Supporting Information

Palladium-Catalyzed 1,3-Diol Fragmentation: Synthesis of ω-Dienyl Aldehydes

Masanari Kimura, ${ }^{\dagger}$ Masahiko Mori ${ }^{\dagger}$ and Yoshinao Tamaru*
Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
${ }^{\dagger}$ Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
e-mail; tamaru@nagasaki-u.ac.jp

Experimental Section

Reactions employed oven-dried glassware unless otherwise noted. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates with UV indicator (Merck, Silica gel $60 \mathrm{~F}_{254}$). Flash chromatography columns were packed with silica gel (Wakogel-C300) as a slurry in hexane. Gradient flash chromatography was conducted eluting with a continuous gradient from hexane to the indicated solvent. Proton and carbon NMR data were obtained with a JEOL-GX400 with tetramethylsilane as an internal standard. Chemical shift values were given in ppm downfield from the internal standard. Infrared spectra were recorded with a JASCO A-100 FT-IR spectrophotometer. High resolution mass spectra (HRMS) were measured with a JEOL JMS-DX303. Combustion analyses were performed by the Instrumental Analysis Center of Nagasaki University. Analysis agreed with the calculated values within $\pm 0.4 \%$.

Solvents and Reagents. Tetrahydrofuran and ether were distilled from a blue solution of sodium benzophenone ketyl under N_{2} immediately prior to use. Toluene was distilled under
nitrogen from calcium hydride. $\quad \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}($ Nakalai tesque, Inc. $), B$-methoxy-9-BBN (1.0 M solution in hexane, Aldrich), PhLi (1.0 M solution in cyclohexane-diethyl ether solution, Kanto Chemical, Co., Inc.) were purchased and used without further purification. 4-Penten-1,3-diols $\mathbf{1 a}-\mathbf{1 0}$ were prepared according to the method reported previously from our laboratories. ${ }^{[1 \sim 4]}$ One typical example is shown below.

Preparation of 4-Penten-1,3-diol (1k): A solution of β-pinene ($2.4 \mathrm{~mL}, 15 \mathrm{mmol}$) in a mixture of methanol (8 mL) and dichloromethane (8 mL) was cooled to $-78^{\circ} \mathrm{C}$ in a nitrogen purged Schlenk flask. While the mixture was stirred at the same temperature, ozone was bubbled through the solution by means of a sinter-glass-ended tube for 3 h , until the blue color persisted. The reaction progress was monitored by TLC (hexane/AcOEt $=$ 95:5, v/v). Nitrogen was then bubbled through the reaction mixture for 1 h , which was then allowed to warm to room temperature. Zinc powder ($2.9 \mathrm{~g}, 45 \mathrm{mmol}, 3$ equiv.) and acetic acid ($4.2 \mathrm{~mL}, 75 \mathrm{mmol}, 5$ equiv.) were then added carefully over 1 h period. The resulting suspension was filtered and the solid was washed with dichloromethane repeatedly. The organic layer was carefully washed with saturated aqueous NaHCO_{3} solution. The aqueous layer was extracted with dichloromethane. The combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by distillation ($100^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$) to give nopinone in 91% yield.[5]

A 200 mL of three-necked round-bottomed flask, equipped with a dropping funnel, a rubber septum, and an air condenser at the top of which is attached a three-way stopcock fitted a nitrogen balloon, is charged with freshly distilled THF (10 mL) and diisopropylamine ($0.8 \mathrm{~mL}, 5.5 \mathrm{mmol}$) via syringe under nitrogen. Into the flask was added n-butyllithium ($3.4 \mathrm{~mL}, 5.5 \mathrm{mmol}$; 1.6 M hexane solution) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . To the reaction mixture was added nopinone ($0.69 \mathrm{~g}, 5 \mathrm{mmol}$) dissolved in THF (10 mL) via a dropping funnel at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h .

A solution of freshly distilled acrolein ($0.4 \mathrm{~mL}, 6 \mathrm{mmol}$) in dry THF (10 mL) was quickly added at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 minute. The reaction mixture was quenched with 2 M HCl at $-78{ }^{\circ} \mathrm{C}$ and extracted with ethyl acetate (2 x 30 mL). The organic extracts were washed with sat. NaHCO_{3} and sat. NaCl , and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo, and the residue was subjected to column chromatography on silica gel (hexane/ethyl acetate $=8: 1, \mathrm{v} / \mathrm{v}$) to give the aldol product in 98% yield.

Into a suspension of lithium aluminum hydride ($0.28 \mathrm{~g}, 7.4 \mathrm{mmol}$) in ether (20 mL) was added the aldol $(0.95 \mathrm{~g}, 4.9 \mathrm{mmol})$ dissolved in dry ether $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min at the same temperature, the excess lithium aluminum hydride was decomposed by adding aqueous THF (THF/water $=1: 1, \mathrm{v} / \mathrm{v}$) dropwise until gray slurry turned into white granules. After filtration with suction through a celite pad on a glass filter, the filtrate was washed with 15% aqueous NaOH and sat. NaCl . The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was subjected to column chromatography on silica gel (hexane/ethyl acetate $=8: 1$, v / v) to give $\operatorname{diol} \mathbf{1 k}(0.82 \mathrm{~g})$ in 85\% yield.

