Supporting Information

A Highly Efficient Non-Heme Manganese Complex in Oxygenation Reactions

Kasi Nehru, Soo Jeong Kim, In Young Kim, Mi Sook Seo, Youngmee Kim, Sung-Jin Kim, Jinheung Kim and Wonwoo Nam*

Department of Chemistry, Division of Nano Sciences, and Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea.

Contact Information
Professor Wonwoo Nam
Department of Chemistry, Division of Nano Sciences, and Center for Biomimetic Systems
Ewha Womans University, Seoul 120-750, Korea
Tel: (+82) 2-3277-2392
Fax: (+82) 2-3277-4441
e-mail: wwnam@ewha.ac.kr

Experimental Conditions.

All chemicals obtained from Aldrich Chemical Co. were the best available purity and used without further purification unless otherwise indicated. Solvents were dried according to published procedures and distilled under Ar prior to use [1]. $\mathrm{H}_{2}{ }^{18} \mathrm{O}\left(95 \%{ }^{18} \mathrm{O}\right.$-enriched) and ${ }^{18} \mathrm{O}_{2}$ ($95 \%{ }^{18} \mathrm{O}$-enriched) were purchased from ICON Services Inc. (Summit, NJ, USA). Iodosylbenzene (PhIO) was prepared by a literature method [2]. Peracetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}\right.$, 32 wt . \% solution containing $<6 \% \mathrm{H}_{2} \mathrm{O}_{2}$) was obtained from Aldrich Chemical Co. Ligands such as BQEN, BPMEN, and BPMCN were synthesized by published procedures [3-5]. Manganese(II) complexes, such as $\mathrm{Mn}(\mathrm{BQEN})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}, \mathrm{Mn}(\mathrm{BPMEN})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, and $\mathrm{Mn}(\mathrm{BPMCN})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, were prepared in a glovebox by literature methods [6].

Electrospray ionization mass spectra (ESI MS) were collected on a Thermo Finnigan (San Jose, CA, USA) LCQ ${ }^{\mathrm{TM}}$ Advantage MAX quadrupole ion trap instrument, by infusing samples directly into the source at $20 \mu \mathrm{~L} / \mathrm{min}$ using a syringe pump. The spray voltage was set at 4.7 kV and the capillary temperature at $220{ }^{\circ} \mathrm{C}$. Product analysis for the oxidation products were performed with an Agilent Technologies 6890N gas chromatograph (GC) and Thermo Finnigan (Austin, Texas, USA) FOCUS DSQ (dual stage quadrupole) mass spectrometer interfaced with Finnigan FOCUS gass chromatograph (GC-MS). Product analyses for the epoxidation of cis- and trans-stilbenes were performed on DIONEX Summit Pump Series P580 equipped with a variable wavelength UV-200 detector (HPLC). Products were separated on Waters Symmetry C18 reverse phase column ($4.6 \times 250 \mathrm{~mm}$), and detection was made at $215 \mathrm{and} /$ or 254 nm . Elemental Analysis was done on a Thermo Finnigan Italia SpA (Flash EA ${ }^{\circledR}$ 1112) CHN analyzer. 2,5-Bis(5' tert-butyl-2-benzoxazol-2yl)thiophene (BBOT) was used as a reference standard. EPR spectra were obtained on a JEOL JES-FA200 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured with Bruker DPX-250 spectrometer. Crystallographic analysis was conducted with an SMART APEX CCD equipped with a Mo X-ray tube at the Crystallographic Laboratory of Ewha Womans University.

Characterization of $\mathrm{Mn}(\mathrm{BQEN})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ (1). The purity of 1 was checked with positive ESI MS prior to use; m / z of 546.2 for $\left[\mathrm{Mn}(\mathrm{II})(\mathrm{BQEN})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]^{+}$(calculated m / z of $546.1)$ and m / z of 218.9 for $\left[\mathrm{Mn}(\mathrm{II})(\mathrm{BQEN})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{2+}$ (calculated m / z of 219.1) (Figure S 1$)$. Elemental analysis (\%) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{MnN}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$: C 41.45, H 3.19, N 8.06; found: C 41.34, H 3.25, N 8.12.

