Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Lead(IV) acetate: intriguing reactivity profile

Faiz Ahmed Khan,* Ch. Sudheer and Laxminarayana Soma
Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India. Fax:
+91 512-2597436; Tel: +91 512-2597864; E-mail: faiz@iitk.ac.in

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

Table of contents

Page 2; General methods

Page 2; Procedure for the preparation of compound 4b

Page 3; General procedure for the preparation of compounds 4a and 10a

Page 4; Spectral and analytical data for compounds c and d

Page 13; X-ray crystal structure of 1d

Page 14; X-ray crystal structure of 6c

Page 15; X-ray crystal structure of **10c**

Page 16; X-ray crystal structure of 13c

Page 17; X-ray crystal structure of 14d

Page 18; Computational details

General Methods

NMR spectra were recorded at 400 MHz (¹H) and 100 MHz (¹³C) on a 400 MHz FT-NMR spectrometer. Samples for NMR were made in CDCl₃ and TMS was used as the internal standard. Melting points were recorded on JSGW melting point apparatus and are uncorrected. TLC was performed on silica gel coated on microscopic slides. Visualization of spots was effected by exposure to iodine or spraying with 4% ethanolic H_2SO_4 and charring. Column chromatography was performed using silica gel (100-200 mesh), and ethyl acetate-hexane was used as eluent. Solvents and reagents were purified by standard methods. X-ray data were collected on a Bruker SMART APEX diffractometer. The structures were solved using SIR-92¹ and refined using SHELXL-97.²

Procedure for the preparation of compound 4b

To a stirred solution of 4e (1 mmol) in acetonitrile (12 mL), were added NaIO₄, Ru-LDH (0.86 mol% of RuCl₃.3H₂O, 40 mg) and distilled H₂O (2 mL) and the mixture was allowed to stir at room temperature until the completion of the reaction (monitored by TLC). The mixture was filtered and the residue was washed with MeCN. The filtrate (along with MeCN washings) was concentrated under reduced pressure and the crude mixture was dissolved in EtOAc (10 mL), washed first with Na₂S₂O₃ solution (3 mL) and then with brine (3 mL). EtOAc was dried over anhyd. Na₂SO₄ and concentrated to obtain the crude product, which after silica gel column chromatography (hexane and EtOAc) furnished the pure diketone **4b**.

Compound **4e**: yield 91%; white solid; mp 78 – 80 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.62 (s, 3H, OMe), 3.55 (s, 3H, OMe), 2.54 (dd, 2H, *J* = 7.4, 2.1 Hz), 1.91 (dd, 2H, *J* = 11.0, 4.5 Hz), 1.67 – 1.64 (m, 2H), 1.37 – 1.36 (m, 4H), 1.25 – 1.15 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 124.2 (olefin C, 2C), 111.3 (ketal C), 75.8 (Bridge head C-Br, 2C),

Compound **4b**: yield 96%; yellow solid; mp 114 – 116 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.73 (s, 3H, OMe), 3.53 (s, 3H, OMe), 2.63 (dd, 2H, J = 7.9, 2.6 Hz), 1.74 - 1.62 (m, 4H), 1.33 –1.30 (m, 4H), 1.21 – 1.05 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 187.4 (C=O, 2C), 101.5 (ketal C), 75.3 (C-Br, 2C), 52.9 (OMe), 52.2 (OMe), 48.2 (2C), 30.2 (2C), 25.6 (2C), 22.8 (2C); IR (KBr) 2850,1730, 1550, 1450, 1420, 1170 cm⁻¹; Anal. calcd. for C₁₅H₂₀Br₂O₄: C, 42.48; H, 4.75, found: C, 42.49; H, 4.72.

General procedure for the preparation of compounds 4a and 10a

A mixture of diketone **b** (1 mmol), indium metal (2 mmol, cut into small pieces) and allyl bromide (4 mmol) in DMF (1.2 mL) was stirred at room temperature for 6h. After completion of the reaction, as monitored by tlc, the reaction was quenched with few drops of 10% HCl (saturated NH₄Cl was used for acid sensitive substrate **10b**) and extracted with diethyl ether (5x5 mL). The combined organic layers were washed with brine, dried over anhyd. Na₂SO₄ and concentrated. The resulting residue was purified by silica gel column chromatography to provide the pure homoallylic alcohols.

Compound 4a: yield 84%; white solid; mp 82 – 84 °C; ¹H NMR (400 MHz, CDCl₃) δ

 $\begin{array}{c} & \text{MeO} \\ & \text{OMe} \\ & \text{O} \\ & \text{Br} \\ & \text{O} \\ & \text{O} \\ & \text{O} \\ & \text{O} \\ & \text{Br} \\ & \text{O} \\ & \text{O} \\ & \text{O} \\ & \text{O} \\ & \text{Br} \\ & \text{O} \\ & \text{O} \\ & \text{O} \\ & \text{O} \\ & \text{S} \\ & \text{S}$

(olefin CH), 122.7 (olefin CH₂), 102.7 (ketal C), 80.9 (C-OH), 76.0 (C-Br), 73.9 (C-Br), 52.2, 51.6, 50.6, 49.5, 43.4, 31.6, 30.8, 25.7, 24.9, 24.4, 22.0; IR (KBr) 2850, 1760, 1450, 1430, 1180 cm⁻¹; Anal. calcd. for $C_{18}H_{26}Br_2O_4$: C, 46.37; H, 5.62, found: C, 46.49; H, 5.77.

Compound **10a**: yield 80%; white solid; mp 176 – 177 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.13 – 6.06 (m, 1H, olefin CH), 6.04 (s, 1H, D₂O exchangeable), 5.11 – 5.03 (m, 3H),

4.72 (d, 1H, J = 8.1 Hz), 3.57 (s, 3H, OMe), 3.55 (s, 3H, OMe),
2.74 (d, 2H, J = 7.1 Hz), 1.48 (s, 3H, Me), 1.31 (s, 3H, Me); ¹³C
NMR (100 MHz, CDCl₃) δ 198.4 (C=O), 131.9 (olefin CH), 118.1 (olefin CH₂), 115.4 (ketal C), 105.0 (ketal C), 86.3, 83.0, 80.5, 71.9.

