylphosphono)acetate (4.23 g, 13.2 mmol) in dry THF (53 mL) was added NaH (687 mg, 17.2 mmol; 60 % in oil) at 0 °C under argon. The resulting mixture was stirred for 20 min at 0 °C, and then it was cooled to -78° C. 3-Phenylpropanal (1.95 g, 14.5 mmol) was added dropwise. The stirred mixture was allowed to warm up to -10° C over 3 h. The reaction was then quenched by addition of saturated aqueous NH₄Cl (100 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. ¹H NMR of the crude mixture indicated a *Z/E* ratio of 85:15. Purification of the residue by flash chromatography on silica (P/EtOAc = 99/01) gave the title compound (2.30 mg, 11.2 mmol, 85%) as a single diastereoisomer. R_f = 0.44 (P/EtOAc = 95/5); ¹H NMR (360 MHz, CDCl₃): δ = 1.29 (t, *J* = 7.2 Hz, 3 H), 2.77 (t, *J* = 7.6 Hz, 2 H), 2.99 (qd, *J* = 7.7 Hz, *J* = 1.6 Hz, 2 H), 4.17 (q, *J* = 7.2 Hz, 2 H), 5.78 (dt, *J* = 11.4 Hz, *J* = 1.7 Hz, 1 H), 6.24 (dt, *J* = 11.4 Hz, *J* = 7.5 Hz, 1H), 7.15–7.24 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 14.4, 30.6, 35.2, 60.0, 120.5, 126.2, 128.5, 128.6, 141.3, 149.0, 166.5. The analytical data are identical to those reported elsewhere.²

(Z)-5-Phenylpent-2-en-1-ol

To a solution of (*Z*)-ethyl 5-phenylpent-2-enoate (7.95 mmol, 1.62 mg) in CH₂Cl₂ (57 mL) at -78° C was added DIBAL-H (23.9 mL, 23.9 mmol; 1M in CH₂Cl₂). The resulting solution was stirred for 1 h at -78° C, before H₂O was added (8 mL). The mixture was allowed to warm to room temperature, aqueous potassium sodium tartrate (300 mL, 10% aq. solution), glycerine (0.2 mL/mmol) and Et₂O (300 mL) were added, and stirring was continued for 2 h (, until both layers were clear and readily separated). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 100 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 90/10) gave the title compound (1.03 g, 6.38 mmol, 80%) as a colourless liquid. R_f = 0.33 (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): δ = 0.78 (t, *J* = 5.2 Hz, 1 H), 2.41 (q, *J* = 7.3 Hz, 2 H), 2.69 (t, *J* = 7.4 Hz, 2 H), 4.01 (t, *J* = 5.1 Hz, 2 H), 5.52–5.66 (m, 2 H), 7.16–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR

² J. Bach, C. Blachere, S. D. Bull, S. G. Davies, R. L. Nicholson, P. D. Price, H. J. Sanganee, A. D. Smith, *Org. Biomol. Chem.* **2003**, *1*, 2001.

(90.6 MHz, CDCl₃): δ = 29.4, 35.8, 58.6, 126.2, 128.5, 128.8, 129.5, 131.8, 141.7. The analytical data are identical to those reported elsewhere.³

General procedure for the conversion of (Z)-2-allylic alcohols into (Z)-2enyl-trichloroacetimidates (Method A)

(Z)-5-Phenylpent-2-enyl 2,2,2-trichloroacetimidate (1)

To a solution of (*Z*)-5-phenylpent-2-en-1-ol (1.07 g, 6.60 mmol) in dry CH₂Cl₂ (29 mL) was added trichloroacetonitrile (0.66 mL, 6.60 mmol) and DBU (90.4 mg, 0.60 mmol) at 0 °C. The resulting pale brown solution was warmed to room temperature. After stirred for 2 h at room temperature (until TLC analysis indicated complete conversion), the mixture was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 98/02) gave the title compound as a colourless liquid (1.91 g, 6.23 mmol, 94 %). R_f = 0.41 (P/EtOAc = 95/5); ¹H NMR (360 MHz, CDCl₃): δ = 2.45–2.53 (m, 2 H), 2.72 (t, *J* = 7.8 Hz, 2 H), 4.78 (d, *J* = 6.1 Hz, 2 H), 5.64–5.81 (m, 2 H), 7.15–7.23 (m, 3 H), 7.26–7.34 (m, 2 H), 8.28 (s, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 29.7, 35.7, 65.2, 123.6, 126.2, 128.5, 128.6, 135.1, 141.5, 162.8 (*C*Cl₃ is missing). The analytical data are identical to those reported elsewhere.⁴

General procedure for the enantioselective allylic esterification catalyzed by COP-OAc (Method B)

(R)-5-Phenylpent-1-en-3-yl benzoate (2)

(+)-COP-OAc (1 mol %, 0.12 mmol , 178 mg) was added in one portion to a solution of **1** (11.7 mmol, 3.59 g) and benzoic acid (35.1 mmol, 4.29 g) in dry CH₂Cl₂ (9 mL). The orange solution was protected from light and maintained at room temperature. After 24 h (until ¹H NMR analysis of the crude mixture indicated complete conversion), the solution was concentrated under reduced pressure. The residue was purified by flash chromatography on silica to afford **2** as a pale yellow oil (2.89 g, 10.85 mmol, 93%). R_f = 0.41 (P/EtOAc = 95/5); $[\alpha]^{23}_{D} = -8.6$ (c = 0.93 CDCl₃). ¹H NMR (360 MHz, CDCl₃): $\delta = 2.01-2.24$ (m, 2 H), 2.68-2.83 (m, 2 H), 5.25 (dt, J = 10.5 Hz, J = 1.1 Hz, 1 H), 5.36 (dt, J = 17.3 Hz, J = 1.3 Hz, 1 H), 5.50-5.58 (m, 1 H), 5.94 (ddd, J = 17.3 Hz, J = 10.7 Hz, J = 6.1 Hz, 1 H), 7.15-7.22

³ D. C. Martyn, D. A. Hoult, A. D. Abell, Aust. J. Chem. 2001, 54, 391.

⁴ L. E. Overman, C. E. Owen, M. M. Pavan, Org. Lett. 2003, 5, 1809.

(m, 3 H), 7.26–7.32 (m, 2 H), 7.42–7.49 (m, 2 H), 7.57 (tt, J = 7.3 Hz, J = 1.4 Hz, 1 H), 8.04–8.09 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 31.6$, 36.1, 74.9, 117.1, 126.1, 128.5, 128.5, 128.6, 129.8, 130.7, 133.1, 136.4, 141.5, 166.0; LRMS (EI): 266 (1%) [M⁺], 144 (100%), 129 (81%), 105 (78%), 91 (48%); HRMS 266.1306 [266.1307 calcd for C₁₈H₁₈O₂ (M⁺)].

HPLC analysis indicated an enantiomeric excess of 92% [Daicel OJ-H column; flow: 1.0 mL/min; pentanes/*i*-PrOH, 95:5; 210 nm; major enantiomer, $t_R = 11.30$ min; minor enantiomer, $t_R = 11.97$ min].

The absolute configuration was assigned according to the literature data.⁵

General procedure for the chain extension cycle 1^{OH}-3*R*^{OH} (Method C)

Synthesis of (*R*)-6-Phenethyl-5,6-dihydropyran-2-one (3) (*R*)-5-Phenylpent-1-en-3-yl but-3-enoate

To a solution of **2** (4.19 mmol, 1.12 g) in dry CH₂Cl₂ (42 mL) at -78° C under argon was added DIBAL-H (12.6 mL, 12.6 mmol; 1M in CH₂Cl₂). The resulting solution was stirred for 2 h at -78° C, before H₂O was added (5 mL). The mixture was allowed to warm to room temperature, aqueous potassium sodium tartrate (200 mL, 10% aq. solution), glycerine (0.2 mL/mmol) and Et₂O (200 mL) were added, and stirring was continued for 2 h (, until both layers were clear and readily separated). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure to give (*R*)-5-phenylpent-1-en-3-ol as a colourless liquid, which was directly used in the next step without further purification. R_f = 0.42 (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): δ = 1.57 (s, 1 H), 1.80–1.94 (m, 2 H), 2.65–2.81 (m, 2 H), 4.10–4.17 (m, 1 H), 5.15 (d, *J* = 10.5 Hz, 1 H), 5.26 (d, *J* = 17.3 Hz, 1 H), 5.92 (ddd, *J* = 17.3 Hz, *J* = 10.5 Hz, *J* = 6.1 Hz, 1 H), 7.15–7.24 (m, 3 H), 7.26–7.33 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 31.8, 38.7, 72.6, 115.0, 126.0, 128.5, 128.6, 141.2, 142.0.