3-(1-Hydroxyallyl)-6,6-dimethylbicyclo[3.1.1]heptan-2-ol (1k): X-ray crystallography ${ }^{[6]}$, mp $88.5^{\circ} \mathrm{C}$ (dichloromethane - hexane); IR (neat) 3287 (s), 3086 (s), 2924 (s), 1466 (s), 1335 (s), 1157 (s), 1126 (s), 1080 (s), 1018 (s), 934 (s), 795 (m), 687 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.70(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.37$ (ddd, $J=2.2,6.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=3.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{ddd}, J=2.4,3.4,13.4 \mathrm{~Hz}, 1$ H), $2.05(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddt}, J=2.2,10.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.30 (dddd, $J=2.4,5.9,6.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dt}, J=2.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dt}, J=6.8$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dm}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dm}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=6.8$, $10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3,27.7,29.5,30.3,37.8,41.5,45.0$, 48.0, 77.2, 80.2, 116.2, 139.7; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{29} \mathrm{O}_{2}$: 196.1463. Found m / z (relative
intensity) $196.1449\left(\mathrm{M}^{+}, 2\right), 195(1), 179(16), 178$ (100), 139 (49).
7-(1-Hydroxyallyl)bicyclo[3.2.0]heptan-6-ol (1a): (a mixture of 3 isomers in a $1: 6: 7$ ratio): Yields: Aldol, 100\%; LAH reduction, 78%; IR (neat) 3400 (s), 2930 (w), 1650 (m), 1065 (w), 985 (w), 915 (w) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, anti-1a) § 1.36-1.49 (m, 3 H), $1.53(\mathrm{dt}, J=5.9,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=5.9,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dt}, J=12.0,5.9 \mathrm{~Hz}, 1$ H), $1.86(\mathrm{dt}, J=4.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}$, coalescing to $\mathrm{t}, J=7.6 \mathrm{~Hz}$ by irradiation at 1.86), 2.53 (dt, $J=2.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=2.9,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=6.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dm}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dm}, J=17.2 \mathrm{~Hz}$, 1 H), 5.81 (ddd, $J=6.8,10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, anti-1a) $\delta 25.7$, 30.9, 31.4, 36.2, 46.1, 47.7, 72.2, 74.1, 115.5, 138.6; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, syn-1a) δ $1.41-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{ddd}, J=5.6,6.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dt}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (m, 1 H), 1.97 (dd, $J=7.1,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dt}, J=7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.79$ $(\mathrm{dt}, J=7.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=6.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=6.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dm, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dm}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=6.3,10.5,17.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, syn-1a) $\delta 24.4,26.2,32.2,35.2,41.4,54.2,67.4,76.1,115.1$, 138.7. HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}: 168.1150$. Found m / z (relative intensity) $168.1135\left(\mathrm{M}^{+}, 1\right)$, 167 (2), 151 (18), 150 (100).
anti-1a

syn-1a

NOE Increments (\%) Observed for anti-1a and syn-1a.
7-(1-Hydroxy-2-methylallyl)bicyclo[3.2.0]heptan-6-ol (1b): (a mixture of 2 isomers in a
$1: 1$ ratio): Yields: Aldol, 30\%; LAH reduction, 63\%; IR (neat) 3356 (s), 3078 (m), 2939 (s), 2855 (s), 1651 (m), 1443 (m), 1327 (m), 1072 (m), 964 (w), 903 (w) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, anti-1b) $\delta 1.38-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=5.4,12.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.73 (s, 3 H), 1.79 (m, 1 H), 2.01 (dddd, $J=1.2,4.6,7.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{br} \mathrm{dq}, J=7.8$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=3.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1$ H), $4.02(\mathrm{dt}, J=7.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=3.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, anti-1b) $\delta 17.7,25.7,30.8,31.5,36.4,45.4,45.9,72.3,76.8$, $112.9,144.9$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, syn-1b) $\delta 1.38-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{ddd}, J=5.9,6.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=7.1,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{br} \mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=6.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}, syn-1b) $\delta 17.7,24.4,26.2,32.1,35.6,41.4,52.3,67.8,79.3,111.8,145.7$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: 182.1307. Found m / z (relative intensity) $182.1331\left(\mathrm{M}^{+}, 1\right), 165(16), 164$ (100).

7-[(2E)-1-Hydroxy-2-butenyl]bicyclo[3.2.0]heptan-6-ol (1c): (a mixture of 4 isomers in a $1: 5: 6: 6$ ratio): Yields: Aldol, 63%; LAH reduction, 93%; IR (neat) 3418 (s), 3024 (w), 2947 (s), 2862 (m), 1651 (s$), 1443$ (m), 1319 (m), 1250 (m), 1072 (s), 972 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}, anti-1c) $\delta 1.33-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{dq}, J=17.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J$ $=6.0,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=1.0,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{dt}, J=12.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (dddd, $J=1.0,4.6,7.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=4.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=3.2,7.3 \mathrm{~Hz}, 1$ H), $2.68(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=3.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=7.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=$ $7.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (ddq, $J=1.0,15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, anti-1c) $\delta 17.8,25.7,30.9,31.4,36.2,46.2,47.8,72.4,74.1,127.9,131.7 ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, syn-1c) $\delta 1.38-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{dt}, J=8.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=1.6$, 6.6 Hz, 1 H), 1.71 (m, 1 H$), 1.81$ (m, 1 H$), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dd}, J=7.3,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ $(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dt}, J=6.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=7.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J$
$=6.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddq}, J=7.6,15.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dq}, J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}{ }^{13}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, syn-1c) δ 17.7, 24.4, 26.2, 32.2, 35.2, 41.3, 54.4, 67.5, 75.9, 127.4, 131.7; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, other stereoisomer 1c) $\delta 1.36-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.67$ $(\mathrm{dd}, J=5.1,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{dq}, J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (ddd, $J=3.3,5.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=3.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(J=7.8$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=6.6,15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.70(\mathrm{dq}, J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, other stereoisomer 1c) $\delta 17.8,25.7,31.2,31.8,33.5,47.9,49.2,71.5,73.5,126.8,131.2$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: 182.1307. Found m / z (relative intensity) $182.1330\left(\mathrm{M}^{+}, 1\right), 165(13), 164$ (100).