Colorless needle crystals suitable for crystallographic analysis were obtained from $\mathrm{CH}_{3} \mathrm{CN}$ /diethyl ether. The diffraction data for $\mathbf{1}$ were collected at 170 K on a Bruker SMART AXS diffractometer equipped with a monochromator in the $\operatorname{MoK} \operatorname{K}(\lambda=0.71073 \AA)$ incident beam. The crystal was mounted on a glass fiber. The CCD data were integrated and scaled using the Bruker-SAINT software package, and the structure was solved and refined using SHEXTL V6.12 [7]. Hydrogen atoms were located in the calculated positions. Crystal data of $\left[(\mathrm{BQEN}) \mathrm{Mn}^{\mathrm{II}}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]$ (1): Orthorhombic, $P 2_{1} 2_{1} 2_{1}$ (No. 19), $\mathrm{Z}=4, a=9.677(6) \AA, b=$ $13.617(10) \AA, c=21.660(15) \AA, V=2854(3) \AA^{3}, \mu=0.695 \mathrm{~mm}^{-1}, d_{\text {calc }}=1.619 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{R} 1=$ $0.049, \mathrm{wR}_{2}=0.076$ for 5588 unique reflections, 390 variables. The absolute structure parameter is 0.20 (3). The crystallographic data for $\mathbf{1}$ are listed in Table S1, and Table S2 lists the selected bond distances and angles.

The spin state of $\mathbf{1}$ was determined using the modified ${ }^{1} \mathrm{H}$ NMR method of Evans at room temperature [8]. A WILMAD ${ }^{\circledR}$ coaxial insert (sealed capillary) tubes containing 1 (60 $\mu \mathrm{L}, 10 \mathrm{mM}$) in acetonitrile- d_{3} (with 1.0% TMS) was inserted into a normal NMR tube containing blank acetonitrile- d_{3} solvent (with 0.1% TMS). The chemical shift of the TMS peak in the presence of $\mathbf{1}$ was compared to that of the TMS peak in the outer NMR tube. The effective magnetic moment was calculated using the following equation, where f is

$$
\mu=0.0618(\Delta f \cdot T / 2 f \cdot M)^{1 / 2}
$$

the oscillator frequency (MHz) of the superconducting spectrometer, T is the absolute temperature, M is the molar concentration of the metal ion, and Δf is the difference in frequency (Hz) between the two reference signals [8].

Catalytic olefin epoxidation by PhIO. All Reactions were run at least in triplicate, and the data reported represent the average of these reactions. In general, PhIO (100 equiv to manganese catalyst) was added to a reaction solution containing Mn (II) complex (1 mM),
alkene $(0.5 \mathrm{M})$, and decane $(0.2 \mathrm{M})$ as an internal standard in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction solution was stirred for 30 min , followed by filtering through a $0.45-\mu \mathrm{M}$ filter. The resulting solution was directly analyzed by GC, HPLC, or GC/MS. Products yields were determined by comparison of peak area with those of known authentic samples.

Catalytic oxygenation with peracetic acid. In a typical reaction, 100 equiv of peracetic acid (0.1 M , diluted in $100 \mu \mathrm{~L}$ of $\mathrm{CH}_{3} \mathrm{CN}$) was added to a reaction solution containing a manganese complex (1 mM), substrate $(0.5 \mathrm{M}$) and decane (0.2 M) as an internal standard in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ through syringe pump for 20 min at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min , and then directly injected into GC, HPLC or GC/MS for analysis. Product yields were determined by comparison against standard curves prepared with known authentic samples.

Competitive oxidation reactions. Peracetic acid (50 equiv per manganese; 50 mM , diluted in $100 \mu \mathrm{~L}$ of MeCN) was added to a reaction solution containing a manganese catalyst (1 mM), substrates $(0.25 \mathrm{M}$ each) and decane $(0.2 \mathrm{M})$ as an internal standard in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ through syringe pump for 20 min at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min prior to product analysis. In the reaction of PhIO , solid PhIO (50 equiv per manganese) was added to a reaction solution containing a manganese catalyst (1 mM) and susbtrates (0.25 M each) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min and then filtered through a $0.45-\mu \mathrm{M}$ filter. Products were analyzed by GC, HPLC or GC/MS, and product yields were calculated by comparison against standard curves prepared with known authentic samples.

Determination of KIE values. In general, 25 equiv of peracetic acid (25 mM , diluted in $100 \mu \mathrm{~L}$ of MeCN) was added to a reaction solution containing $\mathrm{Mn}(\mathrm{II})$ complex (1 mM), substrates (0.25 M each), decane (0.2 M) as an internal standard in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ through syringe pump for 20 min at $25^{\circ} \mathrm{C}$. The reaction solution was analyzed by GC and $\mathrm{GC} / \mathrm{MS}$.