51.8 (OMe), 51.3 (OMe), 40.6, 25.1, 23.1; IR (KBr) 2850, 1770, 1450, 1430, 1180 cm⁻¹; Anal. calcd. for C₁₅H₂₀Cl₂O₆: C, 49.06; H, 5.49; found: C, 49.14; H, 5.61.

Spectral and analytical data for compounds c and d:

Compound 1c: white solid; mp 82 – 84 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.18 – 4.14 (m, 2H), 3.99 – 3.96 (m, 1H), 3.71 (s, 3H, OMe), 3.62 (s, 3H, OMe), 3.54 – 3.50 (m, 1H),

3.34 (s, 3H, OMe), 2.99 – 2.97 (m, 1H), 2.55 – 2.50 (m, 3H), 1.84 – 1.70 (m, 2H), 1.62 – 1.52 (m, 2H), 1.42 – 1.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 204.7 (C=O), 105.8 (ketal C), 92.0, 79.7, 73.3, 72.9 (C-Br), 69.1 (C-Br), 57.1 (OMe), 54.1, 51.8, 51.5, 50.7, 43.0,

26.1, 26.0, 25.5; IR (KBr) 2850, 1760, 1440, 1180, 1050 cm⁻¹; Anal. calcd. for $C_{16}H_{22}Br_2O_5$: C, 42.31; H, 4.88, found: C, 42.57; H, 4.88; ESI-HRMS: calcd. for $C_{16}H_{22}Br_2O_5$ +H 452.9913, found 452.9918.

Compound 1d: white crystals (CH₂Cl₂ / Hexane); mp 126 – 128 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.12 (dd, 1H, J = 8.3, 4.6 Hz), 4.09 – 4.02 (m, 2H), 3.70 (s, 3H, OMe), 3.62 (s, 3H, OMe), 3.47 – 3.42 (m, 1H), 3.33 (s, 3H, OMe), 3.10 –2.98 (m, 1H), 2.77 (dd, 1H, J = 14.6, 6.8 Hz), 2.48 – 2.46 (m, 1H), 2.30 (dd, 1H, 14.6, 3.4 Hz), 1.89 – 1.85 (m, 1H), 1.73

 $\begin{array}{c} -1.69 \ (m, 2H), \ 1.59 - 1.43 \ (m, 2H); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3) \ \delta \\ 202.9 \ (C=O), \ 105.7 \ (ketal \ C), \ 92.0, \ 79.7, \ 73.8, \ 72.8 \ (C-Br), \ 69.9 \ (C-Br), \ 57.1 \ (OMe), \ 53.8, \ 51.9, \ 51.5, \ 50.8, \ 43.6, \ 26.0, \ 25.9, \ 25.4; \ IR \\ (KBr) \ 2850, \ 1760, \ 1440, \ 1200, \ 1060, \ 960 \ cm^{-1}; \ Anal. \ calcd. \ for \end{array}$

C₁₆H₂₂Br₂O₅: C, 42.31; H, 4.88, found: C, 42.39; H, 4.94.

Compound **2c**: white solid; mp 81 – 82 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.14 – 4.09 (m, 2H), 3.98 – 3.94 (m, 1H), 3.67 (s, 3H, OMe), 3.58 (s, 3H, OMe), 3.29 (s, 3H, OMe), 3.0 (dt, 1H, *J* = 12.0, 6.5 Hz), 2.55 – 2.37 (m, 3H), 2.28 – 2.19 (m,1H), 1.67 – 1.62 (m, 2H), MeO \longrightarrow 1.61 – 1.49 (m, 2H), 1.39 – 1.30 (m, 1H), 1.22 – 1.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.0 (C=O), 103.2 (ketal C), 92.1, 80.0, 74.4 (C-Br), 73.6, 71.0 (C-Br), 57.0 (OMe), 52.0 (OMe), 51.7 (OMe), 47.4, 43.6, 42.6, 20.3, 19.8, 19.7, 18.8; IR (KBr) 2850, 1760, 1440, 1180, 1060, 940 cm⁻¹; Anal. calcd. for C₁₇H₂₄Br₂O₅: C, 43.61; H, 5.17, found: C, 43.44; H, 5.13; ESI-HRMS: calcd. for C₁₇H₂₄Br₂O₅+H 467.0069, found 467.0068.

Compound **2d**: white solid; mp 108 – 109 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.12 – 4.04 (m, 2H), 3.96 (dd, 1H, J = 8.2, 3.8 Hz), 3.70 (s, 3H, OMe), 3.59 (s, 3H, OMe), 3.32 (s, 3H, OMe), 2.98 (dt, 1H, J = 12.0, 6.6 Hz), 2.79 (dd, 1H, J = 14.4, 6.8 Hz), 2.47 (ddd, 1H, J = 14.2, 12.4, 4.6 Hz), 2.29 – 2.19 (m, 2H), 1.67 – 1.60 (m, 2H), 1.58 – 1.50 (m, 2H), 1.41 – 1.33 (m, 1H), 1.22 – 1.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.3 (C=O), 103.1 (ketal C), 92.2, 79.6, 74.3 (C-Br), 73.7, 71.9 (C-Br), 57.2 (OMe), 52.0 (OMe), 51.8 (OMe), 47.0, 43.9, 43.4, 20.3, 19.9, 19.6, 18.6; IR (KBr) 2850, 1760, 1440, 1180, 1060, 940 cm⁻¹; Anal. calcd. for C₁₇H₂₄Br₂O₅: C, 43.61; H, 5.17, found: C, 43.69; H, 5.41.