3-(1-Hydroxyallyl)bicyclo[2.2.1]heptan-2-ol (1d): (a mixture of 3 isomers in a $1: 6: 19$ ratio): Yields: Aldol, 86\%; LAH reduction, 88\%; IR (neat) 3371 (s), 2955 (s), 2878 (s), 1427 (m), 1304 (m), 1126 (m), 1042 (s), 995 (s), 926 (s), 764 (w) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, major isomer) $\delta 1.09(\mathrm{br} \mathrm{dt}, J=9.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{dq}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.32(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{ddt}, J=1.5,11.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{br} \mathrm{d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dt}, J=$ $11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (br s, 1 H), 1.87 (m, 1 H), 1.98 (br s, 2 H), 2.31 (br s, 1 H), 3.80 (br t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.14(\mathrm{ddd}, J=1.0,1.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=17.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.86 (ddd, $J=7.3,10.3,17.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 19.6,30.6,35.1,39.5,42.5,57.0,76.6,77.0,115.7,140.3$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: 168.1150. Found m / z (relative intensity) $168.1145\left(\mathrm{M}^{+}, 5\right), 167(1), 151$ (12), 150 (100).

3-(1-Hydroxyallyl)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (1e):[6] a mixture of 2 isomers in a 1:3 ratio: Yields: Aldol, 96%; LAH reduction, 83\%; major isomer: mp 91.0 $92.0^{\circ} \mathrm{C}$ (dichloromethane - hexane); IR (KBr) 3352 (s), 3084 (w), 3040 (w), 2937 (s), 1435 (s), 1367 (s), 1288 (s), 1271 (s), 1119 (s), 1051 (s), 926 (s), 793 (w), 712 (m) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 0.80(\mathrm{~s}, 3 \mathrm{H}$), $0.95(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{ddd}, J=4.0$, 9.1, 11.7 $\mathrm{Hz}, 1 \mathrm{H}$), 1.06 (ddd, $J=4.0,9.1,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{dt}, J=11.7,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.57(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{tt}, J=4.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=7.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$
(d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=7.1,11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17$ (dm, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dm}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{ddd}, J=7.1,10.3$, $17.3 \mathrm{~Hz}, 1 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 11.4,21.6,22.0,29.7,33.4,47.0$, 47.5, 49.6, 56.2, 74.3, 82.1, 116.1, 140.2; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}: 210.1620$. Found m / z (relative intensity) $210.1595\left(\mathrm{M}^{+}, 27\right), 209(3), 208$ (10), 193 (19), 192 (100).

3-(1-Hydroxy-2-methylallyl)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (1f): a mixture of 2 isomers in a 1:4 ratio: Yields: Aldol, 100\%; LAH reduction, 93\%; IR (neat) 3326 (s), 2951 (s), 2885 (s), 1452 (m), 1371 (m), 1288 (m), 1103 (s), 1053 (s), 1016 (s), 959 (s), 905 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 0.78(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.00$ (ddd, $J=3.3,9.3,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{ddd}, J=4.6,9.3,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{dt}, J=3.3,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dtt}, J=1.0,12.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J$ $=1.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=7.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=2.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=2.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{q}, J=1.5 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, major isomer) δ 11.4, 16.8, 21.6, 22.0, 29.9, 33.6, 47.0, 47.6, 49.6, 53.5, 81.9, 113.9, 146.0; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}: 224.1776$. Found m / z (relative intensity) $225\left(\mathrm{M}^{+}+1,1\right), 224.1787\left(\mathrm{M}^{+}, 6\right), 207(16), 206(100)$.

3-[(2E)-1-hydroxy-3-phenylallyl]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (1g): a mixture of 3 isomers in a $1: 5: 8$ ratio: Yields: Aldol, 100%; LAH reduction, 95%; IR (neat) 3402 (s), 2955 (s), 1651 (w), 1450 (m), 1103 (m), 1042 (m), 964 (m), 748 (s), 694 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 0.80(\mathrm{~s}, 3 \mathrm{H}$), $0.96(\mathrm{~s}, 3 \mathrm{H}), 1.01$ (ddd, $J=3.4$, $9.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.08 (ddd, $J=4.2,9.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{dt}, J=3.4,11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{tt}, J=4.2,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=7.8,11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=2.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{ddd}, J=1.7$, $7.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=7.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, major isomer) δ 11.4, 21.7, 22.0, 29.8, 33.4, 47.0, 47.6, 49.6, 56.6,
74.0, 82.1, 126.4, 127.6, 128.4, 131.4, 131.5, 136.6; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}: 286.1933$. Found m / z (relative intensity) $287\left(\mathrm{M}^{+}+1,26\right), 286.1921\left(\mathrm{M}^{+}, 100\right), 285(7), 269(71)$.

3-(1-Hydroxyallyl)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol (1h): a mixture of 2 isomers in a 1:7 ratio: Yields: Aldol, 96%; MeLi, 22\%; IR (neat) 3333 (s), 2955 (s), 1736 (s), 1450 (s), 1381 (s), 1119 (s), 1042 (s), 995 (s), 918 (s), 826 (w), 694 (m) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{ddd}, J=4.5,9.0,12.2 \mathrm{~Hz}, 1$ H), $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{dd}, J=4.5,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{ddd}, J=4.5,9.0,13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{tt}, J=4.5,12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=7.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dm}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.22 (dm, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.85 (ddd, $J=7.1,10.3,17.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}, major isomer) $\delta 9.7,22.7,22.8,29.2,29.7,31.2,47.5,49.4,52.7,62.7,75.2,82.6$, 115.9, 140.3; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$: 224.1776. Found m / z (relative intensity) 225 $\left(\mathrm{M}^{+}+1,15\right), 224.1763\left(\mathrm{M}^{+}, 100\right), 209(11), 206(87)$.

