Electronic Supplementary Information for:

Optically sensed, molecular shuttles driven by acid-base chemistry

Sarah J. Vella, Jorge Tiburcio and Stephen J. Loeb*

Synthesis of 4-Pyridyl-4-aniline

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)aniline ($5.00 \mathrm{~g}, 2.28 \times 10^{-2} \mathrm{~mol}$), 4bromopyridine hydrochloride ($4.44 \mathrm{~g}, 2.28 \times 10^{-2} \mathrm{~mol}$) and sodium carbonate ($12.10 \mathrm{~g}, 1.14 \times$ $\left.10^{-1} \mathrm{~mol}\right)$ were dissolved in DMF $(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and degassed with $\mathrm{N}_{2}(\mathrm{~g})$ for 2 h . Tetrakis(triphyenylphosphine)palladium(0) ($\left.1.32 \mathrm{~g}, 1.14 \times 10^{-4} \mathrm{~mol}\right)$ was added and the solution degassed for an additional 1 h . The reaction was refluxed for 24 h and subsequently cooled to room temperature. The DMF and $\mathrm{H}_{2} \mathrm{O}$ were removed by rotary evaporation. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried with anhydrous MgSO_{4}, filtered and concentrated. The product precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a pale yellow powder. ($1.15 \mathrm{~g}, 80 \%$)

${ }^{1} \mathrm{H}$ NMR Spectroscopic Data $\left(\mathrm{CDCl}_{3}\right)$

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	3.88	br, s	2	--
\mathbf{b}	6.76	d	2	${ }^{3} \mathrm{~J}_{\mathrm{bc}}=8.42$
\mathbf{c}	7.49	d	2	${ }^{3} \mathrm{~J}_{\mathrm{cb}}=8.42$
\mathbf{d}	7.44	d	2	${ }^{3} \mathrm{~J}_{\mathrm{de}}=6.08$
\mathbf{e}	8.57	d	2	${ }^{3} \mathrm{~J}_{\mathrm{ed}}=6.08$

This journal is (c) The Royal Society of Chemistry 2007
${ }^{1} \mathrm{H}$ NMR Spectroscopic Data $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	4.43	br s	2	--
\mathbf{b}	6.73	d	2	${ }^{3} \mathrm{~J}_{\mathrm{bc}}=8.43$
\mathbf{c}	7.52	d	2	${ }^{3} \mathrm{~J}_{\mathrm{cb}}=8.43$
\mathbf{d}	7.50	d	2	${ }^{3} \mathrm{~J}_{\mathrm{de}}=5.76$
\mathbf{e}	8.50	d	2	${ }^{3} \mathrm{~J}_{\mathrm{ed}}=5.76$

Synthesis of 1 [OTf]

4-Pyridyl-4-aniline ($1.00 \mathrm{~g}, 5.88 \times 10^{-3} \mathrm{~mol}$) was refluxed in 1,2-dibromoethane (40 mL) and ethanol $(20 \mathrm{~mL})$ for 6 h . The precipitate that formed was collected by vacuum filtration. The precipitate was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. This afforded a yellow solid as the bromide salt ($0.921 \mathrm{~g}, 44 \%$) The bromide salt was anion exchanged to the triflate salt by dissolving the solid in $\mathrm{H}_{2} \mathrm{O}$, warming the solution and adding sodium triflate, $[\mathrm{Na}]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]$. The solution was cooled and the yellow crystals were collected by vacuum filtration. ($1.05 \mathrm{~g}, 96 \%$)

${ }^{1} \mathrm{H}$ NMR Spectroscopic Data ($\mathrm{D}_{2} \mathrm{O}$, as Br salt)

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	--	--	2	--
\mathbf{b}	6.81	d	2	${ }^{3} \mathrm{~J}_{\mathrm{bc}}=8.69$
\mathbf{c}	7.71	d	2	${ }^{3} \mathrm{~J}_{\mathrm{cb}}=8.69$
\mathbf{d}	8.03	d	2	${ }^{3} \mathrm{~J}_{\mathrm{de}}=6.86$
\mathbf{e}	8.50	d	2	${ }^{3} \mathrm{~J}_{\mathrm{ed}}=6.86$
\mathbf{f}	4.76	t	2	${ }^{3} \mathrm{~J}_{\mathrm{fg}}=5.70$
\mathbf{g}	3.83	t	2	${ }^{3} \mathrm{~J}_{\mathrm{gf}}=5.70$