Compound **3c**: white solid; mp 94 – 96 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.19 – 4.12 (m, 2H), 3.98 – 3.96 (m, 1H), 3.74 (s, 3H, OMe), 3.62 (s, 3H, OMe), 3.32 (s, 3H, OMe), 3.07 (dd, 1H, *J* = 12.4, 8.2 Hz), 2.56 – 2.52 (m, 2H), 2.44 – 2.41 (m, 1H), 2.14 – 1.97 (m, 4H), 1.79 – 1.71 (m, 2H), 1.2 – 0.97 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6 (C=O), 102.8 (ketal C), 92.2, 80.1, 75.4 (C-Br), 73.6, 72.2 (C-Br), 57.0 (OMe), 52.1, 51.7, 51.6,

Compound **3d**: white solid; mp 88 – 89 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.11 – 4.06 (m, 2H), 3.99 – 3.96 (m, 1H), 3.72 (s, 3H, OMe), 3.61 (s, 3H, OMe), 3.33 (s, 3H, OMe), 3.04 – 2.98 (m, 1H,), 2.81 (dd, 1H, *J* = 14.5, 7.4 Hz), 2.52 (dt, 1H, *J* = 12.3, 1.9 Hz), 2.23 (dd, 1H, *J* = 14.3, 4.3 Hz), 2.17 – 2.14 (m, 1H), 2.0 – 1.96 (m, 3H), 1.79 – 1.70 (m, 2H), 1.21 – 0.95 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 201.8 (C=O), 102.8 (ketal C), 92.4, 79.7, 75.2 (C-Br), 73.7, 73.1 (C-Br), 57.2 (OMe), 52.1, 51.7, 51.3, 49.5, 43.4, 30.6, 30.5, 29.1, 25.4, 25.0; IR (KBr) 2850, 1760, 1430, 1180, 1050, 980, 930 cm⁻¹; Anal. calcd. for C₁₈H₂₆Br₂O₅: C, 44.83; H, 5.43, found: C, 44.85; H, 5.41.

Compound **4c**: colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.18 – 4.11 (m, 1H), 4.08 – 4.03 (m, 1H), 3.92 – 3.89 (m, 1H), 3.71 (s, 3H, OMe), 3.56 (s, 3H, OMe),

3.28 (s, 3H, OMe), 2.85 – 2.79 (m, 1H), 2.52 – 2.44 (m, 2H), 2.34 (dd, 1H, J = 14.2, 6.6 Hz), 1.93 – 1.75 (m, 3H), 1.69 – 1.65 (m, 2H), 1.59 – 1.47 (m, 2H), 1.36 – 1.23 (m, 2H), 1.12 – 1.01 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1 (C=O), 102.3 (ketal C), 91.6,

80.3, 76.2 (C-Br), 73.5, 73.3 (C-Br), 56.9 (OMe), 52.1, 51.7, 50.0, 49.0, 42.1, 31.4, 30.6, 25.7, 24.9, 24.4, 21.6; IR (neat) 2850, 1750, 1440, 1240, 1180, 1060, 940 cm⁻¹; Anal. calcd. for C₁₉H₂₈Br₂O₅: C, 45.99; H, 5.69, found: C, 45.76; H, 5.69.

Compound **4d**: white solid; 110 - 112 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.10 – 4.02 (m, 2H), 3.95 – 3.90 (m, 1H), 3.71 (s, 3H, OMe), 3.57 (s, 3H, OMe), 3.30 (s, 3H, OMe), 2.80 - 2.71 (m, 2H), 2.54 – 2.48 (m, 1H), 2.18 (dd, 1H, *J* = 14.5, 4.6 Hz), 2.04 – 1.79 (m, 3H), 1.72 – 1.61 (m, 2H), 1.57 – 1.46 (m, 2H), 1.39 – 1.22 (m, 2H), 1.12 - 1.02 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.4 (C=O), 102.3 (ketal C), 91.8, 79.9, 76.1 (C-Br), 74.5 (C-Br), 73.8, 57.2 (OMe), 52.1, 51.8, 49.6, 49.5, 43.1, 31.4, 30.7, 25.7, 24.9, 24.4, 21.5; IR (KBr) 2860, 1770, 1440, 1180, 1080 cm⁻¹; Anal. calcd. for C₁₉H₂₈Br₂O₅: C, 45.99; H, 5.69, found: C, 45.86; H, 5.71.

Compound **5c**: colorless solid; mp 90 – 92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26

(m, 5H), 4.34 - 4.28 (m, 2H), 4.09 (dd, 1H, J = 9.0, 3.4 Hz), 3.81 (s, MeO \longrightarrow Br 3H, OMe), 3.74 - 3.68 (m, 1H, buried under OMe peak), 3.68 (s, 3H, OMe), 3.37 (s, 3H, OMe), 3.16 (dd, 1H, J = 13.0, 5.7 Hz), 2.92 (t, 1H, J = 12.7 Hz), 2.51 - 2.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ

202.4 (C=O), 136.0 (Aromatic C), 129.4 (Aromatic CH, 2C), 128.1 (Aromatic CH, 2C), 127.8 (Aromatic CH), 103.6 (ketal C), 89.9, 80.9, 76.4, 73.1, 66.9, 57.3 (OMe), 52.0 (OMe), 51.9 (OMe), 49.7, 40.6, 39.6; IR (KBr) 2850, 1750, 1480, 1430, 1200 cm⁻¹; Anal. calcd. for $C_{19}H_{22}Br_2O_5$: C, 46.55; H, 4.52, found: C, 46.66; H, 4.71.

Compound **5d**: colorless solid; mp 98 – 99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 5H), 4.28 (dd, 1H, *J* = 8.5, 5.4 Hz), 4.25 – 4.19 (m, 1H), 4.13 (dd, 1H, *J* = 8.6, 4.6

Compound **6c** : white crystals (CH₂Cl₂ / Hexane); mp 87 – 88 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.11 – 4.04 (m, 2H), 3.95 – 3.91 (m, 1H), 3.62 (s, 3H, OMe), 3.50 (s, 3H, OMe), 3.26 (s, 3H, OMe), 2.93 (td, 1H, *J* = 11.2, MeO – Cl – Cl – 7.0 Hz), 2.54 – 2.49 (m, 1H), 2.43 – 2.29 (m, 2H), 2.23 – 2.19 (m, 1H), 1.65 – 1.60 (m, 2H), 1.55 – 1.46 (m, 2H), 1.39 – 1.31 (m, 1H), 1.14 – 1.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.6 (C=O), 103.3 (ketal C), 91.9, 80.5 (C-Cl), 80.1, 76.0 (C-Cl), 73.7, 57.0 (OMe), 51.9 (OMe), 51.6 (OMe), 45.4, 42.3, 40.5, 20.2, 20.0, 19.4, 18.3; IR (KBr) 2850, 1760, 1440, 1180, 1060 cm⁻¹; Anal. calcd. for $C_{17}H_{24}Cl_2O_5$: C, 53.83; H, 6.38, found: C, 53.79; H, 6.55; ESI-HRMS: calcd. for $C_{17}H_{24}Cl_2O_5$ +H 379.1079, found 379.1073.