2,3-Dihydro-2-[(2E)-1-hydroxy-2-butenyl]-1H-inden-1-ol (1i): a mixture of 3 isomers in a $1.8: 1.5: 1$ ratio: Yields: Aldol, 93%; LAH reduction, 90%; IR (neat) 3379 (s), 3032 (m), 2916 (s), 2855 (m), 1443 (s), 1312 (m), 1211 (m), 1173 (w), 1057 (s), 972 (s), 748 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 1.73(\mathrm{dd}, J=1.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.48(\mathrm{dd}, J=9.5,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=8.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{ddq}, J=7.6,15.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dq}, J=15.1,6.3 \mathrm{~Hz}, 1$ H), 7.14-7.27(m, 3 H), $7.36(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of 3 isomers) δ 17.7, 32.8, 56.0, 77.4, 79.9, 123.6, 124.4, 126.6, 127.8, 128.7, 132.7, 140.5, 144.1; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}:$ 204.1150. Found m / z (relative intensity) $205\left(\mathrm{M}^{+}+1,1\right)$, $204.1154\left(\mathrm{M}^{+}\right.$, 7), 187 (14), 186 (100).

2-(1-Hydroxyallyl)-4-phenylcyclohexanol (1j): a mixture of 4-isomers, the ratio was not determined: Yields: Aldol, 70\%; LAH reduction, 100\%; IR (KBr) 3275 (s), 2930 (s), 1498 (m), 1450 (s), 1349 (m), 1150 (m), 1085 (s), 1020 (s), 925 (s), 765 (s), 700 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 1.11$ (dt, $J=13.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (ddt, $J=3.4,5.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dq}, J=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.56$ $(\mathrm{tt}, J=3.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dt}, J=4.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 4.12$ $(\mathrm{dd}, J=5.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dm}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dm}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddd}$, $J=6.3,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, major isomer) $\delta 31.9,35.2,35.4,43.2,48.5,75.2,79.7,117.1,126.1$, 126.6, 128.3, 139.0, 146.1; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$: 232.1463. Found m / z (relative intensity) $233\left(\mathrm{M}^{+}+1,2\right), 232.1454\left(\mathrm{M}^{+}, 12\right), 215(18), 214$ (100).

2-(1-Hydroxyallyl)cycloheptanol (11): a mixture of 4 isomers, the ratio being not determined: Yields: Aldol, 80\%; LAH reduction, 92\%; IR (neat) 3356 (s), 2924 (s), 2862 (s), 1450 (s), 1296 (m), 1134 (m), 1057 (m), 995 (s), 926 (s$), 725$ (w) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, major isomer) $\delta 1.08-1.88(\mathrm{~m}, 11 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H})$, $4.43(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dt}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{ddd}, J=$ 4.6, 10.7, $17.1 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of 4 isomers) δ 19.2, 21.6, 21.9, 22.7, 25.4, 26.0, 26.4, 27.2, 27.3, 27.7, 28.0, 28.3, 28.4, 28.8, 29.7, 35.7, 36.3, 36.8, 37.1, $48.0,48.1,50.8,51,6,70.4,73.3,74.8,75.8,78.9,114.1,115.2,115.7,117.2,137.8,139.7$, 140.0, 140.3; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$: 170.1307. Found m / z (relative intensity) 171 $\left(\mathrm{M}^{+}+1,56\right), 170.1335\left(\mathrm{M}^{+}, 22\right), 169(100)$.

2-(1-Hydroxyallyl)cyclooctanol (1m): a mixture of 4 isomers, the ratio being not determined: Yields: Aldol, 100\%; LAH reduction, 93\%; IR (neat) 3248 (s), 2932 (s), 1643 (s), $1450(\mathrm{~m}), 1304(\mathrm{~m}), 1126(\mathrm{~m}), 988(\mathrm{~m}), 926(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 1.14-2.00(\mathrm{~m}, 13 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H})$, $5.19(\mathrm{dt}, J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{ddd}, J=4.6,10.6,17.1$ $\mathrm{Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of 4 isomers) δ 18.5, 21.1, 21.7, 22.0, 23.8, 24.4, 24.7, 25.0, 25.1, 25.4, 25.8, 26.2, 26.6, 27.1, 27.3, 27.4, 27.5, 27.6, 28.4, 28.6, 32.6, 32.8, $33.0,33.4,44.3,44.4,46.6,47.8,70.6,73.2,75.9,77.7,77.8,79.3,114.4,115.2,115.6,117.0$,
137.8, 139.6, 139.8, 140.2; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$: 184.1463. Found m / z (relative intensity) $185\left(\mathrm{M}^{+}+1,1\right), 184.1463\left(\mathrm{M}^{+}, 1\right), 183(2), 167(13), 166$ (100).

2-(1-Hydroxyallyl)cyclodecanol (1n): a mixture of 4 isomers, the ratio being not determined: Yields: Aldol, 94\%; LAH reduction, 96\%; IR (neat) 3379 (s), 2932 (s), 1643 (m), 1443 (m), 1242 (w), 1111 (w), 1042 (w), 995 (m), 918 (w) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 1.23-2.18(\mathrm{~m}, 17 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1$ H), $5.11(\mathrm{dt}, J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dt}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddd}, J=5.3,10.6$, 17.1 Hz, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of 4 isomers) $\delta 17.3,20.8,21.5,21.9$, $22.1,22.4,24.0,24.2,24.3,24.7,25.0,25.1,25.3,25.4,25.5,25.6,25.7,26.0,26.1,26.8,31.7$, $32.3,33.1,42.6,43.0,45.1,46.3,71.9,73.1,75.1,75.4,75.7,78.0,79.4,113.8,114.9,115.7$, 116.2, 138.1, 139.9, 140.0, 140.5; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2}: 212.1776$. Found m / z (relative intensity) $213\left(\mathrm{M}^{+}+1,1\right), 212.1754\left(\mathrm{M}^{+}, 3\right), 211$ (2), 195 (15), 194 (100).