This journal is (c) The Royal Society of Chemistry 2007
${ }^{1} \mathrm{H}$ NMR Spectroscopic Data $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, as OTf salt)

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	5.12	br s	2	--
\mathbf{b}	6.79	d	2	${ }^{3} \mathrm{~J}_{\mathrm{bc}}=8.71$
\mathbf{c}	7.78	d	2	${ }^{3} \mathrm{~J}_{\mathrm{cb}}=8.71$
\mathbf{d}	8.08	d	2	${ }^{3} \mathrm{~J}_{\mathrm{de}}=6.89$
\mathbf{e}	8.42	d	2	${ }^{3} \mathrm{~J}_{\text {ed }}=6.89$
\mathbf{f}	4.74	t	2	${ }^{3} \mathrm{~J}_{\mathrm{fg}}=5.88$
\mathbf{g}	3.89	t	2	${ }^{3} \mathrm{~J}_{\mathrm{gf}}=5.88$

Synthesis of $2[\mathrm{OTf}]_{2}$

Compound $\mathbf{1}[\mathrm{OTf}]\left(0.635 \mathrm{~g}, 1.49 \times 10^{-3} \mathrm{~mol}\right)$ and $3,5-$ lutidine $\left(0.239 \mathrm{~g}, 2.23 \times 10^{-3} \mathrm{~mol}\right)$ were dissolved in acetonitrile (25 mL) and refluxed for 24 hours. The precipitate that formed was isolated by vacuum filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This yielded the product as a yellow solid as the bromide salt ($0.150 \mathrm{~g}, 21 \%$) The bromide salt was anion exchanged to the triflate salt by dissolving the solid in $\mathrm{H}_{2} \mathrm{O}$, warming the solution and adding NaOTf. The solution was cooled and the yellow crystals collected by vacuum filtration.

${ }^{1} \mathrm{H}$ NMR Spectroscopic Data $\left(\mathrm{D}_{2} \mathrm{O}\right.$, as Br salt)

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	--	--	2	--
b	6.80	d	2	${ }^{3} \mathrm{~J}_{\mathrm{bc}}=8.76$
\mathbf{c}	7.71	d	2	${ }^{3} \mathrm{~J}_{\mathrm{cb}}=8.76$
\mathbf{d}	8.01	d	2	${ }^{3} \mathrm{~J}_{\mathrm{de}}=7.02$

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007

\mathbf{e}	8.27	d	2	${ }^{3} \mathrm{~J}_{\text {ed }}=7.02$
\mathbf{f}	5.04	t	2	${ }^{3} \mathrm{~J}_{\mathrm{fg}}=5.72$
\mathbf{g}	4.98	t	2	${ }^{3} \mathrm{~J}_{\mathrm{gf}}=5.72$
\mathbf{h}	8.31	s	2	--
\mathbf{i}	8.18	s	1	--
\mathbf{j}	2.30	s	6	--

${ }^{1} \mathrm{H}$ NMR Spectroscopic Data $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, as OTf salt)

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	5.18	$\mathrm{br} s$	2	--
\mathbf{b}	6.80	d	2	${ }^{3} \mathrm{~J}_{\mathrm{bc}}=8.80$
\mathbf{c}	7.79	d	2	${ }^{3} \mathrm{~J}_{\mathrm{cb}}=8.80$
\mathbf{d}	8.06	d	2	${ }^{3} \mathrm{~J}_{\mathrm{de}}=7.12$
\mathbf{e}	8.30	d	2	${ }^{3} \mathrm{~J}_{\mathrm{ed}}=7.12$
\mathbf{f}	4.96	m	2	--
\mathbf{g}	4.90	m	2	--
\mathbf{h}	8.36	s	2	--
\mathbf{i}	8.22	s	1	--
\mathbf{j}	2.45	s	6	--