Compound 6d: colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.09 – 4.04 (m, 2H), 4.0 –

3.97 (m, 1H), 3.67 (s, 3H, OMe), 3.56 (s, 3H, OMe), 3.34 (s, 3H, OMe), 2.98 – 2.91 (m, 1H), 2.87 – 2.82 (m, 1H), 2.52 – 2.43 (m, 1H), 2.29 – 2.20 (m, 1H), 2.21 (dd, 1H, *J* = 14.4, 4.2 Hz), 1.73 – 1.67 (m, 2H), 1.59 – 1.53 (m, 2H), 1.42 – 1.32 (m, 1H), 1.27 – 1.09 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 202.5 (C=O), 103.1 (ketal C), 91.9, 80.4 (C-Cl), 79.8, 76.8 (C-Cl), 73.7, 57.2 (OMe), 51.8 (OMe), 51.6 (OMe), 44.8, 42.5, 41.3, 20.2, 19.9, 19.2, 18.0; IR (neat) 2850, 1740, 1440, 1200, 1060, 960 cm⁻¹; Anal. calcd. for $C_{17}H_{24}Cl_2O_5$: C, 53.83; H, 6.38, found: C, 53.85; H, 6.63.

Compound 7c: colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.13 – 4.10 (m, 1H), 4.04 (dd, 1H, J = 9.3, 4.8 Hz), 3.91 – 3.88 (m, 1H), 3.66 (s, 3H, OMe), 3.51 (s, 3H,

 $\begin{array}{c} \mbox{MeO} \qquad \mbox{OMe}, 3.28 (s, 3H, OMe), 2.79 - 2.72 (m, 1H), 2.50 - 2.45 (m, 2H), \\ 2.29 (dd, 1H, J = 14.4, 6.8 Hz), 1.89 - 1.81 (m, 3H), 1.70 - 1.67 \\ (m, 2H), 1.58 - 1.50 (m, 2H), 1.32 - 1.25 (m, 2H), 1.09 - 1.03 (m, 3H); \\ ^{13}\mbox{C} NMR (100 MHz, CDCl_3) \delta 203.7 (C=O), 102.4 (ketal C), 91.3, 81.1 (C-Cl), \\ 80.3, 77.2 (C-Cl), 73.6, 56.9 (OMe), 51.9 (OMe), 51.5 (OMe), 48.6, 48.3, 39.9, 31.4, \\ 30.6, 25.7, 25.0, 23.8, 20.7; IR (neat) 2850, 1770, 1440, 1200, 1050, 960 cm^{-1}; Anal. \\ calcd. for C_{19}H_{28}Cl_2O_5$: C, 56.02; H, 6.93, found: C, 55.89; H, 6.77.

Compound 7d: white solid; mp 104 – 105 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.07 – 4.02 (m, 1H), 3.99 (dd, 1H, *J* = 9.0, 5.4 Hz), 3.66 (dd, 1H, *J* = 9.0, 4.4 Hz), 3.66 (s, 3H, OMe),

 $\begin{array}{c} \text{MeO} & \text{OMe} \\ \text{MeO} & \text{O} \\ \text{O} \\ \text{O} & \text{O} \\ \text{O$

51.9 (OMe), 51.6 (OMe), 48.6, 48.2, 40.9, 31.4, 30.6, 25.7, 25.0, 23.8, 20.5; IR (KBr) 2850, 1770, 1440, 1200, 1050, 960 cm⁻¹; Anal. calcd. for C₁₉H₂₈Cl₂O₅: C, 56.02; H, 6.93, found: C, 56.12; H, 6.84.

Compound 8c: colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.48 – 4.39 (m, 2H), 4.18 – 4.07 (m, 3H), 4.02 – 3.96 (m, 2H), 3.66 (s, 3H, OMe), 3.53 (s, 3H, OMe),

 $\begin{array}{c} 3.31 - 3.25 \ (m, 1H, \ buried \ under \ OMe \ peak), \ 3.26 \ (s, 3H, \ OMe), \\ 2.99 - 2.95 \ (m, 1H), \ 2.48 - 2.43 \ (m, 1H), \ 2.31 \ (dd \ , 1H, \ J = 14.4, \\ 6.6 \ Hz), \ 2.01 \ (s, 3H, \ Me), \ 1.95 \ (s, 3H, \ Me); \ ^{13}C \ NMR \ (100 \ MHz, \\ CDCl_3) \ \delta \ 202.2 \ (C=O), \ 170.4 \ (O-C=O), \ 170.1 \ (O-C=O), \ 102.2 \ (ketal \ C), \ 90.8, \ 80.4, \ 77.9 \\ (C-Cl), \ 75.5 \ (C-Cl), \ 73.7, \ 60.9, \ 59.7, \ 56.9 \ (OMe), \ 52.1 \ (OMe), \ 51.9 \ (OMe), \ 46.4, \ 43.0, \\ 39.4, \ 20.9, \ 20.5; \ IR \ (neat) \ 2850, \ 1760 - 1720 \ (broad), \ 1440, \ 1350, \ 1200, \ 1020 \ cm^{-1}; \ Anal. \\ calcd. \ for \ C_{19}H_{26}Cl_2O_9; \ C, \ 48.63; \ H, \ 5.58, \ found: \ C, \ 48.81; \ H, \ 5.76. \end{array}$

Compound **8d**: colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.47 – 4.41 (m, 2H), 4.22 – 4.10 (m, 2H), 4.08 – 4.01 (m, 2H), 3.89 – 3.86 (m, 1H), 3.67 (s, 3H, OMe), 3.54 (s, 3H, OMe), 3.32 (s, 3H, OMe), 3.26 – 3.2 (m, 1H), 3.01 – 2.97 (m, 1H), 2.75 –