Preparation of $\boldsymbol{B}-\mathbf{P h}-\mathbf{9 - B B N} .{ }^{[7]}$ Into a nitrogen purged Schlenk flask, were introduced dry pentane (5 mL) and B-methoxy-9-BBN ($5 \mathrm{~mL}, 1.0 \mathrm{M}$ hexanes solution, 5 mmol) via syringe. The mixture was cooled at $-78^{\circ} \mathrm{C}$. $\operatorname{PhLi}(5 \mathrm{~mL}, 1.0 \mathrm{M}$ cyclohexane-diethyl ether solution, 5 mmol) was added slowly via syringe. A white precipitate formed immediately. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes and then allowed to warm to room temperature and was stirred for 12 h . The supernatant solution was used as $0.3 \mathrm{M} B-\mathrm{Ph}-9-\mathrm{BBN}$.

General Procedure for the Palladium Catalyzed C-C Bond Cleavage Reaction of

1,3-Diol 1 (Table 2, Run 11). Into a flask containing $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{mmol})$ purged with N_{2} were successively added dry toluene (2.5 mL), $\mathbf{1 k}(98.1 \mathrm{mg}, 0.5 \mathrm{mmol}$), and $B-\mathrm{Ph}-9-\mathrm{BBN}(0.8 \mathrm{~mL}, 0.3 \mathrm{M}$ solution , 0.25 mmol$)$ via syringe at room temperature. The homogeneous solution was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h under N_{2}. After dilution with ethyl acetate, the mixture was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The
residue was purification by column chromatography over silica gel (hexane/ethyl acetate $=$ $64: 1, \mathrm{v} / \mathrm{v}$) to give $\mathbf{2 k}$ in 92% yield $(80.2 \mathrm{mg}) . \quad R_{f}(\mathbf{2 k})=0.83$ (hexane $/$ ethyl acetate $\left.=2: 1, \mathrm{v} / \mathrm{v}\right)$. The structures of $\mathbf{2 e}, \mathbf{2 f}, \mathbf{2 i}, \mathbf{2 j}, \mathbf{2 m}$, and $\mathbf{2 n}$ were determined by comparison of the spectral data with those of authentic samples reported. ${ }^{[1]}$

2,2-Dimethyl-3-(2,4-pentadienyl)cyclobutanecarbaldehyde (2k): a mixture of E - and Zisomers in a ratio of $1: 1: \mathrm{IR}$ (neat) $3086(\mathrm{w}), 3007(\mathrm{~m}), 2955(\mathrm{~s}), 2712(\mathrm{~m}), 1715(\mathrm{~s}), 1651$ (m), 1603 (w), 1464 (s), 1369 (s), 1157 (m), 1005 (s), 901 (s) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3},(\boldsymbol{E})-\mathbf{2 k}\right) \delta 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{dt}, J=2.0,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 2$ H), $2.14(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dt}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dm}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dm}, J=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.57 (dt, $J=15.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{ddm}, J=10.5,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$ (dt, $J=16.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.71(\mathrm{dd}, J=1.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (E)-2k) $\delta 18.0,22.4,31.1,33.3,42.3,53.2,114.9,131.7,132.4,136.9,203.4 ;{ }^{1} H$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3},(\mathbf{Z})-\mathbf{2 k}\right) \delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dm}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19(\mathrm{dm}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{dt}, J=11.0 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{tm}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dddd}, J=1.0,10.0,11.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3},(\mathbf{Z})-\mathbf{2 k}\right) \delta 22.0,22.6,31.6,33.8,42.6,53.1,117.2,129.8,131.9$, 136.9, 203.9; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}: 178.1358$. Found m / z (relative intensity) $179\left(\mathrm{M}^{+}+1\right.$, $14), 178.1339\left(\mathrm{M}^{+}, 100\right), 163(5)$.

2-(1,3-Butadienyl)cyclopentanecarbaldehyde (2a): mixture of E - and Z - isomers in a ratio of $11: 1$; IR (neat) 2955 (s), $2870(\mathrm{~m}), 1720(\mathrm{~s}), 1003(\mathrm{~m}), 903(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{E})-\mathbf{2 a}\right) \delta 1.41-2.09(\mathrm{~m}, 6 \mathrm{H}), 2.54(\mathrm{dq}, J=2.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dq}, J=7.8$, $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dm}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dm}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=7.8$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=10.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dt}, J=17.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.61(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3},(\boldsymbol{E})-\mathbf{2 a}\right) \delta 24.7,26.2,33.4,57.8,115.9,130.8$, 136.2, 136.5, 202.6; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, epimer of (\boldsymbol{E})-2a) $\delta 2.88(\mathrm{ddt}, J=2.7,6.3$,
$8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dq}, J=6.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dm}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dm}, J=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=8.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=10.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dt}, J$ $=16.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.66(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, epimer of (E)-2a) $\delta 24.1,25.0,32.3,45.8,55.7,116.2,131.9,133.5,136.5,204.2 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3},(\mathbf{Z}) \mathbf{- 2 a}\right) \delta 2.52(\mathrm{dq}, J=2.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dq}, J=11.0,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16(\mathrm{dm}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dm}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{brt}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ $(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dtm}, J=16.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3},(\mathbf{Z})-\mathbf{2 a}\right) \delta 24.2,26.2,34.1,39.8,58.9,118.0,131.8,134.3,136.4$ 202.6; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}: 150.1045$. Found m / z (relative intensity) $151\left(\mathrm{M}^{+}+1,11\right)$, $150.1039\left(\mathrm{M}^{+}, 100\right), 149$ (9).

