Supporting Information

Modular construction and hierarchical gelation of organooxotin nanoclusters derived from simple building blocks

Uwe Hahn, Andrew R. Hirst, Juan Luis Delgado, Adrien Kaeser, Béatrice Delavaux-Nicot, Jean-Francois Nierengarten* and David K. Smith*

Synthesis of compounds 1-5b

A mixture of the appropriate carboxylic acid (**1-5a**, 1 equiv.) and *n*BuSn(O)OH (1 equiv.) in benzene was refluxed for 12 h using a Dean-Stark trap. After cooling, the solution was filtered and evaporated to dryness to afford the corresponding hexameric organostannoxane derivatives (**1-5b**) in almost quantitative yields. The drum-like structure of these compounds made up of a prismatic Sn₆O₆ core was confirmed by their ¹¹⁹Sn NMR spectrum recorded in C₆D₆ which shows a single resonance at *ca*. –480-484 ppm (typical examples are depicted in Fig. S1). This chemical shift is characteristic of a drum-shaped structure with six equivalent Sn atoms coordinated by 5 oxygens and one carbon.¹

Fig. S1. ¹¹⁹Sn NMR spectra (C_6D_6) of 2b, 4b and 5b.

Experimental section

General. All reagents were used as purchased from commercial sources without further purification. Compounds **1a** and **1b** were prepared according to previously reported procedures.² All reactions were performed in standard glassware. Evaporation was done

using water aspirator and drying *in vacuo* at 10^{-2} Torr. Column chromatography: Merck silica gel 60, 40-63 µm (230-400 mesh). TLC: Precoated glass sheets with silica gel 60 F₂₅₄ (Merck), visualization by UV light. Melting points were determined on a Electrothermal Digital Melting Point apparatus and are uncorrected. UV/Vis spectra (λ_{max} in nm (ϵ)) were measured on a Hitachi U-3000 spectrophotometer. IR spectra (cm⁻¹) were determined on an ATI Mattson Genesis Series FTIR instrument. NMR spectra were recorded on a Bruker AV 500 spectrometer equipped with a 5 mm triple resonance inverse probe with dedicated ³¹P Channel operating at 500.33 and 186.57 MHz for ¹H and ¹¹⁹Sn, respectively. Chemical shifts are referenced to tetramethylsilane and tetramethyltin for ¹H and ¹¹⁹Sn, respectively. ¹¹⁹Sn NMR spectra were recorded with inverse gated ¹H decoupling. Elemental analyses were performed by the analytical service at the Laboratoire de Chimie de Coordination (Toulouse, France).

Compound 1b

A mixture of *n*-butyl stannonic acid (620 mg, 2.96 mmol) and **1a** (2.00 g, 2.96 mmol) in benzene (200 mL) was refluxed for 12 h. The water formed in the reaction was removed by using a Dean-Stark apparatus. The solution was filtered and evaporated to dryness to yield **1b** (2.56 g, 99 %) as a colourless glassy product.³ ¹H NMR (500 MHz, C₆D₆, 293 K): $\delta = 0.95$ (t, J = 7 Hz, 18 H), 1.11 (m, 54 H), 1.48 (m, 360 H), 1.74 (m, 12 H), 2.01 (m, 12 H), 3.47 (t, J = 7 Hz, 12 H), 3.79 (m, 24 H), 4.35 (m, 12 H), 7.87 (s, 12 H) ppm; ¹³C NMR (75 MHz, C₆D₆, 293 K): $\delta = 15.0$, 15.1, 23.7, 23.8, 23.9, 30.4, 30.45, 30.7, 30.8, 30.85, 30.9, 30.95, 31.1, 31.2, 31.3, 31.35, 31.4, 31.45, 31.6, 32.9, 33.1, 31.15, 63.3, 69.6, 74.1, 109.9, 127.7, 145.4, 154.3, 169.8 ppm; Anal. calcd. for C₂₈₂H₅₁₆O₃₆Sn₆: C 65.93, H 10.01; found: C 64.89, H 9.97.