 $\underbrace{\text{MeO}}_{\text{MeO}} \underbrace{\text{OMe}}_{\text{OAc}} = 2.69 \text{ (m, 1H)}, 2.17 \text{ (dd, 1H, } J = 14.2, 5.2 \text{ Hz}), 2.03 \text{ (s, 3H, Me)}, 1.96 \text{ (s, 3H, Me)}; 1^{3}\text{C NMR} (100 \text{ MHz, CDCl}_{3}) \delta 200.6 \text{ (C=O)}, 170.5 \text{ (O-C=O)}, 170.1 \text{ (O-C=O)}, 102.0 \text{ (ketal C)}, 90.7, 80.2 \text{ (C-Cl)}, 73.7, 60.7, 59.5 \text{ (OMe)}, 57.4, 52.0, 51.9, 46.1, 43.1, 39.9, 20.9, 20.5; IR (neat) 2850, 1770 - 1720 (broad), 1440,1350, 1200, 1020 \text{ cm}^{-1}; \text{Anal. calcd. for } C_{19}\text{H}_{26}\text{Cl}_{2}\text{O}_{9}: \text{C}, 48.63; \text{H}, 5.58, \text{found: C}, 48.68; \text{H}, 5.61.$

Compound **9c**: white solid; mp 120 – 122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 5H), 4.32 – 4.23 (m, 2H), 4.11 – 4.08 (m, 1H), 3.77 (s, 3H, OMe), 3.7 (dd, 1H, J = 12.6, 5.8 Hz), 3.64 (s, 3H, OMe), 3.36 (s, 3H, OMe), 3.08 (dd, 1H, J = 13.1, 5.8 Hz), 2.8 (t, 1H, J = 12.8 Hz), 2.57 – 2.54 (m, 1H), 2.42 (dd, 1H, J = 14.0, 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 203.1 (C=O), 135.5 (Aromatic C), 129.3 (Aromatic CH, 2C), 128.2 (Aromatic CH, 2C), 127.8 (Aromatic CH), 103.4 (ketal C), 89.5, 82.0 (C-Cl), 80.8, 73.2, 73.0 (C-Cl), 57.1 (OMe),

51.8 (OMe), 51.7 (OMe), 48.3, 38.4, 37.2; IR (KBr) 2850, 1760, 1480, 1430, 1200 cm⁻¹; Anal. calcd. for C₁₉H₂₂Cl₂O₅: C, 56.87; H, 5.53, found: C, 57.06; H, 5.43.

Compound **9d:** colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 5H), 4.22 – 4.14 (m, 2H), 4.11 – 4. 08 (m, 1H), 3.75 (s, 3H, OMe), 3.71 – 3.64 (m, 1H,

MeO MeO partially buried under OMe peak), 3.62 (s, 3H, OMe), 3.35 (s, 3H, OMe), 3.35 (s, 3H, OMe), 3.0 (dd, 1H, J = 12.9, 5.6 Hz), 2.81 - 2.70 (m, 2H), 2.24 (dd, 1H, J = 14.3, 4.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 201.4 (C=O), 135.5 (Aromatic C), 129.5 (Aromatic CH, 2C), 128.3 (Aromatic CH, 2C), 127.7 (Aromatic CH), 103.4 (ketal C), 89.6, 82.1, 80.3, 74.01, 73.96, 57.3 (OMe), 51.86 (OMe), 51.81 (OMe), 48.4, 39.0, 36.9; IR (neat) 2850, 1770, 1480, 1430, 1200 cm⁻¹; Anal. calcd. for C₁₉H₂₂Cl₂O₅: C, 56.87; H, 5.53, found: C, 56.89; H, 5.51.

Compound **10c**: white crystals (CH₂Cl₂ / Hexane); mp 124 - 125 °C; ¹H NMR (400 MHz,

 $\begin{array}{c} \mbox{MeO} \mbox{OMe} \\ \mbox{OCl}_3) \ \delta \ 5.08 \ (d, \ 1H, \ J = 8.3 \ Hz), \ 4.75 \ (d, \ 1H, \ J = 8.3 \ Hz), \ 4.17 \ - \\ \ 4.13 \ (m, \ 2H), \ 4.03 \ - \ 4.02 \ (m, \ 1H), \ 3.63 \ (s, \ 3H, \ OMe), \ 3.56 \ (s, \ 3H, \ OMe), \ 3.29 \ (s, \ 3H, \ OMe), \ 2.49 \ - \ 2.47 \ (m, \ 2H), \ 1.5 \ (s, \ 3H, \ Me), \ 1.3 \ (s, \ 3H, \ Me); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3) \ \delta \ 200.7 \ (C=O), \ 115.5 \ (ketal \ C), \ 105.2 \ (ketal \ C), \ 90.8, \ 84.1, \ 81.0, \ 79.2, \ 78.0 \ (C-Cl), \ 73.6 \ (C-Cl), \ 73.0, \ 57.2 \ (OMe), \ 52.1 \ (OMe), \ 51.5 \ (OMe), \ 41.6, \ 24.9, \ 24.5; \ IR \ (KBr) \ 2850, \ 1770, \ 1440, \ 1360, \ 1250, \ 1180, \ 1110 \ cm^{-1}; \ Anal. \ calcd. \ for \ C_{16}H_{22}Cl_2O_7: \ C, \ 48.38; \ H, \ 5.58, \ found: \ C, \ 48.49; \ H, \ 5.67. \end{array}$

Compound **10d**: white solid; mp 136 – 138 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.05 (d, MeO, OMe, 1H, J = 8.3 Hz), 4.76 (d, 1H, J = 8.3 Hz), 4.18 – 4.15 (m, 1H), 4.06 – 4.0 (m, 2H), 3.62 (s, 3H, OMe), 3.56 (s, 3H, OMe), 3.32 (s, 3H, OMe), 2.78 (dd, 1H, J = 14.4, 7.3 Hz), 2.24 – 2.2 (m, 1H), 1.51 (s, 3H, Me), 1.29 (s, 3H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 198.9 (C=O), 115.5 (ketal C), 105.2 (ketal C), 90.9, 83.9, 81.3, 79.3, 78.0 (C-Cl), 74.1 (C-Cl), 73.7, 57.4 (OMe), 52.1 (OMe), 51.6 (OMe), 41.7, 24.9, 24.5; IR (KBr) 2850, 1760, 1440, 1360, 1260, 1180 cm⁻¹; Anal. calcd. for C₁₆H₂₂Cl₂O₇: C, 48.38; H, 5.58, found: C, 48.42; H, 5.59. Compound **11c**: colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.24 – 4.22 (m, 1H), 4.05 (dd, 1H, *J* = 9.6, 4.8 Hz), 3.98 – 3.95 (m, 1H), 3.7 (s, 3H, OMe), 3.69 (s, 3H, OMe), 3.55