To a solution of crude (*R*)-5-phenylpent-1-en-3-ol in dry CH_2Cl_2 (42 mL) was added DCC (1.04 mg, 5.03 mmol), vinyl acetic acid (0.43 mL, 5.03 mmol) and DMAP (77 mg, 0.63 mmol) at room temperature. The resulting mixture was stirred for 16 h at room temperature before it was filtered and quenched with water (50 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic layers were

⁵ S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2005, 127, 2866.

washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 99/1) gave (*R*)-5-phenylpent-1-en-3-yl but-3-enoate as a colourless liquid (847 mg, 3.68 mmol, 88%). [α]²³_D = -10.0 (*c* = 0.34 CDCl₃) R_f = 0.92 (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): δ = 1.86–2.08 (m, 2 H), 2.57–2.72 (m, 2 H), 3.10 (dt, *J* = 6.8 Hz, *J* = 1.4 Hz, 2 H), 5.13–5.37 (m, 5 H), 5.76–6.01 (m, 2 H), 7.16–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 31.5, 35.9, 39.5, 74.6, 117.2, 118.7, 126.1, 128.5, 128.6, 130.4, 136.3, 141.4, 170.9. HRMS 230.1300 [230.1307 calcd for C₁₅H₁₈O₂(M⁺)].

(*R*)-6-Phenethyl-5,6-dihydropyran-2-one (3)

To a solution of (*R*)-5-phenylpent-1-en-3-yl but-3-enoate (836 mg, 3.63 mmol) in degassed CH₂Cl₂ (400 mL) was added Grubbs II catalyst (28 mg, 0.03 mmol). The reaction mixture was refluxed for 15 h. After disappearance of the starting material, the reaction mixture was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 90/10) gave a colourless oil (647 mg, 3.2 mmol, 88%), which contained (*R*)-6-phenethyl-3*H*-pyran-2(6*H*)-one as the major product (90% pure by ¹H NMR analysis). The minor product was (*R*)-6-Phenethyl-5,6-dihydropyran-2-one (**3**). This mixture was subjected to the subsequent isomerization reaction. Analytical data for (*R*)-6-phenethyl-3*H*-pyran-2(6*H*)-one: R_f = 0.28 (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): δ = 1.97–2.10 (m, 2 H), 2.71–2.89 (m, 2 H), 3.04–3.11 (m, 2 H), 4.94–5.02 (m, 1 H), 5.80–5.91 (m, 2 H), 7.15–7.23 (m, 3 H), 7.26–7.33 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 30.1, 30.8, 37.5, 78.8, 122.0, 126.3, 126.6, 128.7, 128.7, 140.9, 169.1.

To a solution of crude (*R*)-6-phenethyl-3*H*-pyran-2(6*H*)-one (647 mg, 3.2 mmol) in dry CH₂Cl₂ (16 mL) was added DBU (49 mg, 0.32 mmol) at room temperature. The resulting mixture was stirred for 16 h before it was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 70/30) gave **3** as a colourless liquid (602 mg, 2.98 mmol, 93%). $R_f = 0.25$ (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): $\delta = 1.86-2.02$ (m, 1 H), 2.04-2.23 (m, 1 H), 2.28-2.39 (m, 2 H), 2.70-2.96 (m, 2 H), 4.35-4.48 (m, 1 H), 6.03 (dt, J = 9.8 Hz, J = 1.8 Hz, 1 H), 6.81-6.91 (m, 1 H), 7.15-7.24 (m, 3 H), 7.26-7.34 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 29.6$, 31.1, 36.6, 77.0, 121.6, 126.3, 128.6, 128.7, 141.0, 145.0, 164.6. HRMS 202.0981 [202.0994 calcd for C₁₃H₁₄O₂(M⁺)].

Synthesis of (R,Z)-5-(Triethylsilyloxy)-7-phenylhept-2-enyl 2,2,2-trichloroacetimidate (4)

(R,Z)-5-(Triethylsilyloxy)-7-phenylhept-2-en-1-ol

To a solution of **3** (876 mg, 4.3 mmol) in MeOH (500 mL) was added CeCl₃*7 H₂O (4.6 g, 12.4 mmol) at room temperature. The mixture was cooled to 0 °C. Then, NaBH₄ (470 mg, 12.4 mmol) was added in three portions. The reaction mixture was stirred at 0 °C for 6 h, then, the mixture was concentrated under reduced pressure. The residue was diluted with H₂O (200 mL) and EtOAc (200 mL), and the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with brine, dried (NaSO₄), and concentrated under reduced pressure. The next step without further purification.

To a solution of crude (R,Z)-7-phenylhept-2-ene-1,5-diol in CH₂Cl₂ (21 mL) were added 2,6-lutidine (1.2 mL, 9.9 mmol) and TESOTf (2.1 mL, 9.05 mmol) at 0 °C. The resulting mixture was stirred for 1 h at 0 °C before H₂O (20 mL) was added. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with brine, dried (NaSO₄), and concentrated under reduced pressure. The crude product was directly used in the next step without further purification.

The crude product was dissolved in MeOH (83 mL), and K₂CO₃ (5.1 mg, 37.1 mmol) was added at 0°C. The mixture was stirred for additional 3 h at 0 °C. After addition of H₂O (100 mL) and Et₂O (100 mL), the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with brine, dried (NaSO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 90/10) gave (*R*,*Z*)-5-(triethylsilyloxy)-7-phenylhept-2-en-1-ol as a colourless liquid (1.1 g, 3.39 mmol, 79%). R_f = 0.48 (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): δ = 0.62 (q, *J* = 7.8 Hz, 6 H), 0.98 (t, *J* = 7.8 Hz, 9 H), 1.66–1.73 (m, 1 H), 1.74–1.87 (m, 2 H), 2.24–2.43 (m, 2 H), 2.57–2.75 (m, 2 H), 3.78 (virt. quin, *J* = 5.8 Hz, 1 H), 4.09–4.23 (m, 2 H), 5.55–5.66 (m, 1 H), 5.74–5.83 (m, 1 H), 7.15–7.21 (m, 3 H), 7.26–7.31 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 5.19, 7.05, 31.8, 35.2, 39.0, 58.6, 71.5, 125.9, 128.5, 129.2, 130.9, 142.4.

(R,Z)-5-(Triethylsilyloxy)-7-phenylhept-2-enyl 2,2,2-trichloroacetimidate (4)

Following the general procedure (**Method A**), **4** was obtained as a colourless oil (94%) after flash chromatography on silica (P/EtOAc = 99/1). $R_f = 0.49$ (P/EtOAc = 95/5); ¹H NMR (360

MHz, CDCl₃): $\delta = 0.62$ (q, J = 7.9 Hz, 6 H), 0.97 (t, J = 7.9 Hz, 9 H), 1.69–1.85 (m, 2 H), 2.38 (t, J = 5.9 Hz, 2 H), 2.55–2.66 (m, 1 H), 2.67–2.77 (m, 1 H), 3.82 (virt. quin, J = 5.8 Hz, 1 H), 4.80–4.91 (m, 2 H), 5.72–5.85 (m, 2 H), 7.14–7.21 (m, 3 H), 7.23–7.31 (m, 2 H), 8.29 (s, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3$, 7.1, 32.0, 35.7, 39.0, 65.4, 71.6, 124.7, 125.9, 128.5, 132.2, 142.5, 162.8 (CCl₃ is missing).

