Electronic Supplementary Information for:

Optically sensed, molecular shuttles driven by acid-base chemistry

Sarah J. Vella, Jorge Tiburcio and Stephen J. Loeb*

Synthesis of 4-Pyridyl-4-aniline

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (5.00 g, 2.28×10^{-2} mol), 4bromopyridine hydrochloride (4.44 g, 2.28×10^{-2} mol) and sodium carbonate (12.10 g, 1.14×10^{-1} mol) were dissolved in DMF (200 mL) and H₂O (100 mL) and degassed with N₂(g) for 2 h. Tetrakis(triphyenylphosphine)palladium(0) (1.32 g, 1.14×10^{-4} mol) was added and the solution degassed for an additional 1 h. The reaction was refluxed for 24 h and subsequently cooled to room temperature. The DMF and H₂O were removed by rotary evaporation. The resulting residue was dissolved in CH₂Cl₂ (100 mL) and washed with H₂O (3 x 100 mL). The CH₂Cl₂ was dried with anhydrous MgSO₄, filtered and concentrated. The product precipitated from CH₂Cl₂ as a pale yellow powder. (1.15 g, 80%)

Proton	δ (ppm)	Multiplicity	# Protons	<i>J</i> (Hz)
a	3.88	br, s	2	
b	6.76	d	2	${}^{3}J_{bc} = 8.42$
c	7.49	d	2	${}^{3}J_{cb} = 8.42$
d	7.44	d	2	${}^{3}J_{de} = 6.08$
e	8.57	d	2	${}^{3}J_{ed} = 6.08$

¹H NMR Spectroscopic Data (CDCl₃)

Proton	δ (ppm)	Multiplicity	# Protons	J (Hz)
a	4.43	br s	2	
b	6.73	d	2	${}^{3}J_{bc} = 8.43$
c	7.52	d	2	${}^{3}J_{bc} = 8.43$ ${}^{3}J_{cb} = 8.43$ ${}^{3}J_{de} = 5.76$
d	7.50	d	2	${}^{3}J_{de} = 5.76$
e	8.50	d	2	${}^{3}J_{ed} = 5.76$

¹H NMR Spectroscopic Data (CD₃CN)

Synthesis of 1[OTf]

4-Pyridyl-4-aniline (1.00 g, 5.88×10^{-3} mol) was refluxed in 1,2-dibromoethane (40 mL) and ethanol (20 mL) for 6 h. The precipitate that formed was collected by vacuum filtration. The precipitate was stirred in CH₂Cl₂ and filtered. This afforded a yellow solid as the bromide salt (0.921 g, 44%) The bromide salt was anion exchanged to the triflate salt by dissolving the solid in H₂O, warming the solution and adding sodium triflate, [Na][CF₃SO₃]. The solution was cooled and the yellow crystals were collected by vacuum filtration. (1.05 g, 96%)

¹H NMR Spectroscopic Data (D₂O, as Br salt)

Proton	δ (ppm)	Multiplicity	# Protons	J (Hz)
a			2	
b	6.81	d	2	${}^{3}J_{bc} = 8.69$
c	7.71	d	2	${}^{3}J_{cb} = 8.69$
d	8.03	d	2	${}^{3}J_{de} = 6.86$
e	8.50	d	2	${}^{3}J_{ed} = 6.86$
f	4.76	t	2	${}^{3}J_{fg} = 5.70$
g	3.83	t	2	${}^{3}J_{gf} = 5.70$

Proton	δ (ppm)	Multiplicity	# Protons	<i>J</i> (Hz)
a	5.12	br s	2	
b	6.79	d	2	${}^{3}J_{bc} = 8.71$
c	7.78	d	2	${}^{3}J_{cb} = 8.71$
d	8.08	d	2	${}^{3}J_{de} = 6.89$
e	8.42	d	2	${}^{3}J_{ed} = 6.89$
f	4.74	t	2	${}^{3}J_{fg} = 5.88$ ${}^{3}J_{gf} = 5.88$
g	3.89	t	2	${}^{3}J_{gf} = 5.88$