2-[(1E)-3-Methyl-1,3-butadienyl]cyclopentanecarbaldehyde (2b): IR (neat) 2955 (s), 2870 (m), 1720 (s), 1612 (w), 1450 (w), 964 (w), 887 (w) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $(\boldsymbol{E}) \mathbf{- 2 b}$, major isomer) $\delta 1.42-2.10(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dq}, J=2.7,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{dq}, J=7.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.61(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ($\left.\boldsymbol{E}\right) \mathbf{- 2 b}$, major isomer) $\delta 18.6,24.8,26.2,33.7,44.7,58.0,115.4,131.8,132.9,141.4,203.0 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3},(\boldsymbol{E}) \mathbf{- 2 b}$, minor isomer) $\delta 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{ddt}, J=2.7,6.1,8.1 \mathrm{~Hz}, 1$ H), $3.00(\mathrm{dq}, J=6.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=8.5,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1$ H), $9.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{E}) \mathbf{- 2 b}$, minor isomer) $\delta 24.2$, $25.0,32.5,46.1,55.8,115.6,129.2,133.8,204.3$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}-\mathrm{CH}_{3}: 149.0966$. Found m / z (relative intensity) $149.0961\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 63\right), 135(100)$.

2-[(1E)-1,3-Pentadienyl]cyclopentanecarbaldehyde (2c): a mixture of E, E - and Z, E isomers in a ratio of $2: 1$; IR (neat) $3425(\mathrm{~m}), 3017$ (s), 2955 (s), $2870(\mathrm{~s}), 2816(\mathrm{~m}), 2716$ (m), 1720 (s), 1450 (m), 988 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left._{3},(\boldsymbol{E}, \boldsymbol{E})-2 \mathbf{c}\right) \delta 1.46(\mathrm{~m}, 1$ H), 1.54-1.70 (m, 2 H), 1.73 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.52$ (dq, $J=2.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dq}, J=7.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=7.8,14.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.61(\mathrm{dq}, J=14.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=10.3,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=10.3,14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 9.60(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{E}, \boldsymbol{E})-\mathbf{2 c}\right) \delta 18.0,24.7$, 33.6, 40.0, 44.3, 58.0, 128.2, 130.3, 131.0, 132.8, 203.1; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (Z,E)-2c, major isomer) $\delta 1.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dq}, J=2.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dq}$, $J=10.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dq}, J=14.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ $(\mathrm{ddm}, J=10.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, (Z,E)-2c, major isomer) $\delta 18.3,24.9,34.2,40.7,45.9,59.0,126.5,129.1,130.4,131.1$, 203.0; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{Z}, \boldsymbol{E}) \mathbf{- 2 c}$, minor isomer) $\delta 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dq}, J=$ $10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=10.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{tm}, J$ $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{Z}, \boldsymbol{E}) \mathbf{- 2} \mathbf{c}$, minor $) \delta$ $24.1,32.5,55.7,128.4,130.1,130.8,131.3,204.5$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{-} \mathrm{CH}_{3}$: 149.0966. Found m / z (relative intensity) $149.0932\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 83\right), 135$ (100).

3-(1,3-Butadienyl)cyclopentanecarbaldehyde (2d): a mixture of E - and Z- isomers in a ratio of 4 : 1; IR (neat) 2955 (s), 2870 (m), 2176 (w), 1720 (s), 1450 (w), 1003 (s), 903 (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{E})$-2d) $\delta 1.41(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.96(\mathrm{~m}, 3$ H), $2.04(\mathrm{dt}, J=12.9,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.61$ (dquint, $J=6.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 4.98$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=7.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}$, $J=10.3,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dt}, J=17.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3},(\boldsymbol{E})-2 d\right) \delta 25.8,32.5,33.2,43.5,51.3,115.4,130.1,136.8,137.4$, 202.9: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3},(\mathbf{Z})-2 \mathrm{~d}\right) \delta 2.13(\mathrm{ddd}, J=4.6,7.1,12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~m}$, $1 \mathrm{H}), 5.10(\mathrm{dm}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dm}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dt} J=10.5,6.3 \mathrm{~Hz}, 1$ H), $5.96(\mathrm{dt}, J=10.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dt}, J=16.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{Z})-2 d\right) \delta 25.9,33.2,33.9,38.9,51.5,117.4,128.9,135.6$, 202.9; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}: 150.1045$. Found m / z (relative intensity) $151\left(\mathrm{M}^{+}+1,12\right)$, $150.1057\left(\mathrm{M}^{+}, 100\right), 149(1), 121(10)$.