Synthesis of (3*R*,5*R*)-5-(Triethylsilyloxy)-7-phenylhept-1-en-3-yl benzoate (5) Following the general procedure (Method B, (+)-COP-OAc), 5 was obtained as a crude product, which was a 94:6 mixture of the diastereoisomers. The diastereoisomers were separated by flash chromatography on silica (P/EtOAc = 98/2) to provide 5 in 95%. $R_f = 0.49$ (P/EtOAc = 95/5); $[\alpha]^{23}_D = +7.2$ (*c* = 0.85 CDCl₃). ¹H NMR (360 MHz, CDCl₃): $\delta = 0.63$ (q, *J* = 7.9 Hz, 6 H), 0.98 (t, *J* = 7.9 Hz, 9 H), 1.74–1.86 (m, 1 H), 1.87–1.98 (m, 2 H), 2.05–2.14 (m, 1 H), 2.59–2.77 (m, 2 H), 3.89 (virt. quin, *J* = 5.5 Hz, 1 H), 5.22 (dt, *J* = 10.5 Hz, *J* = 1.1 Hz, 1 H), 5.34 (dt, *J* = 17.3 Hz, *J* = 1.1 Hz, 1 H), 5.59–5.67 (m, 1 H), 5.91 (ddd, *J* = 17.0 Hz, *J* = 10.7 Hz, *J* = 6.4 Hz, 1 H), 7.11–7.18 (m, 3 H), 7.20–7.25 (m, 2 H), 7.40–7.48 (m, 2 H), 7.57 (tt, *J* = 7.4 Hz, *J* = 1.3 Hz, 1 H), 8.01–8.08 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.4$, 7.1, 31.6, 38.9, 42.1, 68.8, 72.8, 117.0, 125.9, 128.5, 128.5, 128.5, 129.7, 130.6, 133.0, 139.7, 142.4, 165.8. LRMS (EI): 395 (1%) [M⁺-Et], 341 (3%), 249 (5%), 207 (100%), 171 (32%).

Synthesis of (35,5R)-5-(Triethylsilyloxy)-7-phenylhept-1-en-3-yl benzoate (6)

Following the general procedure (**Method B**, (–)-COP-OAc), **6** was obtained as a crude product, which was a 97:3 mixture of the diastereoisomers. The diastereoisomers were separated by flash chromatography on silica (P/EtOAc = 98/2) to provide **6** in 94%. $R_f = 0.49$ (P/EtOAc = 95/5); $[\alpha]^{23}{}_D = -13.3$ (c = 0.92 CDCl₃). ¹H NMR (360 MHz, CDCl₃): $\delta = 0.49$ (q, J = 8.0 Hz, 6 H), 0.91 (t, J = 8.0 Hz, 9 H), 1.80–1.91 (m, 3 H), 2.07 (ddd, J = 14.1 Hz, J = 9.5 Hz, J = 4.1 Hz, 1 H), 2.59–2.77 (m, 2 H), 3.87–3.96 (m, 1 H), 5.20 (dt, J = 10.5 Hz, J = 1.1 Hz, 1 H), 5.32 (dt, J = 17.2 Hz, J = 1.1 Hz, 1 H), 5.54–5.62 (m, 1 H), 5.93 (ddd, J = 17.2 Hz, J = 10.5 Hz, J = 6.1 Hz, 1 H), 7.14–7.21 (m, 3 H), 7.23–7.30 (m, 2 H), 7.41–7.48 (m, 2 H), 7.57 (tt, J = 7.4 Hz, J = 1.3 Hz, 1 H), 8.01–8.06 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3$, 7.1, 31.4, 39.8, 42.0, 68.4, 72.9, 116.5, 125.9, 128.5, 128.5, 128.5, 129.7, 130.7, 133.0, 137.0, 142.3, 165.9. LRMS (EI): 395 (1%) [M⁺-Et], 341 (3%), 249 (4%), 207 (100%), 171 (33%).

Synthesis of triol derivatives 7, 8, 9, and 10

(3R,5S,7R)-5,7-Bis(triethylsilyloxy)-9-phenylnon-1-en-3-yl benzoate (7)

Following the general procedure (**Method C**, (+)-COP-OAc), **7** was obtained from **5** as a pure diastereoisomer (32%) after flash chromatography on silica (P/EtOAc = 98/2). $R_f = 0.56$ (P/EtOAc = 95/5); $[\alpha]^{23}_{D} = -7.6$ (c = 0.58 CDCl₃). ¹H NMR (360 MHz, CDCl₃): $\delta = 0.59$ (q, J = 7.9 Hz, 6 H), 0.60 (q, J = 7.9 Hz, 6 H), 0.95 (t, J = 7.9 Hz, 9 H), 0.97 (t, J = 7.9 Hz, 9 H), 1.58–1.82 (m, 4 H), 1.86–1.95 (m, 1 H), 1.98–2.07 (m, 1 H), 2.51–2.69 (m, 2 H), 3.86–3.96 (m, 2 H), 5.20 (d, J = 10.5 Hz, 1 H), 5.34 (d, J = 17.3 Hz, 1 H), 5.62–5.70 (m, 1 H), 5.90 (ddd, J = 17.3 Hz, J = 10.5 Hz, J = 6.1 Hz, 1 H), 7.03–7.08 (m, 2 H), 7.11–7.24 (m, 3 H), 7.39–7.45 (m, 2 H), 7.55 (tt, J = 7.5 Hz, J = 1.3 Hz, 1 H), 8.01–8.06 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3$, 5.4, 7.1, 7.1, 31.4, 39.1, 42.6, 44.8, 66.8, 69.1, 72.5, 116.8, 125.7, 128.4, 128.4, 128.5, 129.7, 130.5, 133.0, 136.7, 142.7, 165.6.

(3S,5S,7R)-5,7-Bis(triethylsilyloxy)-9-phenylnon-1-en-3-yl benzoate (8)

Following the general procedure (**Method C**, (–)-COP-OAc), **8** was obtained from **5** as a pure diastereoisomer (25%) after flash chromatography on silica (P/EtOAc = 98/2). $R_f = 0.56$ (P/EtOAc = 95/5); $[\alpha]^{23}_{D} = +30.5$ (c = 0.20 CDCl₃). ¹H NMR (360 MHz, CDCl₃): $\delta = 0.52-0.65$ (m, 12 H), 0.87-0.99 (m, 18 H), 1.64-1.87 (m, 5 H), 2.03-2.13 (m, 1 H), 2.57-2.73 (m, 2 H), 3.82-3.91 (m, 1 H), 3.94-4.03 (m, 1 H), 5.18 (dt, J = 10.5 Hz, J = 1.1 Hz, 1 H), 5.31 (dt, J = 17.3 Hz, J = 1.1 Hz, 1 H), 5.57-5.65 (m, 1 H), 5.90 (ddd, J = 17.3 Hz, J = 10.5 Hz, J = 6.1 Hz, 1 H), 7.14-7.21 (m, 3 H), 7.25-7.31 (m, 2 H), 7.38-7.44 (m, 2 H), 7.55 (tt, J = 7.5 Hz, J = 1.3 Hz, 1 H), 8.02-8.06 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3$, 5.4, 7.1, 7.1, 31.6, 39.6, 42.6, 45.8, 66.5, 69.1, 72.7, 116.5, 125.9, 128.4, 128.5, 128.5, 129.7, 130.8, 132.9, 137.1, 142.5, 165.9.