¹H NMR Spectroscopic Data (CD₃CN, as OTf salt)

Synthesis of 2[OTf]₂

Compound 1[OTf] (0.635 g, 1.49×10^{-3} mol) and 3,5-lutidine (0.239 g, 2.23×10^{-3} mol) were dissolved in acetonitrile (25 mL) and refluxed for 24 hours. The precipitate that formed was isolated by vacuum filtration and washed with CH₂Cl₂. This yielded the product as a yellow solid as the bromide salt (0.150 g, 21%) The bromide salt was anion exchanged to the triflate salt by dissolving the solid in H₂O, warming the solution and adding NaOTf. The solution was cooled and the yellow crystals collected by vacuum filtration.

¹H NMR Spectroscopic Data (D₂O, as Br salt)

Proton	δ (ppm)	Multiplicity	# Protons	J (Hz)
a			2	
b	6.80	d	2	${}^{3}J_{bc} = 8.76$
c	7.71	d	2	${}^{3}J_{bc} = 8.76$ ${}^{3}J_{cb} = 8.76$
d	8.01	d	2	${}^{3}J_{de} = 7.02$

e	8.27	d	2	${}^{3}J_{ed} = 7.02$
f	5.04	t	2	${}^{3}J_{fg} = 5.72$ ${}^{3}J_{gf} = 5.72$
g	4.98	t	2	${}^{3}J_{gf} = 5.72$
h	8.31	S	2	
i	8.18	S	1	
j	2.30	S	6	

¹H NMR Spectroscopic Data (CD₃CN, as OTf salt)

Proton	δ (ppm)	Multiplicity	# Protons	J (Hz)
a	5.18	br s	2	
b	6.80	d	2	${}^{3}J_{bc} = 8.80$
c	7.79	d	2	${}^{3}J_{cb} = 8.80$
d	8.06	d	2	${}^{3}J_{de} = 7.12$
e	8.30	d	2	${}^{3}J_{ed} = 7.12$
f	4.96	m	2	
g	4.90	m	2	
h	8.36	S	2	
i	8.22	S	1	
j	2.45	S	6	

Synthesis of 3[OTf]₃

Compound **2**[Br]₂ (0.200 g, 4.30×10^{-4} mol), **DB24C8** (0.964 g, 2.14×10^{-3} mol) and 3,5-bis(trifluoromethyl)benzylbromide (0.066 g, 2.15×10^{-4} mol) were dissolved in a two layer CH₃NO₂ (10 mL) and H₂O (5 mL) solution to which NaOTf (0.150 g, 8.60×10^{-4} mol) was added and this mixture stirred at room temperature for 7 days. The CH₃NO₂ layer was separated from the H₂O layer, washed several times with water and dried with anhydrous MgSO₄. The CH₃NO₂ was evaporated and the residue washed several times with toluene to get rid of excess 3,5-bis(trifluoromethyl)benzylbromide and **DB24C8**. The rotaxane was further purified by column chromatography on silica get using 7:2:1 MeOH: 2M NH₄Cl: MeNO₂ as the eluent. The

isolated solid was dissolved in CH₃NO₂ and NaOTf added. The resulting solid was then washed with water numerous times. The product was isolated as a yellow solid. ($R_f = 0.82, 0.070 \text{ g}, 26\%$), ESI-MS: m/z [**3**-OTf]⁺ calc. 1128.3721, found 1128.3763. The stoppered axle **4**[OTf]₃ was also isolated from the column. It was dissolved in CH₃NO₂ and NaOTf added. The resulting solid was then repeatedly washed with water. The product was isolated as a yellow solid. ($R_f = 0.64, 0.020 \text{ g}, 7\%$), ESI-MS: m/z [**4**-OTf]⁺ calc. 680.1624, found 680.1634.

