Experimental details

1,3,5-trimethylimidazole-2,4,6-triethylbenzene: To a mixture of 1,3,5-tribromomethyl-2,4,6-triethylbenzene ($4.0 \mathrm{~g}, 9.1 \mathrm{mmol}$) and imidazole ($10.0 \mathrm{~g}, 146.9$ $\mathrm{mmol})$ was added $\mathrm{MeOH}(100 \mathrm{~mL})$. The mixture was heated at reflux for 48 hours. The solvent was removed in vacuo resulting in yellow oil. Water (20 mL) was added to give a white precipitate, which was filtered and washed with water.

Yield $=56 \%$. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 7.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}(\mathrm{CH}) \mathrm{N}), 6.94(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}(\mathrm{CH})_{2} \mathrm{~N}\right), 6.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}(\mathrm{CH})_{2} \mathrm{~N}\right), 5.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.64\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2}\right), 0.80\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): δ $144.9(\mathrm{~N}(\mathrm{CH}) \mathrm{N})$, $136.6(\mathrm{Ar}), 128.4\left(\mathrm{~N}(\mathrm{CH})_{2} \mathrm{~N}\right), 118.8\left(\mathrm{~N}(\mathrm{CH})_{2} \mathrm{~N}\right), 44.0\left(\mathrm{CH}_{2}\right), 22.7$ $\left(\mathrm{CH}_{2}\right)$, $15.1\left(\mathrm{CH}_{3}\right)$. Elemental Analysis: Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ C 65.73 , H 7.81, N 19.16. Found C 66.08, H 7.79, N 18.73 \%.

Cyclophane-3Br: To a mixture of 1,3,5-tribromomethyl-2,4,6-triethylbenzene (0.150 $\mathrm{g}, 0.34 \mathrm{mmol}$) and 1,3,5-trimethylimidazole-2,4,6-triethylbenzene ($0.137 \mathrm{~g}, 0.34$ mmol) was added acetone (30 mL). The mixture was stirred at room temperature for 18 hours and the solvent was removed in vacuo resulting in white oil. THF (30 mL) was added to give a white precipitate, which was filtered and washed with THF.

Yield $=79 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}(\mathrm{CH})_{2} \mathrm{~N}\right), 5.80(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{N}(\mathrm{CH}) \mathrm{N}), 5.57\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.16\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2\right.$ $\mathrm{Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}$). MS (ES+) m/z 684.0 ($[\mathrm{M}-2 \mathrm{Br}]^{+}, 5 \%$).

Cyclophane-3PF : The white solid was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(10$ equivalents) was added. This was stirred at room temperature for 1 hour and the resulting white precipitate was filtered and washed with MeOH .

Yield $=93$ \%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}(\mathrm{CH})_{2} \mathrm{~N}\right), 5.61(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{N}(\mathrm{CH}) \mathrm{N}), 5.37\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.10\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.4\right.$ $\left.\mathrm{Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 149.5(\mathrm{Ar}), 130.3(\mathrm{CH})$, $126.5(\mathrm{CH}), 48.4\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 15.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z} 893.1\left([\mathrm{M}-\mathrm{PF} 6]^{+}\right.$, $100 \%), 747.4\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}-\mathrm{H}\right]^{+}, 13 \%\right)$. Elemental Analysis: Calculated for $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~F}_{18} \mathrm{~N}_{6} \mathrm{P}_{3} \mathrm{C} 45.09, \mathrm{H} 4.95, \mathrm{~N} 8.09$. Found C 44.59, H 5.00, N 7.77.

Cyclophane-[FeCl $\mathbf{4}_{2} \mathbf{B r}$: To a hot water solution (2 mL) containing pyridine (0.5 mL) of 1,3,5-trimethylimidazole-2,4,6-triethylbenzene $(0.01 \mathrm{~g}, 0.025 \mathrm{mmol})$ was added a hot water solution (2 mL) of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.006 \mathrm{~g}, 0.022 \mathrm{mmol})$. The solution was allowed to cool and the solvent slowly evaporated, resulting in colourless crystals.

Ag-Cyclophane: To a mixture of cyclophane- $3 \mathrm{PF}_{6}(0.165 \mathrm{~g}, 0.159 \mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}$ $(0.074 \mathrm{~g}, 0.319 \mathrm{mmol})$ was added DMSO $(20 \mathrm{~mL})$. The mixture was heated at $75^{\circ} \mathrm{C}$ for 72 hours under nitrogen. The mixture was filtered through celite and water (20 mL) was added to the filtrate. The resulting precipitate was filtered and washed with water.

Yield $=31 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}(\mathrm{CH})_{2} \mathrm{~N}\right), 7.46(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{N}(\mathrm{CH})_{2} \mathrm{~N}\right), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}(\mathrm{CH}) \mathrm{N}), 5.35\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=14.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $\left.14.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.19\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00(\mathrm{~m}, 8 \mathrm{H}$,

[^0]$\left.\mathrm{CH}_{2}\right), 1.15\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 178.0\left({ }^{1} \mathrm{~J}_{\mathrm{C}-}{ }^{107}{ }_{\mathrm{Ag}}=186.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{C}-}{ }^{109}{ }_{\mathrm{Ag}}=215.5 \mathrm{~Hz}\right.$), 148.4 (q), 146.7 (q), 132.7 (q), 131.3 (CH), 128.6 (q), 125.5 (CH), 124.0 (CH), 49.0 $\left(\mathrm{CH}_{2}\right), 48.3\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 16.6\left(\mathrm{CH}_{3}\right), 15.3\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}$ $853.0\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+} 100 \%\right)$. Elemental Analysis: Calculated for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{AgF}_{12} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{C}$ 46.86, H 4.94, N 8.41. Found C 46.20, H 4.93, N 8.10.

[^0]: A small tris(imidazolium) cage forms an N-heterocyclic carbene complex with silver(I) Charlotte E. Willans, Kirsty M. Anderson, Peter C. Junk, Leonard J. Barbour and Jonathan W. Steed