(3R,5R,7R)-5,7-Bis(triethylsilyloxy)-9-phenylnon-1-en-3-yl benzoate (9)

Following the general procedure (**Method C**, (+)-COP-OAc), **9** was obtained from **6** as a pure diastereoisomer (21%) after flash chromatography on silica (P/EtOAc = 98/2). $[\alpha]^{23}{}_{\rm D} = -14.8$ (c = 0.63 CDCl₃) R_f = 0.56 (P/EtOAc = 95/5); ¹H NMR (360 MHz, CDCl₃): $\delta = 0.59$ (q, J = 8.0 Hz, 6 H), 0.62 (q, J = 7.8 Hz, 6 H), 0.91 (t, J = 7.8 Hz, 9 H), 0.97 (t, J = 8.0 Hz, 9 H), 1.69–1.88 (m, 5 H), 1.96–2.06 (m, 1 H), 2.60–2.77 (m, 2 H), 3.80–3.89 (m, 1 H), 3.90–3.99 (m, 1 H), 5.19 (d, J = 10.7 Hz, 1 H), 5.32 (d, J = 17.3 Hz, 1 H), 5.54–5.64 (m, 1 H), 5.92 (ddd, J = 17.3 Hz, J = 10.5 Hz, J = 6.1 Hz, 1 H), 7.13–7.21 (m, 3 H), 7.24–7.30 (m, 2 H),

7.34–7.43 (m, 2 H), 7.55 (t, J = 7.5 Hz, 1 H), 8.01–8.06 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.4, 5.5, 7.1, 7.1, 31.5, 39.4, 42.7, 46.2, 66.9, 69.6, 72.7, 116.5, 125.9, 128.5, 128.5, 128.5, 129.6, 130.7, 133.0, 137.0, 142.5, 165.8.$

(3S,5R,7R)-5,7-Bis(triethylsilyloxy)-9-phenylnon-1-en-3-yl benzoate (10)

Following the general procedure (**Method C**, (–)-COP-OAc), **10** was obtained from **6** as a pure diastereoisomer (21%) after flash chromatography on silica (P/EtOAc = 98/2). $R_f = 0.56$ (P/EtOAc = 95/5); $[\alpha]^{23}_{D} = +32.4$ (c = 0.93 CDCl₃). ¹H NMR (360 MHz, CDCl₃): $\delta = 0.56$ (q, J = 7.8 Hz, 6 H), 0.64 (q, J = 7.8 Hz, 6 H), 0.91 (t, J = 7.8 Hz, 9 H), 0.98 (t, J = 7.8 Hz, 9 H), 1.65–1.94 (m, 5 H), 2.00–2.10 (m, 1 H), 2.54–2.70 (m, 2 H), 3.80–3.89 (m, 1 H), 3.94–4.03 (m, 1 H), 5.22 (d, J = 10.5 Hz, 1 H), 5.35 (d, J = 17.3 Hz, 1 H), 5.59–5.68 (m, 1 H), 5.90 (ddd, J = 17.3 Hz, J = 10.5 Hz, J = 6.4 Hz, 1 H), 7.10–7.21 (m, 3 H), 7.24–7.32 (m, 2 H), 7.34–7.48 (m, 2 H), 7.55 (t, J = 7.4 Hz, 1 H), 8.03–8.10 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.5$, 5.6, 7.1, 7.2, 31.6, 40.0, 42.9, 45.7, 67.2, 69.7, 72.7, 117.1, 125.8, 128.4, 128.5 (*one* C_{Ar} is missing), 129.8, 130.7, 133.0, 136.7, 142.6, 165.6.

For compounds **7**, **8**, **9**, and **10**, HRMS data were only obtained from the corresponding diols after cleavage of the silylether:

LRMS (EI): 354 (2%) [M⁺], 336 (3%), 232 (6%), 214 (18%), 160 (23%), 123 (28%), 105 (100%), 91 (73%); HRMS 354.1832 [354.1831 calcd for $C_{22}H_{26}O_4(M^+)$].

LRMS (EI): 354 (3%) [M⁺], 336 (3%), 232 (8%), 214 (19%), 160 (24%), 123 (30%), 105 (100%), 91 (68%); HRMS 354.1825 [354.1831 calcd for $C_{22}H_{26}O_4(M^+)$].

8

LRMS (EI): 354 (2%) [M⁺], 336 (3%), 232 (7%), 214 (23%), 160 (28%), 123 (29%), 105 (100%), 91 (59%); HRMS 354.1827 [354.1831 calcd for $C_{22}H_{26}O_4(M^+)$].

LRMS (EI): 354 (1%) [M⁺], 336 (4%), 232 (6%), 214 (20%), 160 (27%), 123 (29%), 105 (100%), 91 (70%); HRMS 354.1828 [354.1831 calcd for $C_{22}H_{26}O_4(M^+)$].

NMR data for key intermediates towards the synthesis of triol derivatives 7, 8, 9, and 10

¹H NMR (360 MHz, CDCl₃): $\delta = 0.65$ (q, J = 7.9 Hz, 6 H), 0.98 (t, J = 7.9 Hz, 9 H), 1.66–1.77 (m, 2 H), 1.80–1.95 (m, 2 H), 2.56–2.73 (m, 2 H), 3.17 (d, J = 2.0 Hz, 1 H), 3.99–4.08 (m, 1 H), 4.26–4.34 (m, 1 H), 5.10 (dt, J = 10.5 Hz, J = 1.5 Hz, 1 H), 5.28 (dt, J =17.2 Hz, J = 1.5 Hz, 1 H), 5.88 (ddd, J = 17.2 Hz, J = 10.5 Hz, J = 5.7 Hz, 1 H), 7.14–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3$, 7.0, 31.3, 39.9, 43.2, 72.1, 72.4, 114.3, 126.0, 128.4, 128.6, 141.0, 142.2.

¹H NMR (360 MHz, CDCl₃): $\delta = 0.61$ (q, J = 7.9 Hz, 6 H), 0.98 (t, J = 7.9 Hz, 9 H), 1.67–2.00 (m, 4 H), 2.56–2.76 (m, 2 H), 3.06 (dt, J = 7.0 Hz, J = 1.4 Hz, 2 H), 3.74–3.82 (m, 1 H), 5.11–5.20 (m, 3 H), 5.25 (dt, J = 17.3 Hz, J = 1.1 Hz, 1 H), 5.34–5.42 (m, 1 H), 5.72–5.97 (m, 2 H), 7.14–7.21 (m, 3 H), 7.24–7.31 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3, 7.1, 31.6, 38.9, 39.6, 42.0, 68.7, 72.5, 117.1, 118.7, 125.9, 128.5, 128.5, 130.4, 136.5, 142.4, 170.7.$

¹H NMR (360 MHz, CDCl₃): $\delta = 0.61$ (q, J = 7.8 Hz, 6 H), 0.97 (t, J = 7.8 Hz, 9 H), 1.75–1.97 (m, 3 H), 2.04 (ddd, J = 13.9 Hz, J = 7.7 Hz, J = 5.9 Hz, 1 H), 2.59–2.74 (m, 2 H), 2.99–3.14 (m, 2 H), 4.00 (virt. quin, J = 5.9 Hz, 1 H), 5.05–5.13 (m, 1 H), 5.81–5.91 (m, 2 H), 7.14–7.21 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.2$, 7.1, 30.1, 31.7, 38.9, 43.2, 68.4, 77.1 121.6, 126.0, 127.1, 128.5, 128.6, 142.2, 169.1.

¹H NMR (360 MHz, CDCl₃): $\delta = 0.61$ (q, J = 7.8 Hz, 6 H), 0.97 (t, J = 7.8 Hz, 9 H), 1.73–1.95 (m, 3 H), 2.10 (ddd, J = 13.9 Hz, J = 7.3 Hz, J = 5.5 Hz, 1 H), 2.27–2.43 (m, 2 H), 2.60–2.75 (m, 2 H), 4.00 (virt. quin, J = 5.8 Hz, 1 H), 4.54–4.63 (m, 1 H), 6.03 (dt, J = 9.8Hz, J = 1.7 Hz, 1 H), 6.84–6.90 (m, 1 H), 7.15–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.2$, 7.1, 30.0, 31.8, 38.7, 42.2, 68.3, 75.4, 121.7, 126.0, 128.5, 128.6, 142.2, 145.1, 164.5.