1,2,2-Trimethyl-3-(4-phenyl-1,3-butadienyl)cyclopentanecarbaldehyde (2g): mixture
of E, E - and Z, E - isomers in a ratio of $8: 1$; IR (KBr disk) $3010(\mathrm{w}), 2950(\mathrm{~m}), 2850(\mathrm{w}), 1740$ (s), 1460 (w), 1440 (m), 1380 (m), 1360 (m), 1300 (w), 1060 (w), 980 (s), 900 (m), 820 (w), $740(\mathrm{~s}), 680(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{E}, \boldsymbol{E})-\mathbf{2 g}\right) \delta 0.82(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{ddd}, J=5.1,9.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dddd}, J=5.1,9.2,11.7,13.9 \mathrm{~Hz}, 1$ H), $1.96(\mathrm{ddt}, J=5.1,13.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=5.1,11.7,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{q}, J=$ 9.2 Hz, 1 H), $5.69(\mathrm{dd}, J=9.2,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.6,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=10.6,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{tt}, J=1.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=$ $1.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (dd, $J=1.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $9.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $(\boldsymbol{E}, \boldsymbol{E})-2 \mathrm{~g}) \delta ; 18.8,19.4,22.6,27.5,30.5,47.7,52.0,58.3,126.1,127.1,128.4,128.9,130.7$, 132.0, 134.3, 137.3, 205.9, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{Z}, \boldsymbol{E})-\mathbf{2 g}$) $\delta .086$ (s, 3 H), 1.00 (s, 3 H), $1.17(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{q}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1$ H), $6.56(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=11.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{Z}, \boldsymbol{E})-\mathbf{2 g}\right) \delta 18.9,19.3,22.8,28.6,30.8,46.6,60.3,124.2,126.2,127.4,128.5$, 130.6, 132.3, 133; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}: 268.1897$. Found m / z (relative intensity) 269 $\left(\mathrm{M}^{+}+1,17\right), 268.1832$ (100); Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 84.94 ; \mathrm{H}, 9.09$. Found: C, 84.61, H, 9.05 .
cis-1-Acetyl-3-[(E)-1,3-butadienyl]-1,2,2-trimethylcyclopentane (2h): IR (neat) 2950 (s), 2860 (m), 1700 (s), 1650 (w), 1600 (w), 1460 (m), 1350 (m), 1230 (m), 1080 (m), 1000 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.67(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.39(\mathrm{ddd}, J=5.1,9.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dddd} J=5.1,9.2,11.7,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddt}, J$ $=5.5,13.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{q}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=5.5,11.7,13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=1.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=1.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=9.2$, $15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.03 (ddd, $J=1.8,10.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J=17.2,10.3 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}:$ 206.1671. Found m / z (relative intensity) $206.1676\left(\mathrm{M}^{+}, 100\right), 191$ (14), 122 (18), 83 (70); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 81.50$; H, 10.75. Found: C, 81.51 ; H, 10.83.

2-(5,7-Octadienyl)-(2E,9,11)-decatrienal (21'): a mixture of E - and Z - isomers in a ratio of 7 : 1: IR (neat) 3086 (w), 3009 (m), 2932 (s), 2855 (s), 1690 (s), 1643 (m), 1458 (w), 1003 (s), $895(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (\boldsymbol{E})-isomer) $\delta 1.30-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.50$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.09 (quint, $J=6.6 \mathrm{~Hz}, 4 \mathrm{H}$), $2.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1$ H), $5.08(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dt}, J=15.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dt}, J=15.1,7.3 \mathrm{~Hz}, 1$ H), $6.03(\mathrm{dd}, J=5.6,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=5.6,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{ddd}, J=5.6$, $10.3 \mathrm{~Hz}, 16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{ddd}, J=5.6,10.3,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 9.35 (s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (E)-isomer) $\delta 28.2,28.5,28.9,29.1,32.2,32.3$, 114.6, 114.7, 131.0, 131.1, 134.8, 137.0, 137.1, 143.5, 154.9, 194.9; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3},(Z)$-isomer) $\delta 2.37(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.43(\mathrm{dt}, J=9.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{dt}, J=16.8,10.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3},(\mathrm{Z})$-isomer) $\delta 27.5,28.2,29.5,29.6,116.7,116.8,129.2,129.3,132.0,132.1$, 132.3; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}: 286.2297$. Found m / z (relative intensity) $287\left(\mathrm{M}^{+}+1,25\right)$, $286.2284\left(\mathrm{M}^{+}, 100\right), 285(1)$.

2-(6,8-Nonadecadienyl)-(2E,10,12)-tridecatrienal ($\mathbf{2 m}$ '): a mixture of E - and Z - isomers in a ratio of 3 : 1: IR (neat) 3307 (w), 2928 (s), 2855 (s), 1688 (s), 1308 (s), 1003 (s), 897 (m), $701(\mathrm{w}) ; \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (\boldsymbol{E})-isomer) $\delta 1.22-1.68(\mathrm{~m}, 14 \mathrm{H}), 2.07$ (br $\mathrm{dt}, J=14.3,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.08 (d, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.68 (ddt, $J=3.7,15.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.04$ (ddd, J $=4.9,10.3,15.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{ddt}, J=1.5,16.8,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $9.75(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{E})$-isomer) δ 28.6, 28.6, 28.8, 28.9, 29.0, 29.2, 32.4, 114.5, 114.6, 130.9, 135.0, 135.1, 137.1, 143.6, 154.9, 195.0; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3},(Z)$-isomer) $\delta 5.17(\mathrm{dm}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{dd}, J=7.3,11.0 \mathrm{~Hz}, 2$ H), $6.62(\mathrm{dt}, J=16.8 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (Z)-isomer) $\delta 29.3$, $29.4,30.9,32.7,117.5,127.3,130.3,132.1,132.6,133.7,137.8,148.5$; HRMS calcd for
$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2}: 314.2610$. Found m / z (relative intensity) $315\left(\mathrm{M}^{+}+1,28\right), 314.2594\left(\mathrm{M}^{+}, 100\right)$, 313 (3), 285 (8).

