Assembly of a Planar, Tricyclic B₄N₈ Framework With *s*-Indacene Structure

Hanh V. Ly, Heikki M. Tuononen, Masood Parvez and Roland Roesler*

- Supplementary Information -

Topic	Page
¹ H, ¹³ C and ¹¹ B NMR spectra for 2 , 3 and 4	2
Cyclic Voltammetry for 4	8
Representations of the Kohn-Sham orbitals for 4 and $[4]^{2+}$	10
Optimized coordinates of the Kohn-Sham orbitals for 4 and $[4]^{2+}$	15

 1 H and 11 B NMR Spectra of 1,2-dimethyl-3,5-diphenyl-4-methylamino-1,2,4-triaza-3,5-diborolidine (2) in C₆D₆

¹³C NMR Spectrum of 1,2-dimethyl-3,5-diphenyl-4-methylamino-1,2,4-triaza-3,5-diborolidine (**2**) in C₆D₆

¹H and ¹¹B NMR Spectra of the dilithium salt (3) in THF-d₈

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007 13 C and 7 Li NMR Spectra of the dilithium salt (3) in THF-d₈

¹H and ¹¹B NMR Spectra of the tricyclic tetrahydrazidotetraborane (4) in THF-d₈

 13 C NMR Spectrum of the tricyclic tetrahydrazidotetraborane (4) in THF-d₈

Fig. S1 Cyclovoltammogram of **4** in the presence of the internal standard $[Cp_2Co]PF_6 ([Cp_2Co]^{0/+1}]$ with $E^0 = -1.36$ V vs. ferrocene and -0.82 V vs. the SCE) at 200 ms scan rate. The measurements were performed in THF at an analyte concentration of 1 mM, and using 0.1 M [*n*Bu₄N]PF₆ as a supporting electrolyte.

Potential (V vs. Ferrocene)

Fig. S2 Cyclovoltammogram of 4 in the absence of the internal standard at 50 ms scan rate. The measurements were performed in THF at an analyte concentration of 1 mM, and using 0.1 M $[nBu_4N]PF_6$ as a supporting electrolyte.

Fig. S3 Occupied π -like Kohn-Sham orbitals of 4. For simplicity, orbitals are shown for a structure in which Me and Ph substituents attached to nitrogen and boron atoms have been replaced with hydrogen atoms.

Fig. S4 Occupied π -symmetric Kohn-Sham α -orbitals of open-shell singlet [4]²⁺. For simplicity, orbitals are shown for a structure in which Me and Ph substituents attached to nitrogen and boron atoms have been replaced with hydrogen atoms.

Fig. S5 Occupied π -symmetric Kohn-Sham β -orbitals of open-shell singlet $[4]^{2+}$. For simplicity, orbitals are shown for a structure in which Me and Ph substituents attached to nitrogen and boron atoms have been replaced with hydrogen atoms.

Fig. S6 Occupied π -symmetric Kohn-Sham α -orbitals of triplet $[4]^{2+}$. For simplicity, orbitals are shown for a structure in which Me and Ph substituents attached to nitrogen and boron atoms have been replaced with hydrogen atoms.

Fig. S7 Occupied π -symmetric Kohn-Sham β -orbitals of triplet $[4]^{2+}$. For simplicity, orbitals are shown for a structure in which Me and Ph substituents attached to nitrogen and boron atoms have been replaced with hydrogen atoms.

Optimized coordinates of $\mathbf{4}$ and $[\mathbf{4}]^{2+}$ in mol2 format:

0.0000

0.0000

@<TRIPOS>MOLECULE

Singlet 4 58 62 1 SMALL NO_CHARGES **** **** @<TRIPOS>ATOM 1 C 1.7111 1.9377 -1.1476 C.3 1 RES1 2 N 0.9526 1.1366 -0.2110 N.3 1 RES1