¹H NMR (360 MHz, CDCl₃): $\delta = 0.61$ (q, J = 7.9 Hz, 12 H), 0.96 (t, J = 7.9 Hz, 9 H), 0.98 (t, J = 7.9 Hz, 9 H), 1.58–1.86 (m, 5 H), 2.25–2.31 (m, 2 H), 2.57–2.72 (m, 2 H), 3.78–3.91 (m, 2 H), 4.08–4.20 (m, 2 H), 5.52–5.62 (m, 1 H), 5.75–5.84 (m, 1 H), 7.14–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.1$, 5.3, 7.0, 7.1, 31.6, 35.3, 39.7, 44.7, 58.5, 69.1, 69.3, 125.9, 128.5, 128.5, 129.2, 131.1, 142.6.

¹H NMR (360 MHz, CDCl₃): $\delta = 0.63$ (q, J = 7.9 Hz, 6 H), 0.98 (t, J = 7.9 Hz, 9 H), 1.70–1.75 (m, 2 H), 1.87–1.96 (m, 2 H), 2.60–2.67 (m, 2 H), 3.13 (d, J = 3.0 Hz, 1 H), 4.02–4.11 (m, 1 H), 4.40–4.48 (m, 1 H), 5.09 (dt, J = 10.5 Hz, J = 1.5 Hz, 1 H), 5.26 (dt, J =17.0 Hz, J = 1.5 Hz, 1 H), 5.88 (ddd, J = 17.0 Hz, J = 10.5 Hz, J = 5.5 Hz, 1 H), 7.15–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.1$, 7.0, 32.1, 38.6, 42.1, 69.9, 70.7, 114.1, 126.0, 128.4, 128.6, 141.4, 142.1.

¹H NMR (360 MHz, CDCl₃): $\delta = 0.66$ (q, J = 7.9 Hz, 6 H), 0.98 (t, J = 7.9 Hz, 9 H), 1.77–1.88 (m, 4 H), 2.57–2.72 (m, 2 H), 3.05–3.09 (m, 2 H), 4.11–4.19 (m, 1 H), 5.10–5.17 (m, 1 H), 5.81–5.88 (m, 2 H), 7.14–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.2$, 7.1, 30.2, 31.2, 40.2, 43.5, 67.8, 67.9 121.5, 126.0, 127.6, 128.4, 128.6, 142.2, 168.9

¹H NMR (360 MHz, CDCl₃): $\delta = 0.63$ (q, J = 7.9 Hz, 6 H), 0.96 (t, J = 7.8 Hz, 9 H), 1.66–1.75 (m, 1 H), 1.77–1.86 (m, 2 H), 1.92–2.01 (m, 1 H), 2.30–2.38 (m, 2 H), 2.57–2.72 (m, 2 H), 4.11–4.20 (m, 1 H), 4.59–4.68 (m, 1 H), 6.04 (dt, J = 9.8 Hz, J = 1.8 Hz, 1 H), 6.86–6.93 (m, 1 H), 7.14–7.22 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.2, 7.1, 30.2, 31.2, 40.3, 42.4, 67.6, 74.9, 121.7, 126.0, 128.4, 128.6, 142.3, 145.3, 164.3.$

¹H NMR (360 MHz, CDCl₃): $\delta = 0.61$ (q, J = 7.9 Hz, 6 H), 0.62 (q, J = 7.9 Hz, 6 H), 0.92–1.01 (m, 18 H), 1.65–1.85 (m, 5 H), 2.21–2.35 (m, 2 H), 2.53–2.78 (m, 2 H), 3.77–3.86 (m, 2 H), 4.08–4.20 (m, 2 H), 5.55–5.65 (m, 1 H), 5.74–5.83 (m, 1 H), 7.14–7.21 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3$, 5.5, 7.1, 7.1, 31.6, 35.8, 39.8, 45.2, 58.6, 69.8, 69.9, 125.9, 128.5, 128.5, 129.1, 131.0, 142.5.

Synthesis of Solistatin

3-(2-Methylnaphthalen-1-yl)propanal (13)

To a solution of 1-bromo-2-methylnaphtalene (**12**) (2 g, 9.1 mmol) in degassed NEt₃ (90 mL) were added ethyl acrylate (0.98 mL, 9.1 mmol), Pd(OAc)₂ (203 mg, 0.90 mmol), and PPh₃ (356 mg, 1.36 mmol). The resulting mixture was stirred for 16 h at 100 °C before it was quenched with saturated aqueous NH₄Cl (200 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 100 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 95/5) gave (*E*)-ethyl 3-(2-methylnaphthalen-1-yl)acrylate as a colourless liquid (1.86 g, 7.73 mmol, 86%). R_f = 0.10 (P/EtOAc = 99/1); ¹H NMR (360 MHz, CDCl₃): δ = 1.39 (t, *J* = 7.2 Hz, 3 H), 2.52 (s, 3 H), 4.34 (q, *J* = 7.1 Hz, 2 H), 6.24 (d, *J* = 16.4 Hz, 1 H), 7.35 (d, *J* = 8.4 Hz, 1 H), 7.41–7.52 (m, 2 H), 7.74 (d, *J* = 8.4 Hz, 1 H), 7.78–7.85 (m, 1 H), 8.04 (d, *J* = 8.2 Hz, 1 H), 8.20 (d, *J* = 16.4 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 14.5, 21.1, 60.8, 124.8, 125.3, 125.8, 126.7, 128.4, 128.7, 129.0, 131.0, 131.6, 132.3, 134.2, 142.7, 166.8.

To a solution of (*E*)-ethyl 3-(2-methylnaphthalen-1-yl)acrylate (2.25 g, 9.38 mmol) in EtOH (95 mL) was added Pd/C (2 g, 50% in water, 0.47 mmol). The mixture was stirred under a H₂ atmosphere for 20 h at room temperature before it was filtered and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 95/05) gave ethyl 3-(2-methylnaphthalen-1-yl)propanoate as a colourless liquid (2.08 g, 8.56 mmol, 91%). R_f = 0.43 (P/EtOAc = 95/5); ¹H NMR (360 MHz, CDCl₃): δ = 1.29 (t, *J* = 7.2 Hz, 3 H), 2.53 (s, 3 H), 2.57–2.64 (m, 2 H), 3.39–3.47 (m, 2 H), 4.20 (q, *J* = 7.1 Hz, 2 H), 7.31 (d, *J* = 8.4 Hz, 1 H), 7.39–7.46 (m, 1 H), 7.48–7.56 (m, 1 H), 7.66 (d, *J* = 8.4 Hz, 1 H), 7.82 (d, *J* = 8.2 Hz, 1 H), 8.03 (d, *J* = 8.4 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 14.4, 20.2, 24.2, 34.5, 60.7, 123.3, 124.8, 126.3, 126.8, 128.8, 129.3, 132.0, 132.7, 133.4, 133.7, 173.3.

To a solution of ethyl 3-(2-methylnaphthalen-1-yl)propanoate (2.86 mmol, 694 mg) in CH₂Cl₂ (30 mL) at -78° C was added DIBAL-H (3.1 mL, 3.15 mmol; 1 M in CH₂Cl₂). The resulting solution was stirred for 2 h at -78° C, before H₂O was added (2 mL). The mixture was allowed to warm to room temperature, aqueous potassium sodium tartrate (200 mL, 10% aq. solution), glycerine (0.2 mL/mmol) and Et₂O (200 mL) were added, and stirring was continued for 2 h (until both layers were clear and readily separated). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic

layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 95/05) gave **13** (383 mg, 1.93 mmol, 67%) as a colourless liquid. $R_f = 0.31$ (P/EtOAc = 95/5); ¹H NMR (360 MHz, CDCl₃): $\delta = 2.51$ (s, 3 H), 2.74–2.81 (m, 2 H), 3.37–3.45 (m, 2 H), 7.32 (d, J = 8.4 Hz, 1 H), 7.40–7.47 (m, 1 H), 7.48–7.56 (m, 1 H), 7.67 (d, J = 8.4 Hz, 1 H), 7.83 (d, J = 7.7 Hz, 1 H), 7.95 (d, J = 8.4 Hz, 1 H), 9.92, (s, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.2$, 20.9, 44.0, 123.1, 124.8, 126.4, 126.8, 128.9, 129.3, 131.9, 132.8, 133.2, 133.4, 201.6. HRMS 198.1051 [198.1045 calcd for C₁₄H₁₄O (M⁺)].