(s, 3H, OMe), 3.41 (dd, 1H, J = 12.8, 4.8 Hz) 3.3 (s, 3H, OMe), MeO (CI (S) (dd, 1H, J = 12.5, 4.8 Hz), 2.65 (t, 1H, J = 12.7 Hz), 2.42 – 2.95 (dd, 1H, J = 12.5, 4.8 Hz), 2.65 (t, 1H, J = 12.7 Hz), 2.42 – 2.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.4 (C=O), 170.0 (O=C-O), 102.9 (ketal C), 89.2, 81.1, 77.4 (C-Cl), 73.3, 72.4 (C-Cl), 57.0 (OMe), 52.5 (OMe), 51.92 (OMe), 51.87 (OMe), 47.1, 38.1, 34.1; IR (neat) 2850, 1760, 1750, 1430, 1350, 1290 cm⁻¹; Anal. calcd. for C₁₅H₂₀Cl₂O₇: C, 47.01; H, 5.26, found: C, 46.94; H, 5.28.

Compound **11d**: colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.13 – 4.06 (m, 2H), 3.94 – 3.89 (m, 1H), 3.67 (s, 3H, OMe), 3.66 (s, 3H, OMe), 3.55 (s, 3H, OMe), 3.39 (dd,

MeO OMe O CI MeO CI 1H, J = 12.8, 4.8 Hz), 3.33 (s, 3H, OMe), 2.91 (dd, 1H, J = 12.8, 4.9 Hz), 2.71 – 2.66 (m, 1H), 2.58 (t, 1H, J = 12.7 Hz), 2.27 – 2.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.1 (C=O), 169.9

(O=C-O), 102.9 (ketal C), 89.2, 80.0, 73.5, 73.3 (C-Cl), 57.4 (OMe), 52.5 (OMe), 52.0 (OMe), 51.9 (OMe), 47.0, 38.7, 33.5; IR (neat) 2850, 1770, 1750, 1430, 1350, 1290 cm⁻¹; Anal. calcd. for $C_{15}H_{20}Cl_2O_7$: C, 47.01; H, 5.26, found: C, 47.18; H, 5.36.

Compound **13c**: white crystals (CH₂Cl₂ / Hexane); mp 86 – 88 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.28 – 4.22 (m, 2H), 3.98 (dd, 1H, *J* = 10.0, 1.9 Hz), 3.84 – 3.81 (m, 1H), 3.63 MeO OME - 3.54 (m, 1H), 3.56 (s, 3H, OMe), 3.53 (s, 3H, OMe), 3.46 – 3.38 (m, 1H), 3.29 (s, 3H, OMe), 2.84 (dd, 1H, *J* = 13.4, 10.0 Hz), 2.36 (dd, 1H, *J* = 13.0, 6.6 Hz), 1.89 (dd, 1H, *J* = 13.4, 1.9 Hz), 1.05 (t, 3H, *J* = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ

200.6 (C=O), 104.7 (ketal C), 88.4, 81.2 (C-Cl), 79.0, 78.1, 73.7, 71.4 (C-Cl), 66.3, 57.7 (OMe), 52.0, 51.3, 42.2, 36.2, 15.2; IR (KBr) 2850, 1760, 1440, 1180,1100, 1060, 970 cm⁻¹; Anal. calcd. for $C_{15}H_{22}Cl_2O_6$: C, 48.79; H, 6.01, found: C, 48.76; H, 6.18.

Compound **13d**: colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 4.18 – 4.15 (m, 1H), 4.06 – 4.01 (m, 2H), 3.97 (dd, 1H, J = 9.8, 1.8 Hz), 3.64 – 3.6 (m, 1H), 3.56 (s, 3H,

 $\begin{array}{c} \text{MeO} \qquad \text{OMe}), 3.53 \text{ (s, 3H, OMe)}, 3.43 - 3.37 \text{ (m, 1H)}, 3.27 \text{ (s, 3H, OMe)}, 2.83 \\ \text{(dd ,1H, } J = 13.5, 10.0 \text{ Hz}), 2.28 - 2.24 \text{ (m, 1H)}, 2.15 - 2.09 \text{ (m, 1H)}, \\ 1.91 \text{ (dd, 1H, } J = 13.6, 1.8 \text{ Hz}), 1.04 \text{ (t, 3H, } J = 7.1 \text{ Hz}); {}^{13}\text{C} \text{ NMR} \text{ (100} \\ \text{MHz, CDCl}_3) \delta 198.7 \text{ (C=O)}, 104.7 \text{ (ketal C)}, 88.7, 81.5 \text{ (C-Cl)}, 80.1, \\ 78.2, 75.3, 72.7 \text{ (C-Cl)}, 66.3, 56.7 \text{ (OMe)}, 52.0 \text{ (OMe)}, 51.3 \text{ (OMe)}, 41.9, 35.8, 15.2; IR \\ \text{(neat) } 2850, 1760, 1440, 1250, 1100, 1080, 970 \text{ cm}^{-1}; \text{ Anal. calcd. for } C_{15}\text{H}_{22}\text{Cl}_2\text{O}_6\text{: C}, \\ 48.79; \text{H}, 6.01, \text{ found: C}, 48.88; \text{H}, 6.25. \end{array}$

Compound **14c**: white solid; mp 120 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.26 – 4.22 (m, 2H), 3.87 – 3.85(m, 1H), 3.65 (s, 3H, OMe), 3.58 (s, 3H, OMe), 3.57 (s, 3H, OMe), 3.3

(s, 3 H, OMe), 3.25 (dd, 1H, J = 12.4, 4.8 Hz), 2.71 (t, 1H, J = 3.6 Hz), 2.69 – 2.65 (m, 1H), 2.17 (dd, 1H, J = 13.3, 4.7 Hz), 2.0 (dd, 1H, J = 13.1, 5.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 201.9 (C=O), 171.4 (O=C-O), 104.7 (ketal C), 88.9, 79.3, 78.1 (C-Cl), 74.0, 71.1

(C-Cl), 57.6 (OMe), 52.8 (OMe), 52.4 (OMe), 51.1 (OMe), 46.1, 36.8, 35.8; IR (KBr) 2850, 1770, 1730, 1440, 1350, 1290 cm⁻¹; Anal. calcd. for $C_{15}H_{20}Cl_2O_7$: C, 47.01; H, 5.26, found: C, 47.05; H, 5.43.