References

[1] Purification of Laboratory Chemicals; Armarego, W. L. F.; Perrin, D. D., Eds.; Pergamon Press, Oxford, 1997.
[2] Organic Syntheses; Saltzman, H.; Sharefkin, J. G., Eds.; Wiley, New York, 1973, Collect. Vol. V, p. 658.
[3] England, J.; Britovsek, G. J. P.; Rabadia, N.; White, A. J. P. Inorg. Chem. 2007, 46, 3762.
[4] White, M. C.; Doyle, A. G.; Jaconsen, E. N. J. Am. Chem. Soc. 2001, 123, 7194.
[5] Goodson, P. A.; Glerup, J.; Hodgson, D. J.; Michelsen, K.; Weihe, H. Inorg. Chem. 1991, 30, 4909-4914.
[6] Murphy, A.; Dubois, G.; Stack, T. D. P. J. Am. Chem. Soc. 2003, 125, 5250-5251.
[7] Bruker, SHELXTL/PC Version 5.10 for Windows XP 2001, Bruker AXS Inc., Madison, Wisconsin, USA.
[8] Evans, D. F.; Jakubovic, D. A.; J. Chem. Soc. Dalton Trans. 1988, 2927-2933.

Table S1. Crystal data and structure refinement for 1.

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{MnN}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$	
Formula weight	695.52	
Temperature	$170(2) \mathrm{K}$	
Wavelength	0.71073	
Crystal system	Orthorhombic	
Space group	$\mathrm{P} 22_{1} 2_{1} 2_{1}$	$\alpha=90.00^{\circ}$
Unit cell dimensions	$\mathrm{a}=9.677(6) \AA$	$\beta=90.00^{\circ}$
	$\mathrm{b}=13.617(10) \AA$	$\gamma=90.00^{\circ}$
	$\mathrm{c}=21.660(15) \AA$	
Volume	$2854(3) \AA^{3}$	
Z	4	
Density (calculated)	$1.619 \mathrm{Mg}^{\circ} / \mathrm{m}^{3}$	
Absorption coefficient	$0.695 \mathrm{~mm}^{-1}$	1412
F(000)	$0.15 \times 0.03 \times 0.03 \mathrm{~mm}$	
Crystal size	14719	
Reflections collected	$5588[\mathrm{R}(\mathrm{int})=0.2424]$	
Independent reflections	$5588 / 0 / 390$	
Data / restraints / parameters	0.812	
Goodness-of-fit on F2	$\mathrm{R}_{1}=0.0490, \mathrm{wR}_{2}=0.0760$	
Final R indices [I>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.1479, \mathrm{wR}_{2}=0.0992$	
R indices (all data)	$0.20(3)$	
Absolute structure parameter	0.655 and $-0.744 \mathrm{e} . \AA^{-3}$	
Largest diff. peak and hole		

Table S2. Selected bond lengths $[\AA$] and angles [deg] for $\mathbf{1}$.

$\mathrm{Mn}(1)-\mathrm{O}(11)$	$2.141(4)$
$\mathrm{Mn}(1)-\mathrm{O}(21)$	$2.174(4)$
$\mathrm{Mn}(1)-\mathrm{N}(4)$	$2.198(5)$
$\mathrm{Mn}(1)-\mathrm{N}(1)$	$2.199(5)$
$\mathrm{Mn}(1)-\mathrm{N}(2)$	$2.328(5)$
$\mathrm{Mn}(1)-\mathrm{N}(3)$	$2.360(5)$
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{O}(21)$	$91.60(16)$
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{N}(4)$	$98.19(18)$
$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{N}(4)$	$90.68(18)$
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$91.02(18)$
$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$99.06(18)$
$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$166.42(18)$
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$163.77(17)$
$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$98.80(16)$
$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$94.13(18)$
$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$75.13(18)$
$\mathrm{O}(11)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$93.37(16)$
$\mathrm{O}(21)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$165.84(17)$
$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$75.49(18)$
$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$94.10(18)$
$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$79.50(16)$

(a)

(b)

Figure S1. ESI MS spectra of (a) $\mathrm{Mn}(\mathrm{BQEN})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ (1) $(1 \mathrm{mM})$ and (b) after the completion of a catalytic reaction with cyclohexane and peracetic acid.
(a)

(b)

Figure S2. EPR spectra of (a) $\mathrm{Mn}(\mathrm{BQEN})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}(2 \mathrm{mM})$ and (b) after the completion of a catalytic reaction with cyclohexane and peracetic acid. Instrumental parameters: temp. 4 K ; microwaves, 9.05 GHz at 1 mW ; modulation 100 KHz .