3	Ν	1.3838	-0.2018	-0.0972	N.pl	3 1 RES1	0.0000
4	В	0.4622	-1.2928	0.0852	B	1 RES1	0.0000
5	Ν	-0.9526	-1.1366	0.2110	N.3	1 RES1	0.0000
6	С	-1.7111	-1.9377	1.1476	C.3	1 RES1	0.0000
7	В	-0.4622	1.2928	-0.0852	В	1 RES1	0.0000
8	Ν	-1.2209	2.5106	-0.1506	N.3	1 RES1	0.0000
9	С	-0.8248	3.7557	0.4627	C.3	1 RES1	0.0000
10	Ν	-1.3838	0.2018	0.0972	N.p	13 1 RES1	0.0000
11	В	-2.7152	0.7394	0.0786	В	1 RES1	0.0000
12	Ν	-2.5836	2.1629	0.0170	N.3	1 RES1	0.0000
13	С	-3.5287	3.0878	-0.5534	C.3	1 RES1	0.0000
14	В	2.7152	-0.7394	-0.0786	В	1 RES1	0.0000
15	Ν	2.5836	-2.1629	-0.0170	N.3	1 RES1	0.0000
16	С	3.5287	-3.0878	0.5534	C.3	1 RES1	0.0000
17	Ν	1.2209	-2.5106	0.1506	N.3	1 RES1	0.0000
18	С	0.8248	-3.7557	-0.4627	C.3	1 RES1	0.0000
19	С	-4.0865	-0.0115	0.0195	C.2	1 RES1	0.0000
20	С	4.0865	0.0115	-0.0195	C.2	1 RES1	0.0000
21	Η	4.5222	-2.6442	0.4980	Η	1 RES1	0.0000
22	Η	3.2975	-3.3008	1.6049	Η	1 RES1	0.0000
23	Η	3.5506	-4.0353	0.0058	Η	1 RES1	0.0000
24	Η	1.2307	-4.6199	0.0719	Η	1 RES1	0.0000
25	Η	-0.2624	-3.8284	-0.4399	Н	1 RES1	0.0000
26	Η	1.1499	-3.8101	-1.5099	Н	1 RES1	0.0000
27	Η	-1.1160	-2.8080	1.4254	Η	1 RES1	0.0000
28	Η	-1.9228	-1.3639	2.0593	Н	1 RES1	0.0000
29	Η	-2.6629	-2.2776	0.7335	Н	1 RES1	0.0000
30	Η	1.1160	2.8080	-1.4254	Η	1 RES1	0.0000
31	Η	2.6629	2.2776	-0.7335	Η	1 RES1	0.0000
32	Η	1.9228	1.3639	-2.0593	Η	1 RES1	0.0000
33	Η	-1.2307	4.6199	-0.0719	Η	1 RES1	0.0000
34	Η	-1.1499	3.8101	1.5099	Η	1 RES1	0.0000
35	Η	0.2624	3.8284	0.4399	Η	1 RES1	0.0000
36	Η	-4.5222	2.6442	-0.4980	Η	1 RES1	0.0000
37	Η	-3.5506	4.0353	-0.0058	Η	1 RES1	0.0000
38	Η	-3.2975	3.3008	-1.6049	Η	1 RES1	0.0000
39	С	5.1417	-0.3175	-0.8764	C.2	1 RES1	0.0000
40	С	6.3662	0.3320	-0.7968	C.2	1 RES1	0.0000

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

41 C	2	6.5669	1.3219	0.1553 C.2	1 RES1	0.0000
42 0	2	5.5352	1.6614	1.0208 C.2	1 RES1	0.0000
43 (2	4.3102	1.0161	0.9287 C.2	1 RES1	0.0000
44 H	Η	4.9972	-1.0891	-1.6266 H	1 RES1	0.0000
45 H	Η	7.1663	0.0649	-1.4792 H	1 RES1	0.0000
46 H	Η	7.5238	1.8285	0.2220 H	1 RES1	0.0000
47 H	Η	5.6863	2.4325	1.7690 H	1 RES1	0.0000
48 H	Η	3.5091	1.2956	1.6066 H	1 RES1	0.0000
49 (2	-5.1417	0.3175	0.8764 C.2	1 RES1	0.0000
50 C	2	-6.3662	-0.3320	0.7968 C.2	1 RES1	0.0000
51 (2	-6.5669	-1.3219	-0.1553 C.2	1 RES1	0.0000
52 0	2	-5.5352	-1.6614	-1.0208 C.2	1 RES1	0.0000
53 (2	-4.3102	-1.0161	-0.9287 C.2	1 RES1	0.0000
54 H	Η	-4.9972	1.0891	1.6266 H	1 RES1	0.0000
55 H	Η	-7.1663	-0.0649	1.4792 H	1 RES1	0.0000
56 H	Η	-7.5238	-1.8285	-0.2220 H	1 RES1	0.0000
57 H	Η	-5.6863	-2.4325	-1.7690 H	1 RES1	0.0000
58 H	Η	-3.5091	-1.2956	-1.6066 H	1 RES1	0.0000