Compound **14d**: white crystals (CH₂Cl₂ / Hexane); mp 124 – 125 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.20 – 4.17 (m, 1H), 4.11 – 4.08 (m, 2H), 3.68 (s, 3H, OMe), 3.63 (s, 3H, MeO₂ c^{OMe} OMe) 2.60 (s, 2H OMe) 2.22 (dd 1H L = 12.2

OMe), 3.60 (s, 3H, OMe), 3.33 (s, 3H, OMe), 3.28 (dd, 1H, J = 12.3, 4.8 Hz), 2.69 (t, 1H, J = 12.9 Hz), 2.63 (dd, 1H, J = 13.2, 2.2 Hz), 2.28 – 2.22 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9 (C=O), 171.3 (O=C-O), 104.6 (ketal C), 89.1, 80.0, 78.3 (C-Cl), 75.4, 72.4

(C-Cl), 56.7 (OMe), 52.8 (OMe), 52.3 (OMe), 51.1 (OMe), 46.1, 36.3, 35.3; IR (KBr) 2850, 1780, 1710, 1430, 1360, 1290 cm⁻¹; Anal. calcd. for $C_{15}H_{20}Cl_2O_7$: C, 47.01; H, 5.26, found: C, 47.26; H, 5.37.

X-ray crystal structure of 1d: White crystals (CH₂Cl₂ / Hexane). C₁₆H₂₂Br₂O₅, M_r = 454.16, 0.18 x 0.15 x 0.13 mm³, monoclinic, space group P121/n1 with *a* = 8.9742 (8) Å, *b* = 17.9301 (16) Å, *c* = 10.6917 (10) Å, α = 90 °β = 106.031 (2) °, γ = 90 °, V = 1653.5 (3) Å³, Z = 4, ρ_{calcd.} = 1.824 g cm⁻³, *F* (000) = 912, Absorption coefficient = 4.925 mm⁻¹, Mo_{kα} radiation, λ = 0.71073 Å, T= 100 K, Number of measured and independent reflections = 10726 / 4062, R_{int.} = 0.0533, R1= 0.048, *wR*2 = 0.0980, maximum and minimum residual electron density is 1.512 and -1.341 eÅ⁻³, respectively.

Fig. S1 X-ray crystal structure of **1d** (ORTEP diagram). Displacement ellipsoids are drawn at 30% probability level for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.

X-ray crystal structure of 6c: White crystals (CH₂Cl₂ / Hexane). C₁₇H₂₄Cl₂O₅, M_r = 379.26, 0.18 x 0.15 x 0.13 mm³, orthorhombic, space group Pca21 with *a* = 11.5727 (9) Å, *b* = 11.7784 (10) Å, *c* = 25.579 (2) Å, $\alpha = 90^{\circ}\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, *V* = 3486.6 (5) Å³, Z = 8, $\rho_{calcd.} = 1.445$ g cm⁻³, *F* (000) = 1600, Absorption coefficient = 0.397 mm⁻¹, Mo_{kα} radiation, $\lambda = 0.71073$ Å, T= 100 K, Number of measured and independent reflections = 22182 / 7292, R_{int.} = 0.0482, R1= 0.0494, *wR*2 = 0.1069, maximum and minimum residual electron density is 0.486 and -0.470 eÅ⁻³, respectively.

Fig. S2 X-ray crystal structure of **6c** (ORTEP diagram). Displacement ellipsoids are drawn at 30% probability level for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.

X-ray crystal structure of 10c: White crystals (CH₂Cl₂ / Hexane). C₁₆H₂₂Cl₂O₇, M_r = 397.24, 0.19 x 0.07 x 0.05 mm³, monoclinic, space group P121/c1 with *a* = 8.2163 (7) Å, *b* = 8.1296 (7) Å, *c* = 26.697 (2) Å, $\alpha = 90^{\circ}\beta = 94.502$ (2) °, $\gamma = 90^{\circ}$, *V* = 1777.7 (3) Å³, *Z* = 4, $\rho_{calcd.} = 1.484$ g cm⁻³, *F* (000) = 832, Absorption coefficient = 0.401 mm⁻¹, Mo_{kα} radiation, $\lambda = 0.71073$ Å, T= 100 K, Number of measured and independent reflections = 11386 / 4356, R_{int.} = 0.0502, R1= 0.0595, *wR*2 = 0.1500, maximum and minimum residual electron density is 0.674 and -0.685 eÅ⁻³, respectively.

Fig. S3 X-ray crystal structure of **10c** (ORTEP diagram). Displacement ellipsoids are drawn at 30% probability level for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.

X-ray crystal structure of 13c: White crystals (CH₂Cl₂ / Hexane). C₁₅H₂₂Cl₂O₆, M_r = 369.23, 0.10 x 0.08 x 0.06 mm³, trigonal, space group R-3 with *a* = 34.375 (2) Å, *b* = 34.375 (2) Å, *c* = 7.2354 (6) Å, $\alpha = 90 \circ \beta = 90 \circ, \gamma = 120 \circ, V = 7404.0$ (9) Å³, Z = 18, $\rho_{calcd.} = 1.491$ g cm⁻³, *F* (000) = 3492, Absorption coefficient = 0.422 mm⁻¹, Mo_{kα} radiation, $\lambda = 0.71073$ Å, T= 100 K, Number of measured and independent reflections = 16448 / 4096, R_{int.} = 0.0415, R1= 0.0475, *wR*2 = 0.1242, maximum and minimum residual electron density is 0.717 and -0.585 eÅ⁻³, respectively.

Fig. S4 X-ray crystal structure of **13c** (ORTEP diagram). Displacement ellipsoids are drawn at 30% probability level for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.