(*R*)-5-(2-methylnaphthalen-1-yl)pent-1-en-3-yl benzoate (14)

To a solution of methyl (diphenylphosphono)acetate (2.04 g, 6.67 mmol) in dry THF (24 mL) was added NaH (315 mg, 7.9 mmol; 60 % in oil)at 0 °C under argon. The resulting mixture was stirred for 20 min at 0 °C, and then it was cooled to -78° C. Aldehyd **13** (1.20 g, 6.06 mmol) was added dropwise. The stirred mixture was allowed to warm up to -10° C over 3 h. The reaction was then quenched by addition of saturated aqueous NH₄Cl (50 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 96/04) gave (*Z*)-methyl 5-(2-methylnaphthalen-1-yl)pent-2-enoate (1.23 g, 4.85 mmol, 80%) as a single diastereoisomer (d.r. > 95:5). R_f = 0.5 (P/EtOAc = 95/5); ¹H NMR (360 MHz, CDCl₃): δ = 2.55 (s, 3 H), 2.96–3.05 (m, 2 H), 3.19–3.27 (m, 2 H), 3.72 (s, 3 H), 5.85 (dt, *J* = 11.6 Hz, *J* = 1.4 Hz, 1 H), 6.39 (dt, *J* = 11.6 Hz, *J* = 7.7 Hz, 1 H), 7.32 (d, *J* = 8.4 Hz, 1 H), 8.11 (d, *J* = 8.6 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 20.3, 27.8, 29.4, 51.2, 120.1, 123.7, 124.7, 126.1, 126.5, 128.7, 129.3, 132.3, 132.7, 133.4, 134.4, 149.0, 166.8.

To a solution of (*Z*)-methyl 5-(2-methylnaphthalen-1-yl)pent-2-enoate (4.76 mmol, 1.21 g) in THF (50 mL) at -78° C was added DIBAL-H (14.3 mL, 14.3 mmol; 1M in CH₂Cl₂). The resulting solution was stirred for 4 h at -78° C, before H₂O was added (2 mL). The mixture was allowed to warm to room temperature, aqueous potassium sodium tartrate (200 mL, 10% aq. solution), glycerine (0.2 mL/mmol) and Et₂O (200 mL) were added, and stirring was continued for 2 h (until both layers were clear and readily separated). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 75/25) gave (*Z*)-5-

(2-methylnaphthalen-1-yl)pent-2-en-1-ol (1.03 g, 4.55 mmol, 96%) as a colourless oil. $R_f = 0.2$ (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): $\delta = 0.93$ (s, 1 H), 2.45 (q, J = 8.0 Hz, 2 H), 2.51 (s, 3 H), 3.14–3.20 (m, 2 H), 4.01 (d, J = 6.6 Hz, 2 H), 5.57–5.67 (m, 1 H), 5.58–5.79 (m, 1 H), 7.31 (d, J = 8.2 Hz, 1 H), 7.39–7.45 (m, 1 H), 7.47–7.54 (m, 1 H), 7.64 (d, J = 8.2 Hz, 1 H), 7.81 (d, J = 8.0 Hz, 1 H), 8.02 (d, J = 8.6 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.5$, 28.0, 28.4, 58.5, 123.6, 124.7, 126.1, 126.5, 128.8, 129.3, 129.5, 131.9, 132.1, 132.7, 133.3, 134.7. HRMS 226.1355 [226.1358 calcd for C₁₆H₁₈O (M⁺)].

Following the general procedure (**Method A**), (*Z*)-5-(2-methylnaphthalen-1-yl)pent-2-enyl 2,2,2-trichloroacetimidate was obtained as a colourless oil (87%) after flash chromatography on silica (P/EtOAc = 98/2). $R_f = 0.44$ (P/EtOAc = 95/5); ¹H NMR (360 MHz, CDCl₃): $\delta = 2.46-2.59$ (m, 2 H), 2.53 (s, 3 H), 3.15-3.24 (m, 2 H), 4.82 (d, *J* = 6.8 Hz, 2 H), 5.70-5.79 (m, 1 H), 5.86-5.96 (m, 1 H), 7.31 (d, *J* = 8.4 Hz, 1 H), 7.39-7.46 (m, 1 H), 7.47-7.55 (m, 1 H), 7.65 (d, *J* = 8.4 Hz, 1 H), 7.82 (d, *J* = 8.0 Hz, 1 H), 8.05 (d, *J* = 8.6 Hz, 1 H), 8.30 (s, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.4$, 28.2, 28.5, 65.0, 123.5, 123.6, 124.7, 126.1, 126.5, 128.8, 129.3, 132.2, 132.8, 133.2, 134.6, 135.4, 162.7.

Following the general procedure (**Method B**, (+)-COP-OAc), **14** was obtained after flash chromatography on silica (P/EtOAc = 98/2) in 92%. $R_f = 0.35$ (P/EtOAc = 95/5); $[\alpha]^{23}_D = +9.3$ (c = 0.55 CDCl₃). ¹H NMR (360 MHz, CDCl₃): $\delta = 2.02-2.14$ (m, 2 H), 2.51 (s, 3 H), 3.14-3.29 (m, 2 H), 5.32 (dt, J = 10.5 Hz, J = 1.1 Hz, 1 H), 5.45 (dt, J = 17.1 Hz, J = 1.1 Hz, 1 H), 5.69-5.76 (m, 1 H), 6.04 (ddd, J = 17.1 Hz, J = 10.7 Hz, J = 6.1 Hz, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.38-7.44 (m, 1 H), 7.45-7.53 (m, 3 H), 7.57-7.66 (m, 2 H), 7.78-7.83 (m, 1 H), 8.03 (d, J = 8.4 Hz, 1 H), 8.11-8.18 (m, 2 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.2$, 24.3, 34.5, 75.5, 117.3, 123.4, 124.7, 126.2, 126.5, 128.6, 128.8, 129.4, 129.8, 130.6, 132.1, 132.8, 133.0, 133.2, 134.6, 136.3, 166.1; HRMS 330.1620 [330.1620 calcd for C₂₃H₂₂O₂ (M⁺)].

HPLC analysis indicated an enantiomeric excess of 94% [Daicel OJ-H column; flow: 1.0 mL/min; pentanes/*i*-PrOH, 80:20; 254 nm; minor enantiomer, $t_R = 8.21$ min; major enantiomer, $t_R = 10.89$ min].

(3*R*,5*R*)-5-(Triethylsilyloxy)-7-(2-methylnaphthalen-1-yl)hept-1-en-3-yl benzoate (15)

Following the general procedure (**Method C**, (+)-COP-OAc), **15** was obtained in 40 % yield from **14** in a diastereomeric ratio of 94:6 according to ¹H NMR of the crude mixture after flash chromatography on silica (P/EtOAc = 99/1). $R_f = 0.33$ (P/EtOAc = 95/5); $[\alpha]_{D}^{23} = +2.6$

(*c* = 0.72 CDCl₃). ¹H NMR (360 MHz, CDCl₃): δ = 0.70 (q, *J* = 8.0 Hz, 6 H), 1.03 (t, *J* = 8.0 Hz, 9 H), 1.71–1.84 (m, 1 H), 1.87–2.07 (m, 2 H), 2.11–2.22 (m, 1 H), 2.48 (s, 3 H), 3.04 (td, *J* = 12.8 Hz, *J* = 4.8 Hz, 1 H), 3.21 (td, *J* = 12.8 Hz, *J* = 4.8 Hz, 1 H), 3.97–4.09 (m, 1 H), 5.23 (d, *J* = 10.5 Hz, 1 H), 5.36 (d, *J* = 17.2 Hz, 1 H), 5.61–5.69 (m, 1 H), 5.94 (ddd, *J* = 17.2 Hz, *J* = 10.5 Hz, *J* = 6.1 Hz, 1 H), 7.30 (d, *J* = 8.4 Hz, 1 H), 7.36–7.47 (m, 4 H), 7.54–7.64 (m, 2 H), 7.74–7.81 (m, 1 H), 8.01–8.09 (m, 3 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 5.4, 7.2, 20.1, 24.6, 37.0, 42.4, 69.6, 72.8, 117.0, 123.7, 124.6, 126.0, 126.2, 128.5, 128.7, 129.3, 129.7, 130.5, 132.2, 132.7, 132.9, 133.1, 135.5, 136.7, 165.8; LRMS (EI): 488 (9%) [M⁺], 235 (18%), 207 (85%), 181 (79%), 155 (100%), 105 (42%); HRMS 488.2747 [488.2747 calcd for C₃₁H₄₀O₃S_i(M⁺)].