@<TRIPOS>BOND

1	1	2	1
2	1	30	1
3	1	31	1
4	1	32	1
5	2	3	1
6	2	7	1
7	3	4	1
8	3	14	1
9	4	5	1
10	4	17	1
11	5	6	1
12	5	10	1
13	6	27	1
14	6	28	1
15	6	29	1
16	7	8	1
17	7	10	1
18	8	9	1
19	8	12	1
20	9	33	1
21	9	34	1
22	9	35	1
23	10	11	1
24	11	12	1
25	11	19	1
26	12	13	1
27	13	36	1
28	13	37	1
29	13	38	1
30	14	15	1
31	14	20	1

32	15	16	1		
33	15	17	1		
34	16	21	1		
35	16	22	1		
36	16	23	1		
37	17	18	1		
38	18	24	1		
39	18	25	1		
40	18	26	1		
41	19	49	1		
42	19	53	1		
43	20	39	1		
44	$\frac{20}{20}$	43	1		
45	39	40	1		
46	39	44	1		
47	40	41	1		
47	40	45	1		
-+0 /19	40 41	$\frac{+3}{42}$	1		
50	41	- <u>-</u> 2 /6	1		
51	$\frac{1}{42}$	40 43	1		
52	$\frac{12}{42}$	43 47	1		
52	$\frac{12}{43}$		1		
53 54	49 79	1 0 50	1		
55	 /Ω	50 54	1		
55	49 50	51	1		
50	50	55	1		
50	51	55	1		
50	51	52 56	1		
59	52	52	1		
61	52 52	55 57	1		
62	52 52	50	1		
02 @ <td< td=""><td></td><td></td><td>I STDUCTI</td><td>IDE</td><td></td></td<>			I STDUCTI	IDE	
×۱۲ ۱ ۲		23UD	SIKUCIU	JKE	
1 Г	(ESI	1			
€ ∠TD	IDOG		ECULE		
W<1K	aball	>IVIOL	LECULE		
open-	-SHEII		[4]		
JO	02	1			
SMAI	LL TIAD	CES			
NO_C		UE2			

~~~~ @ _TD	IDOG		м		
×۱۲>ש		>AIU	IVI 2 0076	0 1217	$C_2$ 1 DE01
	-3. J -3.	.0480	3.08/0	0.131/	C.3 I KESI
2 N 2 N	n -2	.3833	2.1092	0.1348	N pl3 1 KESI
5 N	N -1	.2900	2.4929	0.1108	IN.DIS I KESI
4 (		.94/3	3.89/U	0.2064	U.3 I KESI
5 E	<b>5</b> -2.	./408	0.035/	0.1096	Б I KESI
6 N	N -1	.3909	0.1565	0.1063	IN.PIJ I RESI
7 N	N -0	.9054	-1.1413	0.1389	N.3 1 RES1

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

8 C	-1.8598	-2.1757	0.4990 C.3	1 RES1	0.0000
9 B	-0.4759	1.2862	0.0321 B	1 RES1	0.0000
10 N	0.9054	1.1413	-0.1389 N.3	1 RES1	0.0000
11 C	1.8598	2.1757	-0.4990 C.3	1 RES1	0.0000
12 N	1.3909	-0.1565	-0.1063 N.p.	13 1 RES1	0.0000
13 B	0.4759	-1.2862	-0.0321 B	1 RES1	0.0000
14 N	1.2960	-2.4929	-0.1108 N.p	13 1 RES1	0.0000
15 N	2.5835	-2.1092	-0.1348 N.p	13 1 RES1	0.0000
16 C	3.6486	-3.0876	-0.1317 C.3	1 RES1	0.0000
17 B	2.7408	-0.6357	-0.1096 B	1 RES1	0.0000
18 C	0.9475	-3.8970	-0.2064 C.3	1 RES1	0.0000
19 C	-4.1206	-0.0509	0.0370 C.2	1 RES1	0.0000
20 C	4.1206	0.0509	-0.0370 C.2	1 RES1	0.0000
21 H	4.5810	-2.5485	0.0177 H	1 RES1	0.0000
22 H	3.5127	-3.8074	0.6781 H	1 RES1	0.0000
23 H	3.6985	-3.6194	-1.0865 H	1 RES1	0.0000
23 H 24 H	1.0275	-4.3952	0.7643 H	1 RES1	0.0000
25 H	-0.0707	-3 9829	-0 5752 H	1 RES1	0.0000