X-ray crystal structure of 14d: White crystals (CH₂Cl₂ / Hexane). C₁₅H₂₀Cl₂O₇, M_r = 383.21, 0.13 x 0.07 x 0.06 mm³, monoclinic, space group P121/c1 with *a* = 7.3266 (6) Å, *b* = 21.5800 (17) Å, *c* = 11.0281 (9) Å, α = 90 ° β = 101.9950 (10) °, γ = 90 °, *V* = 1705.6 (2) Å³, *Z* = 4, $\rho_{calcd.}$ = 1.492 g cm⁻³, *F* (000) = 800, Absorption coefficient = 0.415 mm⁻¹, Mo_{kα} radiation, λ = 0.71073 Å, T= 100 K, Number of measured and independent reflections = 11005 / 4161, R_{int.} = 0.0299, R1= 0.0502, *wR*2 = 0.1117, maximum and minimum residual electron density is 0.644 and -0.668 eÅ⁻³, respectively.

Fig. S5 X-ray crystal structure of **14d** (ORTEP diagram). Displacement ellipsoids are drawn at 30% probability level for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.

Computational details

All theoretical calculations were performed with GAUSSIAN-03,³ using the density functional/Hartee-Fock hybrid model BeckeLYP⁴ and the basis set 6-31G(d). Reported compounds are optimized as being true minima by the absence of negative eigenvalues in the vibrational frequency analysis.

Cartesian Coordinates of Compound 6a.

Center	Atomic	Соо	Coordinates (Angstroms)		
Number	Number	Х	Ŷ	Ź	
1	6	-1.185762	-0.711242	-0.084156	
2	6	-0.256711	-0.045333	0.984956	
3	6	1.163587	-0.681044	1.058293	
4	6	1.778511	-0.312358	-0.345159	
5	6	-0.491692	-0.213828	-1.390914	
6	6	0.708664	0.633520	-0.965328	
7	6	0.116408	1.343479	0.304419	
8	8	1.011689	2.006230	1.138024	
9	6	1.656785	3.184510	0.636936	
10	8	-0.928147	2.170963	-0.124204	
11	6	-1.622710	2.944366	0.865452	
12	8	-0.833786	-0.498350	-2.511748	
13	8	-1.107799	-2.121452	-0.004041	
14	6	-2.685379	-0.292941	-0.043468	
15	6	-3.503158	-1.022301	-1.079397	
16	6	-4.315202	-2.046832	-0.797893	
17	17	1.323182	1.666007	-2.294702	
18	17	-0.995442	0.076012	2.634412	

19	6	1.388495	-2.151356	1.449651
20	6	2.154161	-1.554381	-1.158772
21	6	2.854664	-2.502215	1.139441
22	6	3.170663	-2.418559	-0.380469
23	1	1.687273	-0.079873	1.804750
24	1	2.676845	0.295116	-0.190643
25	1	1.953877	3.755785	1.519665
26	1	2.545006	2.927628	0.051687
27	1	0.981622	3.781334	0.017992
28	1	-2.095925	3.763233	0.318925
29	1	-0.934574	3.344388	1.613646
30	1	-2.388598	2.348929	1.371383
31	1	-1.843681	-2.468324	-0.542496
32	1	-3.053602	-0.535027	0.958432
33	1	-2.769640	0.783638	-0.194547
34	1	-3.383605	-0.699102	-2.110909
35	1	-4.885426	-2.552785	-1.572542
36	1	-4.459536	-2.399127	0.221985
37	1	0.717688	-2.823732	0.917395
38	1	1.184661	-2.273362	2.519671
39	1	2.563297	-1.263519	-2.132883
40	1	1.254489	-2.146173	-1.359073
41	1	3.087937	-3.503927	1.517964
42	1	3.506580	-1.810658	1.691402
43	1	4.181696	-2.016119	-0.521928
44	1	3.178440	-3.422695	-0.820733

E(RB+HF-LYP) = -1844.16169589 a.u.

Cartesian Coordinates of Compound 13a.

Center	Atomic	Coordinates (Angstroms)		
Number	Number	Х	Ŷ	Ź
1	6	-0.546023	1.060609	0.846090
2	6	-0.991707	0.417996	-0.500412
3	6	0.121869	0.566517	-1.553452
4	6	1.273556	-0.330960	-1.016986
5	6	0.479918	-0.007440	1.328894
6	6	0.613984	-1.041707	0.211157
7	6	-0.904261	-1.133666	-0.208857
8	8	-1.189360	-1.796629	-1.402277
9	6	-1.088063	-3.225873	-1.421520
10	8	-1.579091	-1.649270	0.888666
11	6	-3.014953	-1.629557	0.871084
12	17	1.400487	-2.559048	0.737989
13	17	-2.576125	1.005793	-1.120235
14	8	0.985448	-0.006329	2.423604
15	6	0.125912	2.454140	0.808947
16	8	-1.641409	1.088643	1.751818
17	6	-0.760014	3.555282	0.296237
18	6	-0.378459	4.471269	-0.595035
19	8	2.373639	0.491295	-0.699139
20	6	4.715978	0.876595	-0.471829
21	6	3.616419	-0.170804	-0.430912
22	1	0.451587	1.597192	-1.680442

23	1	-0.242508	0.192284	-2.509695
24	1	1.564852	-1.096223	-1.748353
25	1	-0.057241	-3.545727	-1.604564
26	1	-1.438487	-3.663433	-0.483346
27	1	-1.724505	-3.556484	-2.245658
28	1	-3.401778	-1.870290	-0.123088
29	1	-3.326678	-2.396100	1.584547
30	1	-3.379695	-0.650520	1.187138
31	1	1.070153	2.419593	0.258075
32	1	0.394916	2.650543	1.858025
33	1	-1.260679	1.001501	2.643504
34	1	-1.765172	3.586635	0.711930
35	1	-1.047693	5.262832	-0.921026
36	1	0.619756	4.470292	-1.029397
37	1	5.686414	0.412678	-0.264408
38	1	4.537659	1.650906	0.281441
39	1	4.760536	1.355288	-1.455412
40	1	3.784226	-0.949030	-1.191261
41	1	3.581435	-0.662679	0.548360

E(RB+HF-LYP) = -1841.95516431 a.u.

References:

1. A. Altomare, G. Gascarano, C. Giacovazzo, A. Guagliardi, *J. Appl. Cryst.* 1993, **26**, 343-350.

2. G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T.

Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 03*, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.

4. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.