Synthesis of $3[\mathrm{OTf}]_{3}$

Compound $2[\mathrm{Br}]_{2}\left(0.200 \mathrm{~g}, 4.30 \times 10^{-4} \mathrm{~mol}\right)$, DB24C8 $\left(0.964 \mathrm{~g}, 2.14 \times 10^{-3} \mathrm{~mol}\right)$ and 3,5-bis(trifluoromethyl)benzylbromide ($0.066 \mathrm{~g}, 2.15 \times 10^{-4} \mathrm{~mol}$) were dissolved in a two layer $\mathrm{CH}_{3} \mathrm{NO}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ solution to which $\mathrm{NaOTf}\left(0.150 \mathrm{~g}, 8.60 \times 10^{-4} \mathrm{~mol}\right)$ was added and this mixture stirred at room temperature for 7 days. The $\mathrm{CH}_{3} \mathrm{NO}_{2}$ layer was separated from the $\mathrm{H}_{2} \mathrm{O}$ layer, washed several times with water and dried with anhydrous MgSO_{4}. The $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was evaporated and the residue washed several times with toluene to get rid of excess 3,5-bis(trifluoromethyl)benzylbromide and DB24C8. The rotaxane was further purified by column chromatography on silica get using 7:2:1 MeOH: $2 \mathrm{M} \mathrm{NH} \mathrm{N}_{4} \mathrm{Cl}: \mathrm{MeNO}_{2}$ as the eluent. The

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007
isolated solid was dissolved in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and NaOTf added. The resulting solid was then washed with water numerous times. The product was isolated as a yellow solid. $\left(\mathrm{R}_{\mathrm{f}}=0.82,0.070 \mathrm{~g}\right.$, 26\%), ESI-MS: $m / z[3-O T f]^{+}$calc. 1128.3721 , found 1128.3763 . The stoppered axle $4[O T f]_{3}$ was also isolated from the column. It was dissolved in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and NaOTf added. The resulting solid was then repeatedly washed with water. The product was isolated as a yellow solid. $\left(\mathrm{R}_{\mathrm{f}}=\right.$ 0.64, $0.020 \mathrm{~g}, 7 \%)$, ESI-MS: $\mathrm{m} / \mathrm{z}[4-\mathrm{OTf}]^{+}$calc. 680.1624, found 680.1634.

H NMR Spectroscopic Data $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	2.15	s	6	--
\mathbf{b}	7.59	s	1	--
\mathbf{c}	8.55	s	2	--
\mathbf{d}	5.33	m	--	
\mathbf{e}	5.26	m	--	
\mathbf{f}	8.80	d	2	${ }^{3} \mathrm{~J}_{\mathrm{fg}}=7.01$
\mathbf{g}	7.84	d	${ }^{3} \mathrm{~J}_{\mathrm{gf}}=7.01$	
\mathbf{h}	7.58	d	${ }^{3} \mathrm{~J}_{\mathrm{hi}}=8.72$	
\mathbf{i}	6.71	d	${ }^{3} \mathrm{~J}_{\text {ih }}=8.72$	
\mathbf{j}	6.13	t	--	
\mathbf{k}	4.63	d	1	--
\mathbf{l}	7.97	s	2	--
\mathbf{m}	7.93	s	2	--
$\mathbf{1 - 2}$	6.71	m	1	--

$\mathbf{3 - 5}$	$3.85-4.03$	m	24	--

${ }^{1} \mathrm{H}$ NMR Spectroscopic Data $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

Proton	$\boldsymbol{\delta}(\mathbf{p p m})$	Multiplicity	\# Protons	$\boldsymbol{J}(\mathbf{H z})$
\mathbf{a}	2.44	s	6	--
\mathbf{b}	8.21	s	1	--
\mathbf{c}	8.37	s	2	--
\mathbf{d}	4.95	t	2	${ }^{3} \mathrm{~J}_{\text {de }}=5.46$
\mathbf{e}	4.91	t	2	${ }^{3} \mathrm{~J}_{\mathrm{ed}}=5.46$
\mathbf{f}	8.32	d	2	${ }^{3} \mathrm{~J}_{\mathrm{fg}}=7.04$
\mathbf{g}	8.06	d	2	${ }^{3} \mathrm{~J}_{\mathrm{gf}}=7.04$
\mathbf{h}	7.81	d	2	${ }^{3} \mathrm{~J}_{\mathrm{hi}}=8.86$
\mathbf{i}	6.78	d	2	${ }^{3} \mathrm{~J}_{\mathrm{ih}}=8.86$
\mathbf{j}	6.21	br s	1	--
\mathbf{k}	4.62	d	2	${ }^{3} \mathrm{~J}_{\mathrm{kj}}=5.21$
\mathbf{l}	7.95	s	2	--
\mathbf{m}	7.92	s	1	--