25 H	1 6008	-4 3990	-0.9191 H	1 RESI	0.0000
20 H 27 H	-1 3202	-3.0672	0.9191 H	1 RES1	0.0000
27 H 28 H	-2 4569	-1 8354	1 3460 H	1 RESI	0.0000
20 H	-2.+307	-1.0554	-0 3270 H	1 RESI	0.0000
2) II 30 H	1 3202	-2. <del>4</del> 000 3.0672	-0.8040 H	1 RESI	0.0000
30 II 31 H	2 5336	2.0072	-0.30 <del>4</del> 0 П 0.3270 Н	1 DES1	0.0000
51 II 22 Ц	2.3330	2.4000 1.8357	0.3270 II 1.3460 H	1 DEC1	0.0000
52 П 22 Ц	2.4309	1.0554	-1.3400 П 0.7642 Ц	1 RESI 1 DESI	0.0000
ээ п 24 ц	-1.0273	4.3932	-0.7045 H	1 KESI 1 DEC1	0.0000
54 П 25 II	-1.0008	4.3990	0.9191 H		0.0000
35 H	0.0707	3.9829 2.5495	0.5752 H		0.0000
30 H	-4.5810	2.5485	-0.01// H	I KESI	0.0000
3/ H	-3.6985	3.6194	1.0865 H	I KESI	0.0000
38 H	-3.5127	3.80/4	-0.6/81 H	I RESI	0.0000
39 C	-4.5012	-0./608	-1.1105 C.2	I RESI	0.0000
40 C	-5.7579	-1.3394	-1.2025 C.2	I RESI	0.0000
41 C	-6.6516	-1.2296	-0.1452 C.2	I RESI	0.0000
42 C	-6.2924	-0.5307	1.0000 C.2	I RESI	0.0000
43 C	-5.0423	0.0634	1.0867 C.2	1 RES1	0.0000
44 H	-3.8204	-0.8451	-1.9530 H	1 RES1	0.0000
45 H	-6.0438	-1.8725	-2.1019 H	1 RES1	0.0000
46 H	-7.6326	-1.6852	-0.2156 H	1 RES1	0.0000
47 H	-6.9898	-0.4456	1.8254 H	1 RES1	0.0000
48 H	-4.7809	0.6056	1.9911 H	1 RES1	0.0000
49 C	4.5012	0.7608	1.1105 C.2	1 RES1	0.0000
50 C	5.7579	1.3394	1.2025 C.2	1 RES1	0.0000
51 C	6.6516	1.2296	0.1452 C.2	1 RES1	0.0000
52 C	6.2924	0.5307	-1.0000 C.2	1 RES1	0.0000
53 C	5.0423	-0.0634	-1.0867 C.2	1 RES1	0.0000
$54\ \mathrm{H}$	3.8204	0.8451	1.9530 H	1 RES1	0.0000
$55\ H$	6.0438	1.8725	2.1019 H	1 RES1	0.0000
56 H	7.6326	1.6852	0.2156 H	1 RES1	0.0000
57 H	6.9898	0.4456	-1.8254 H	1 RES1	0.0000

58	H ·	4.7809	ə -0.	6056	-1.9911	Η	1 RES1	0.0000
@ <tr< td=""><td>RIPOS</td><td>S&gt;BO</td><td>ND</td><td></td><td></td><td></td><td></td><td></td></tr<>	RIPOS	S>BO	ND					
1	1	2	1					
2	1	36	1					
3	1	37	1					
4	1	38	1					
5	2	3	1					
6	2	5	1					
7	3	4	1					
8	3	9	1					
9	4	33	1					
10	4	34	1					
11	4	35	1					
12	5	6	1					
13	5	19	1					
14	6	7	1					
15	6	9	1					
16	7	8	1					
17	7	13	1					
18	8	27	1					
19	8	28	1					
20	8	29	1					
21	9	10	1					
22	10	11	1					
23	10	12	1					
24		30	l					
25	11	31	l					
26	11	32	l					
27	12	13	1					
28	12	1/	1					
29	13	14	1					
30	14	15	1					
31	14	18	1					
32 22	15	10	1					
33 24	15	1/	1					
34 25	10	21	1					
35 36	10	22	1					