NMR data for key intermediates towards the synthesis 15

¹H NMR (360 MHz, CDCl₃): $\delta = 1.65$ (s, 1 H), 1.80–1.91 (m, 2 H), 2.52 (s, 3 H), 3.08–3.18 (m, 1 H), 3.19–3.29 (m, 1 H), 4.27–4.35 (m, 1 H), 5.20 (d, J = 10.5 Hz, 1 H), 5.33 (d, J = 17.2 Hz, 1 H), 6.00 (ddd, J = 17.2 Hz, J = 10.5 Hz, J = 6.1 Hz, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.38–7.44 (m, 1 H), 7.46–7.53 (m, 1 H), 7.64 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 8.06 (d, J = 8.4 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.2$, 24.4, 37.0, 73.3, 115.1, 123.7, 124.6, 126.1, 126.3, 128.7, 129.4, 132.2, 132.7, 133.1, 135.2, 141.1.

¹H NMR (360 MHz, CDCl₃): δ = 1.87–2.03 (m, 2 H), 2.49 (s, 3 H), 3.03–3.16 (m, 2 H), 3.20 (d, *J* = 7.0 Hz, 2 H), 5.19–5.31 (m, 3 H), 5.37 (d, *J* = 17.3 Hz, 1 H), 5.44–5.52 (m, 1 H), 5.87–6.08 (m, 2 H), 7.30 (d, *J* = 8.2 Hz, 1 H), 7.38–7.45 (m, 1 H), 7.47–7.53 (m, 1 H), 7.64 (d, *J* = 8.4 Hz, 1 H), 7.81 (d, *J* = 7.7 Hz, 1 H), 7.98 (d, *J* = 8.6 Hz, 1 H); ¹³C NMR (90.6 MHz,

CDCl₃): $\delta = 20.1, 24.2, 34.3, 39.7, 75.2, 117.3, 118.9, 123.4, 124.7, 126.2, 126.5, 128.8, 129.3, 130.4, 132.1, 132.7, 133.0, 134.6, 136.2, 171.0.$

¹H NMR (360 MHz, CDCl₃): $\delta = 1.93-2.22$ (m, 2 H), 2.52 (s, 3 H), 3.10-3.16 (m, 2 H), 3.16-3.25 (m, 1 H), 3.24-3.36 (m, 1 H), 5.09-5.16 (m, 1 H), 5.86-5.97 (m, 2 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.38-7.45 (m, 1 H), 7.47-7.54 (m, 1 H), 7.65 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 8.01 (d, J = 8.6 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.2$, 23.4, 30.1, 35.8, 79.5, 122.3, 123.4, 124.8, 126.3, 126.5, 126.6, 128.8, 129.4, 132.1, 132.7, 133.3, 134.1, 169.0.

¹H NMR (360 MHz, CDCl₃): $\delta = 1.90-2.01$ (m, 1 H), 2.06-2.18 (m, 1 H), 2.30-2.45 (m, 2 H), 2.53 (s, 3 H), 3.17-3.27 (m, 1 H), 3.35-3.45 (m, 1 H), 4.56-4.59 (m, 1 H), 6.04-6.10 (m, 1 H), 6.89 (ddd, J = 9.8 Hz, J = 5.6 Hz, J = 2.7 Hz, 1 H) 7.31 (d, J = 8.4 Hz, 1 H), 7.39-7.45 (m, 1 H), 7.47-7.54 (m, 1 H), 7.65 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.0 Hz, 1 H), 8.05 (d, J = 8.4 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.3$, 24.0, 29.7, 35.2, 77.7, 121.7, 123.5, 124.8, 126.3, 126.6, 128.8, 129.4, 132.1, 132.7, 133.3, 134.2, 145.1, 164.5.

¹H NMR (360 MHz, CDCl₃): $\delta = 0.68$ (q, J = 7.9 Hz, 6 H), 1.02 (t, J = 7.9 Hz, 9 H), 1.63 (s, 1 H), 1.69–1.85 (m, 2 H), 2.35–2.56 (m, 2 H), 2.49 (s, 3 H), 2.99–3.10 (m, 1 H), 3.12–3.22

(m, 1 H), 3.95 (virt. quin, J = 5.8 Hz, 1 H), 4.12–4.27 (m, 2 H), 5.61–5.70 (m, 1 H), 5.74–5.84 (m, 1 H), 7.29 (d, J = 8.4 Hz, 1 H), 7.37–7.44 (m, 1 H), 7.45–7.51 (m, 1 H), 7.62 (d, J = 8.2 Hz, 1 H), 7.80 (d, J = 8.0 Hz, 1 H), 8.02 (d, J = 8.6 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.2$, 7.1, 20.2, 24.6, 35.4, 37.1, 58.7, 72.2, 123.6, 124.6, 126.0, 126.2, 128.7, 129.1, 129.3, 131.0, 132.2, 132.7, 132.8, 135.5.

Completion of the solistatin synthesis

To a solution of 15 (0.19 mmol, 95 mg) in CH₂Cl₂ (1.9 mL) at -78°C was added DIBAL-H (0.44 mL, 0.49 mmol; 1.1 M in cyclohexane). The resulting solution was stirred for 3 h at $-78^{\circ}C$ before H₂O was added (0.5 mL). The mixture was allowed to warm to room temperature, aqueous potassium sodium tartrate (50 mL, 10% aq. solution), glycerine (0.2 mL/mmol) and Et₂O (50 mL) were added, and stirring was continued for 2 h (, until both layers were clear and readily separated). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 90/10) gave (3R,5R)-5-(triethylsilyloxy)-7-(2methylnaphthalen-1-yl)hept-1-en-3-ol as a yellow oil, which was directly subjected to TES protection to give the corresponding triethylsilyl ether (69 mg, 0.14 mmol) in 72% yield. $R_f =$ 0.75 (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): δ = 0.68 (q, J = 7.9 Hz, 6 H), 1.00 (t, J = 7.9 Hz, 9 H), 1.78-1.97 (m, 4 H), 2.50 (s, 3 H), 3.08 (t, J = 8.5 Hz, 2 H), 4.10-4.22 (m, 1 H), 4.31-4.40 (m, 1 H), 5.14 (d, J = 10.5 Hz, 1 H), 5.31 (d, J = 17.3 Hz, 1 H), 5.94 (ddd, J = 10.5 Hz, 1 H), 5.94 (ddd, J =17.3 Hz, J = 10.5 Hz, J = 5.9 Hz, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.38–7.44 (m, 1 H), 7.46–7.52 (m, 1 H), 7.63 (d, J = 8.2 Hz, 1 H), 7.81 (d, J = 8.0 Hz, 1 H), 8.01 (d, J = 8.4 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.3$, 7.1, 20.2, 24.4, 37.9, 43.6, 72.0, 72.5, 114.4, 123.5, 124.7, 126.0, 126.3, 128.8, 129.4, 132.1, 132.8, 132.8, 135.3, 141.1.