NOE Increments (\%) Observed for 2m'

2-(8,10-Undecadienyl)-(2E,12,14)-pentadecatrienal ($2 \mathbf{n}^{\prime}$): a mixture of E - and Z - isomers in a ratio of $3: 1$: IR (neat) 2926 (s), 2855 (s), 1726 (s), 1688 (s), 1641 (m), 1441 (s), 1308 (s), 1003 (s), 899 (s), $700(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},(\boldsymbol{E})$-isomer) $\delta 1.22-1.68(\mathrm{~m}$, $22 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{dt}, J=15.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{ddm}, J=10.3$, $15.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=17.1,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.75(\mathrm{t}, J=2.0 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (E)-isomer) δ 27.7, 28.7, 28.9, 29.1, 29.3, 29.6, 32.5, $114.4,114.5,130.7,130.8,135.3,137.2,143.7,155.0,195.0 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (Z)-isomer) $\delta 5.17(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{dt}, \mathrm{J}=11.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{br} \mathrm{t}, J=11.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.62(\mathrm{dt}, J=16.7,11.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, (Z)-isomer) $\delta 116.5,116.6,129.0,129.1,132.2,132.8$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{2}: 370.3236$. Found m / z (relative intensity) $371\left(\mathrm{M}^{+}+1,29\right), 370.3238\left(\mathrm{M}^{+}, 100\right), 369(2), 353(11)$.

NOE Increments (\%) Observed for $\mathbf{2 n}$ '

2-Ethyl-decahydro-4-vinyl-4H-cyclodeca[d][1,3,2]dioxaborinine (4a): IR (neat) 3100 (w), 2930 (s), 1405 (s), 1338 (s), 1290 (s), 1220 (s), 990 (m), 930 (m), 764 (w) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 0.70(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.30-1.80(\mathrm{~m}, 15 \mathrm{H}), 1.81(\mathrm{dt}, J=13.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=3.7,7.1,10.7 \mathrm{~Hz}, 1 \mathrm{H})$,
4.08 (ddd, $J=3.7,4.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dt}, J=$ $17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (ddd, $J=4.6,10.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of 4 isomers) $\delta 7.9,20.7,21.3,22.0,22.4,22.6,23.3,23.8,24.3,24.4,24.6,24.7$, $24.8,24.9,25.0,25.3,25.4,25.9,26.0,26.1,27.5,30.0,30.9,31.1,38.7,39.8,41.3,43.5$, $70.0,72.3,74.0,74.7,75.1,75.8,76.3,77.1,78.2,114.5,115.3,116.7,135.6,137.3,138.1$, 139.0; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{BO}_{2}: 250.2104$. Found m / z (relative intensity) $251\left(\mathrm{M}^{+}+1,11\right)$, $250.2087\left(\mathrm{M}^{+}, 51\right), 249$ (13), 235 (8), 221 (100).

Decahydro-2-phenyl-4-vinyl-4H-cyclodeca[d][1,3,2]dioxaborinine (4b): IR (neat) 3076 (w), 2930 (m), 1601 (w), 1441 (m), 1306 (m), 1130 (w), 1028 (w), 989 (w), 924 (w), 700 $(\mathrm{m}), 646(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 1.32-1.90(\mathrm{~m}, 15 \mathrm{H}), 1.95$ (m, 1 H$), 2.00(\mathrm{ddd}, J=4.2,6.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{ddd}, J=3.2,4.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{m}, 1 \mathrm{H}), 5.26(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddd}, J=4.6$, $10.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{tm}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{tm}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dm}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of 4 isomers) $\delta 17.8,20.8,21.5,22.1,22.5$, 22.7, 23.3, 23.8, 24.0, 24.3, 24.4, 24.6, 24.7, 24.8, 24.9, 25.0, 25.2, 25.4, 25.6, 25.8, 25.9, $26.0,26.1,26.2,26.4,26.6,26.7,27.1,27.5,28.1,28.3,29.9,30.0,30.1,30.5,30.9,31.1$, $38.1,39.0,40.1,41.4,42.1,42.5,43.6,44.1,69.7,70.5,70.7,72.7,72.9,73.8,74.2,74.4$, $75.1,75.5,76.1,76.8,77.1,78.5,114.6,114.7,115.0,115.4,115.5,116.7,116.9,117.7$, 127.3, 127.4, 130.3, 130.4, 133.7, 135.4, 136.3, 137.2, 137.4, 137.5, 138.0, 138.6, 138.8; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BO}_{2}$: 298.2104. Found m / z (relative intensity) $299\left(\mathrm{M}^{+}+1,20\right)$, $298.2088\left(\mathrm{M}^{+}, 100\right), 297(26), 283(4)$.

Reference

[1] Mori, M.; Kimura, M.; Takahashi, Y.; Tamaru, Y. Chem. Commun. 2006, 4303-4305.
[2] Harayama, H.; Kuroki, T.; Kimura, M.; Tanaka, S.; Tamaru, Y. Angew. Chem. Int. Ed. 1997, 36, 2352-2354; See also: Harayama, H.; Kimura, M.; Tanaka, S.; Tamaru, Y. Tetrahedron Lett. 1998, 39, 8475-8478.
[3] Tamaru, Y.; Hojo, M.; Kawamura, S.; Sawada, S.; Yoshida, Z. J. Org. Chem., 1987, 52, 4062-4072.
[4] Bando, T.; Tanaka, S.; Fugami, K.; Yoshida, Z.; Tamaru, Y. Bull. Chem. Soc. Jpn., 1992, 65, 97-110.
[5] Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa, A.; Teply, F.; Meghani, P.; Kocovsky, P. J. Org. Chem. 2003, 68, 4727-4742.
[6] Crystallographic data of anti-1e and syn-1k have been deposited with the Cambridge Crystallographic Data Center as supplementary publication numbers CCDC-639709 and CCDC-631058, respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, U.K. (fax: (+41)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[7] Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1974, 73, 1-15.
${ }^{1} \mathrm{H}$ NMR spectra

-S19-

=-

and another small amount of stereoisomer

The fourth diastereomer of $\mathbf{1 c}$, whose stereochemistry is unknown.

1 e

contaminated by a small amount of an epimer of $\mathbf{2 b}$,

-S40-

2h

-S47-