30	10	$\frac{23}{20}$	1					
38	17	20	1					
30	10	2 <del>4</del> 25	1					
40	18	$\frac{25}{26}$	1					
40	10	20 30	1					
41 ⊿2	10	<u>4</u> 3	1					
∠ ⊿3	20	до Д	1					
	20		1					
 ⊿5	20	<u>40</u>	1					
46	39	<u>4</u> 4	1					
$\frac{1}{47}$	<u>4</u> 0	Δ1	1					
	<u>40</u>	<u>4</u> 5	1					
-10	-10	-т.)	1					

49 4	41 42	1			
50 4	41 46	1			
51 4	42 43	1			
52 4	42 47	1			
53 4	43 48	1			
54 4	19 50	1			
55 4	19 54	1			
56 4	50 51	1			
57 4	50 55	1			
58 4	51 52	1			
59 4	51 56	1			
60 4	52 53	1			
61 4	52 57	1			
62	53 58	1			
@ <trif< td=""><td>POS&gt;SUB</td><td>STRUCTI</td><td>IRE</td><td></td><td></td></trif<>	POS>SUB	STRUCTI	IRE		
1 RF	S1 1	JIRCOIL			
@ <trif< td=""><td>POS&gt;MOI</td><td>ECULE</td><td></td><td></td><td></td></trif<>	POS>MOI	ECULE			
Triplet [4	<b>1</b> ] ²⁺				
58 f	•] 52 1				
SMALL					
NO CH	ARGES				
****	INCLO				
****					
@~TRIE		м			
	-3 6//8	3 1011	0 1787 C 3	1 <b>RES</b> 1	0.0000
1 C 2 N	-2 58/18	2 1173	0.1707 C.5	3 1 RES1	0.0000
2 N 3 N	1 2075	2.1173 2.4014	0.1000 N.pl	3 1 REST	0.0000
	-1.2975	2.4914	0.1390 N.pl	1 DEC1	0.0000
4 C 5 P	-0.9377 0.7280	0.6272	0.2465 C.5	1 DEC1	0.0000
J D 6 N	1 388/	0.0373	0.1201 D 0.1233 Npl	1 KLSI 2 1 DESI	0.0000
	-1.3004	1 1/65	0.1255 N.pl 0.1452 N.3		0.0000
7 N 8 C	-0.9031	-1.1403 2.1747	0.1452 N.5	1 DES1	0.0000
	-1.0420	-2.1747	0.3039 C.3	1 DES1	0.0000
10 N	0.4755	1.2021	-0.1452 N 3	1 RESI	0.0000
10  IV	1.8426	21.1+0.0	-0.1432 N.3	1 RESI	0.0000
11 C 12 N	1 388/	-0.1585	-0.1233 N n	13 1 RES1	0.0000
12 R 13 R	0.4753	-0.1303	-0.1255 N.p	1 RES1	0.0000
13 D 14 N	1 2975	-1.2021	-0.1390 N n	1 REST	0.0000
15 N	2 5848	-2.7717	-0.1690 N.p	13 1 RES1	0.0000
15 N	2.5040	-2.1173	-0.1787 C 3	1 RESI	0.0000
10 C 17 R	2.0 <del>44</del> 0 2.7382	-0.6373	-0.1767 C.3	1 RESI	0.0000
19 C	0 0377	-3.0373	-0.1201 D		0.0000
	_A 11A9	-0.0/11	0.2+05 C.5	1 RESI	0.0000
20 C	-+.11+2 11117	0.0495		1 RESI	0.0000
20 C 21 U	4.1142 1 5806	0.0475	-0.0379 C.2	1 RESI 1 DECI	0.0000
21 ロ 22 U	4.2000	-2.3007	-0.02/4 П 0.6761 Ц	1 RESI 1 RESI	0.0000
22 П 22 U	3 6001	-3.0200	0.0201 П 1 1277 Ц	I NESI 1 deci	0.0000
23 FL 24 TL	J.0004	-3.0237	-1.13// П 0.7110 Ц	I KESI 1 degi	0.0000
<i>2</i> 4 Π	1.0420	-4.404/	U./117 П	1 1 1 2 3 1	0.0000

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

25	Η	-0.0922	-3.9634	-0.5866 H	1 RES1	0.0000
26	Η	1.5682	-4.3851	-0.9872 H	1 RES1	0.0000