H NMR Spectroscopic Data (CD₃CN)

Proton	δ (ppm)	Multiplicity	# Protons	<i>J</i> (Hz)
a	2.15	S	6	
b	7.59	S	1	
c	8.55	S	2	
d	5.33	m	2	
e	5.26	m	2	
f	8.80	d	2	${}^{3}J_{fg} = 7.01$
g	7.84	d	2	${}^{3}J_{gf} = 7.01$
h	7.58	d	2	${}^{3}J_{hi} = 8.72$
i	6.71	d	2	${}^{3}J_{ih} = 8.72$
j	6.13	t	1	
k	4.63	d	2	
1	7.97	S	2	
m	7.93	S	1	
1-2	6.71	m	4	

¹H NMR Spectroscopic Data (CD₃CN)

Proton	δ (ppm)	Multiplicity	# Protons	<i>J</i> (Hz)
a	2.44	S	6	
b	8.21	S	1	
c	8.37	S	2	
d	4.95	t	2	${}^{3}J_{de} = 5.46$
e	4.91	t	2	${}^{3}J_{ed} = 5.46$
f	8.32	d	2	${}^{3}J_{fg} = 7.04$
g	8.06	d	2	${}^{3}J_{gf} = 7.04$
h	7.81	d	2	${}^{3}J_{hi} = 8.86$
i	6.78	d	2	${}^{3}J_{ih} = 8.86$
j	6.21	br s	1	
k	4.62	d	2	${}^{3}J_{kj} = 5.21$
l	7.95	S	2	
m	7.92	S	1	

Synthesis of 5[OTf]₃

Compound **2**[Br]₂ (0.240 g, 5.16×10^{-4} mol), **DB24C8** (1.16 g, 2.58×10^{-3} mol) and 9-bromomethylanthracene (0.070 g, 2.58×10^{-4} mol) were dissolved in a two layer CH₃NO₂ (10 mL) and H₂O (5 mL) solution to which NaOTf (0.300 g, 1.74×10^{-3} mol) was added and stirred at room temperature for 7 days. The nitromethane layer was separated from the water layer, washed several times with water and dried with anhydrous MgSO₄. The nitromethane was

evaporated and the residue washed several times with toluene to get rid of excess 9bromomethylanthracene and **DB24C8**. The rotaxane was further purified by column chromatography on silica get using 7:2:1 MeOH: 2M NH₄Cl: MeNO₂ as the eluent. The isolated solid was dissolved in CH₃NO₂ and NaOTf added. The resulting solid was then washed with water numerous times. The product was isolated as a yellow solid. ($R_f = 0.81$, 0.085 g, 27%), ESI-MS: m/z [5-OTf]⁺ calc. 1092.4286, found 1092.4282.

¹H NMR Spectroscopic Data (CD₃CN)

Proton	δ (ppm)	Multiplicity	# Protons	<i>J</i> (Hz)
a	2.16	S	6	
b	7.59	S	1	
c	8.57	S	2	
d	5.36	m	2	
e	5.28	m	2	
f	8.80	d	2	${}^{3}J_{fg} = 6.94$
g	7.88	d	2	${}^{3}J_{gf} = 6.94$
h	7.69	d	2	${}^{3}J_{hi} = 8.64$
i	6.95	d	2	${}^{3}J_{ih} = 8.64$
j	5.59	t	1	${}^{3}J_{jk} = 4.07$
k	5.33	br s	2	${}^{3}J_{kj} = 4.07$
1	8.14	d	2	${}^{3}J_{lm} = 8.51$
m	7.61	ddd	2	${}^{3}J_{ml} = 8.51. \; {}^{3}J_{mn} = 6.97,$ ${}^{4}J_{mo} = 1.09$

n	7.56	dd	2	${}^{3}J_{no} = 8.01, {}^{3}J_{nm} = 6.97$
0	8.33	d	2	${}^{3}J_{on} = 8.01$
р	8.63	S	1	
1-2	6.76	br s	8	
3-5	3.79-4.06	m	24	