To a solution of 1-[(3R,5R)-3,5-bis(triethylsilyloxy)hept-6-enyl]-2-methylnaphthalene (69 mg, 0.14 mmol) in dry THF (1.4 mL) was added a solution of 9-BBN in THF (0.8 mL, 0.41 mmol; 0.5 M) at 0°C. The mixture was stirred for 19 h at room temperature, and then the mixture was cooled to 0 °C. Aqueous NaOH (0.09 mL, 3 M) and H₂O₂ (0.09 mL, 35% in water) were added subsequently, and stirring was then continued for 2 h at room temperature. The layers were separated and the aqueous layer was extracted with Et₂O (3 x 10 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 90/10) gave (3S,5R)-3,5-bis(triethylsilyloxy)-7-(2-methylnaphthalen-1-yl)heptan-1-ol as a

colourless oil (57 mg, 0.11 mmol, 79%). $R_f = 0.65$ (P/EtOAc = 80/20); ¹H NMR (250 MHz, CDCl₃): $\delta = 0.61 - 0.72$ (m, 12 H), 0.97 - 1.06 (m, 18 H), 1.60 - 2.01 (m, 7 H), 2.51 (s, 3 H), 2.99-3.23 (m, 2 H), 3.69-3.81 (m, 1 H), 3.82-4.03 (m, 2 H), 4.03-4.18 (m, 1 H) 7.30 (d, J = 8.4 Hz, 1 H), 7.37–7.53 (m, 2 H), 7.63 (d, J = 8.4 Hz, 1 H), 7.77–7.84 (m, 1 H), 8.04 (d, J = 8.4 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): δ = 5.2, 5.4, 7.0, 7.1, 20.1, 24.3, 37.7, 38.4, 44.6, 60.4, 69.5, 69.7, 123.6, 124.6, 126.0, 126.2, 128.7, 129.4, 132.1, 132.7, 132.8, 135.5. To a solution of (3S,5R)-3,5-bis(triethylsilyloxy)-7-(2-methylnaphthalen-1-yl)heptan-1-ol (23 mg, 0.04 mmol) in DMSO (0.44 mL) was added IBX (24.4 mg, 0.09 mmol). The mixture was stirred for 1 h at room temperature before CH₂Cl₂ (10 mL) was added. Stirring was continued until a precipitation occurred (30 min). The mixture was filtered, and the filtrate was washed with aqueous saturated NaHCO₃ (10 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 95/05) gave (3R,5R)-3,5-bis(triethylsilyloxy)-7-(2methylnaphthalen-1-yl)heptanal as a colourless liquid (14.7 mg, 0.03 mmol, 66%). $R_f = 0.93$ (P/EtOAc = 80/20); ¹H NMR (360 MHz, CDCl₃): δ = 0.58–0.72 (m, 12 H), 0.95–1.05 (m, 18 H), 1.63–1.97 (m, 4 H), 2.51–2.60 (m, 4 H), 2.66 (ddd, *J* = 16.0 Hz, *J* = 5.2 Hz, *J* = 1.8 Hz, 1 H), 3.01-3.11 (m, 1 H), 3.12-3.23 (m, 1 H), 4.01 (virt. quin, J = 6.0 Hz, 1 H), 4.35 (virt. quin, J = 6.0 Hz. 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.38–7.44 (m, 1 H), 7.45–7.51 (m, 1 H), 7.63 (d, J = 8.2 Hz, 1 H), 7.78–7.83 (m, 1 H), 8.05 (d, J = 8.6 Hz, 1 H), 9.83 (t, J = 2.3 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 5.2, 5.4, 7.0, 7.2, 20.2, 24.3, 37.2, 45.6, 51.5, 65.7,$ 69.5, 123.7, 124.6, 126.0, 126.2, 128.8, 129.4, 132.2, 132.8, 132.8, 135.5, 201.9.

To a solution of (3R,5R)-3,5-bis(triethylsilyloxy)-7-(2-methylnaphthalen-1-yl)heptanal (14.7 mg, 0.03 mmol) and 2-methyl-2-butene (0.15 mL) in *t*BuOH (0.6 mL) were subsequently added aqueous NaClO₂ (19.4 mg in 0.3 mL water) and aqueous NaH₂PO₄ (33.4 mg in 0.3 mL water). The mixture was stirred at room temperature for 16 h. The organic products were extracted with EtOAc (3 x 5 mL). The organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in EtOH (0.5 mL), and *p*-TsOH (2 mg) was added to this solution. The mixture was stirred for 1h at 50°C before it was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica (P/EtOAc = 30/70) gave solistatin (11) as a colourless solid (6.9 mg, 0.024 mmol, 85%). R_f = 0.13 (P/EtOAc = 40/60); $[\alpha]^{20}_{D} = +32.5$ (*c* = 0.80 EtOH); natural product:⁶ $[\alpha]^{20}_{D} = +32.0$ (*c* = 0.251, EtOH). ¹H NMR (360 MHz, CDCl₃): $\delta = 1.81-2.07$ (m, 4 H), 2.52 (s, 3 H),

⁶ D. Sorensen, T. O. Larsen, C. Christophersen, P. H. Nielsen, U. Anthoni, *Phytochemistry* 1999, 51, 1027.

2.67 (ddd, J = 17.7 Hz, J = 3.9 Hz, J = 1.6 Hz, 1 H), 2.80 (dd, J = 17.7 Hz, J = 5.2 Hz, 1 H), 3.14–3.24 (m, 1 H), 3.36–3.46 (m, 1 H), 4.40–4.46 (m, 1 H), 4.81–4.89 (m, 1 H), 7.30 (d, J = 8.2 Hz, 1 H), 7.38–7.45 (m, 1 H), 7.47–7.54 (m, 1 H), 7.64 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 7.7 Hz, 1 H), 8.03 (d, J = 8.4 Hz, 1 H); ¹³C NMR (90.6 MHz, CDCl₃): $\delta = 20.1$, 24.0, 35.6, 36.1, 38.7, 62.9, 75.4, 123.3, 124.6, 126.1, 126.4, 128.6, 129.2, 131.9, 132.6, 133.1, 134.2, 170.1; LRMS (EI): 284 (68%) [M⁺], 179 (44%), 155 (100%), 59 (41%); HRMS 284.1413 [284.1412 calcd for C₁₈H₂₀O₃ (M⁺)].

281 JB-5-59 Supplementary Material (ESI) for Chemical Communications Daicel Chrinal Cold Cold Chemistry 2007					
Sample Name:	JB-5-59	Injection Volume:	20,0		
Vial Number: Sample Type:	BC9 unknown	Wavelength:	210		
Control Program:	SäuleB_NP_ISO_95_5_1_30	Bandwidth:	1		
Quantif. Method:	gradA	Dilution Factor:	1,0000		
Recording Time: Run Time (min):	19.6.2006 14:36 30,00	Sample Weight: Sample Amount:	1,0000 1,0000		

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре	
1	11.30	n.a.	273,324	108,430	95,76	n.a.	BM *	
2	11.97	na	17,629	4,800	4,24	n.a.	MB*	
Total:	11,01	mai	290,953	113,229	100,00	0,000		

(ppm)

203 JB7-49-EE Supplementary Material (ESI) for Chemical Communications Daicel Chirator 103 (4) T250x4. Society of Chemistry 2007					
Sample Name:	JB7-49-EE	Injection Volume:	20,0		
Vial Number:	GB9	Channel:	UV_VIS_2		
Sample Type:	unknown	Wavelength:	254		
Control Program:	SäuleB_NP_ISO_80_20_1_30	Bandwidth:	1		
Quantif. Method:	gradA	Dilution Factor:	1,0000		
Recording Time:	27.2.2007 18:58	Sample Weight:	1,0000		
Run Time (min):	30,00	Sample Amount:	1,0000		

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
			IIIAU	IIIAO IIIIII	/0		
1	8,21	n.a.	20,489	12,428	2,94	n.a.	BMB
2	10,89	n.a.	516,628	410,295	97,06	n.a.	BMB
Total:			537,117	422,723	100,00	0,000	