27	Η	-1.2886	-3.0526	0.8841 H	1 RES1	0.0000
28	Η	-2.4177	-1.8120	1.4171 H	1 RES1	0.0000
29	Η	-2.5374	-2.4421	-0.2332 H	1 RES1	0.0000
30	Η	1.2886	3.0526	-0.8841 H	1 RES1	0.0000
31	Η	2.5374	2.4421	0.2332 H	1 RES1	0.0000
32	Η	2.4177	1.8120	-1.4171 H	1 RES1	0.0000
33	Η	-1.0426	4.4047	-0.7119 H	1 RES1	0.0000
34	Η	-1.5682	4.3851	0.9872 H	1 RES1	0.0000
35	Η	0.0922	3.9634	0.5866 H	1 RES1	0.0000
36	Η	-4.5806	2.5687	0.0274 H	1 RES1	0.0000
37	Η	-3.6884	3.6257	1.1377 H	1 RES1	0.0000
38	Η	-3.5095	3.8266	-0.6261 H	1 RES1	0.0000
39	С	-4.4603	-0.8059	-1.0912 C.2	1 RES1	0.0000
40	С	-5.7150	-1.3849	-1.1998 C.2	1 RES1	0.0000
41	С	-6.6405	-1.2333	-0.1752 C.2	1 RES1	0.0000
42	С	-6.3155	-0.4904	0.9527 C.2	1 RES1	0.0000
43	С	-5.0690	0.1079	1.0530 C.2	1 RES1	0.0000
44	Η	-3.7540	-0.9236	-1.9081 H	1 RES1	0.0000
45	Η	-5.9749	-1.9517	-2.0864 H	1 RES1	0.0000
46	Η	-7.6197	-1.6908	-0.2579 H	1 RES1	0.0000
47	Η	-7.0372	-0.3739	1.7528 H	1 RES1	0.0000
48	Η	-4.8346	0.6841	1.9436 H	1 RES1	0.0000
49	С	4.4603	0.8059	1.0912 C.2	1 RES1	0.0000
50	С	5.7150	1.3849	1.1998 C.2	1 RES1	0.0000
51	С	6.6405	1.2333	0.1752 C.2	1 RES1	0.0000
52	С	6.3155	0.4904	-0.9527 C.2	1 RES1	0.0000
53	С	5.0690	-0.1079	-1.0530 C.2	1 RES1	0.0000
54	Η	3.7540	0.9236	1.9081 H	1 RES1	0.0000
55	Η	5.9749	1.9517	2.0864 H	1 RES1	0.0000
56	Η	7.6197	1.6908	0.2579 H	1 RES1	0.0000
57	Η	7.0372	0.3739	-1.7528 H	1 RES1	0.0000
58	Η	4.8346	-0.6841	-1.9436 H	1 RES1	0.0000
	DID	DO DOT				

@<TRIPOS>BOND

1	1	2	1
2	1	36	1
3	1	37	1
4	1	38	1
5	2	3	1
6	2	5	1
7	3	4	1
8	3	9	1
9	4	33	1
10	4	34	1
11	4	35	1
12	5	6	1
13	5	19	1
14	6	7	1
15	6	9	1

16	7	8	1	
17	7	13	1	
18	8	27	1	
19	8	28	1	
20	8	29	1	
21	9	10	1	
22	10	11	1	
23	10	12	1	
24	11	30	1	
25	11	31	1	
26	11	32	1	
27	12	13	1	
28	12	17	1	
29	13	14	1	
30	14	15	1	
31	14	18	1	
32	15	16	1	
33	15	17	1	
34	16	21	1	
35	16	22	1	
36	16	23	1	
37	17	20	1	
38	18	24	1	
39	18	25	1	
40	18	26	1	
41	19	39	1	
42	19	43	1	
43	20	49	1	
44	20	53	l	
45	39	40	1	
46	39	44	l	
47	40	41	1	
48	40	45	l	
49	41	42	l	
50	41	46	1	
51	42	43	1	
52	42	4/	1	
53	43	48	1	
54	49	50	1	
55 56	49	54	1	
56	50	51	1	
57 59	50	22 52	1	
58 50	51	52	1	
59	51	50 52	1	
6U	52 52	33 57	1	
61 (2	52 52	5/	1	
02 @ <td< td=""><td>33 1000</td><td>38 יי ניזי</td><td>ן ספידים</td><td></td></td<>	33 1000	38 יי ניזי	ן ספידים	
×۱۲>ש ۱ т		1UC<	2218	UKE
1 1	VE91	1		