Synthesis of $\mathbf{5 [O T f}]_{3}$

Compound 2[Br] $]_{2}\left(0.240 \mathrm{~g}, 5.16 \times 10^{-4} \mathrm{~mol}\right)$, DB24C8 $\left(1.16 \mathrm{~g}, 2.58 \times 10^{-3} \mathrm{~mol}\right)$ and 9-bromomethylanthracene ($0.070 \mathrm{~g}, 2.58 \times 10^{-4} \mathrm{~mol}$) were dissolved in a two layer $\mathrm{CH}_{3} \mathrm{NO}_{2}(10$ $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ solution to which $\mathrm{NaOTf}\left(0.300 \mathrm{~g}, 1.74 \times 10^{-3} \mathrm{~mol}\right)$ was added and stirred at room temperature for 7 days. The nitromethane layer was separated from the water layer, washed several times with water and dried with anhydrous MgSO_{4}. The nitromethane was

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2007
evaporated and the residue washed several times with toluene to get rid of excess 9bromomethylanthracene and DB24C8. The rotaxane was further purified by column chromatography on silica get using 7:2:1 $\mathrm{MeOH}: 2 \mathrm{M} \mathrm{NH} 44$ Cl: MeNO_{2} as the eluent. The isolated solid was dissolved in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and NaOTf added. The resulting solid was then washed with water numerous times. The product was isolated as a yellow solid. $\left(R_{f}=0.81,0.085 \mathrm{~g}, 27 \%\right)$, ESI-MS: m/z [5-OTf] ${ }^{+}$calc. 1092.4286, found 1092.4282.

${ }^{1} \mathrm{H}$ NMR Spectroscopic Data $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

Proton	δ (ppm)	Multiplicity	\# Protons	J (Hz)
a	2.16	s	6	--
b	7.59	S	1	--
c	8.57	s	2	--
d	5.36	m	2	--
e	5.28	m	2	--
f	8.80	d	2	${ }^{3} \mathrm{~J}_{\mathrm{fg}}=6.94$
g	7.88	d	2	${ }^{3} \mathrm{Jgf}_{\text {f }}=6.94$
h	7.69	d	2	${ }^{3} \mathrm{~J}_{\text {hi }}=8.64$
i	6.95	d	2	${ }^{3} \mathrm{~J}_{\text {ih }}=8.64$
j	5.59	t	1	${ }^{3} \mathrm{~J}_{\mathrm{jk}}=4.07$
k	5.33	br s	2	${ }^{3} \mathrm{~J}_{\mathrm{kj}}=4.07$
1	8.14	d	2	${ }^{3} \mathrm{~J}_{\mathrm{lm}}=8.51$
m	7.61	ddd	2	$\begin{gathered} { }^{3} \mathrm{~J}_{\mathrm{ml}}=8.51 . .^{3} \mathrm{~J}_{\mathrm{mn}}=6.97, \\ { }^{4} \mathrm{~J}_{\mathrm{m} 0}=1.09 \end{gathered}$

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2007

\mathbf{n}	7.56	dd	2	${ }^{3} \mathrm{~J}_{\mathrm{no}}=8.01,{ }^{3} \mathrm{~J}_{\mathrm{nm}}=6.97$
$\mathbf{0}$	8.33	d	2	${ }^{3} \mathrm{~J}_{\mathrm{on}}=8.01$
\mathbf{p}	8.63	s	1	-
$\mathbf{1 - 2}$	6.76	br s	8	--
$\mathbf{3 - 5}$	$3.79-4.06$	m	-	