Compound 2b

A mixture of *n*-butyl stannonic acid (300 mg, 1.44 mmol) and **2a** (1.09 g, 1.44 mmol) in benzene (200 mL) was refluxed for 12 h. The water formed in the reaction was removed by using a Dean-Stark apparatus. The solution was filtered and evaporated to dryness to yield **2b** (1.28 g, 99%) as a colourless glassy product. ¹H NMR (500 MHz, C₆D₆, 293 K): $\delta = 0.96$ (m, 54 H), 1.08 (t, *J* = 7 Hz, 18 H), 1.39 (m, 360 H), 1.63 (m, 36 H), 1.76 (m, 36 H), 1.89 (m, 12 H), 2.03 (m, 12 H), 2.33 (m, 12 H), 3.95 (m, 24 H), 4.18 (m, 12 H), 7.72 (s, 12 H) ppm; ¹³C NMR (125 MHz, C₆D₆, 293 K): $\delta = 14.0$, 14.1, 22.8, 22.8, 22.9, 26.4, 26.4, 26.6, 27.7, 28.2, 29.4, 29.5, 29.6, 29.65, 29.7, 29.75, 29.8, 29.85, 29.9, 30.3, 30.7, 32.0, 32.0, 32.1, 32.2, 68.5,

68.9, 70.8, 73.1, 109.2, 127.9, 143.1, 152.9, 173.6 ppm; ¹¹⁹Sn NMR (186.5 MHz, C₆D₆, 293 K): δ = 483.8 ppm; Anal. calcd. for C₃₁₈H₅₈₈O₃₆Sn₆: C 67.01, H 10.40; found: C 66.66, H 10.13.

Compound 3b

A mixture of *n*-butyl stannonic acid (344 mg, 1.65 mmol) and **3a** (300 mg, 1.65 mmol) in benzene (100 mL) was refluxed for 12 h. The water formed in the reaction was removed by using a Dean-Stark apparatus. The solution was filtered and evaporated to dryness to yield **3b** (614 mg, 99%) as a colourless glassy product. ¹H NMR (300 MHz, C₆D₆, 298 K): $\delta = 0.95$ (t, ³J = 7 Hz, 18H), 1.61 (m, 12H), 1.92 (m, 12H), 2.20 (m, 12H), 3.37 (s, 36H), 6.59 (t, ⁴J = 2 Hz, 6H), 7.64 (d, ⁴J = 2 Hz, 12H) ppm ; ¹³C NMR (75 MHz, C₆D₆, 298 K): $\delta = 14.7, 27.4, 28.6, 28.8, 55.5, 106.3, 108.9, 136.7, 161.7, 174.4 ppm ; ¹¹⁹Sn (186.5 MHz, C₆D₆, 293 K): <math>\delta = -482.3$ ppm; Anal. calcd. for C₇₈H₁₀₈O₃₀Sn₆: C 41.86, H 4.86; found: C 41.86, H 4.76.

Compound 4b

A mixture of *n*-butyl stannonic acid (695 mg, 3.33 mmol) and **4a** (300 mg, 3.33 mmol) in benzene (100 mL) was refluxed for 12 h. The water formed in the reaction was removed by using a Dean-Stark apparatus. The solution was filtered and evaporated to dryness to yield **4b** (872 mg, 99%) as a colourless glassy product. ¹H NMR (500.3 MHz, C₆D₆, 293 K): $\delta = 0.93$ (t, J = 7 Hz, 18 H), 1.46 (m, 12 H), 1.78 (m, 12 H), 2.06 (m, 12 H), 3.14 (s, 18 H), 3.76 (d, J = 17 Hz, 6 H), 3.86 (d, J = 16 Hz, 6 H) ppm; ¹³C NMR (125.8 MHz, C₆D₆, 293 K): $\delta = 14.4$, 27.5, 28.3, 28.6, 59.3, 71.8, 180.2 ppm; ¹¹⁹Sn NMR (186.5 MHz, C₆D₆, 293 K): $\delta = 480.9$ ppm; Anal. calcd. for C₄₂H₈₄O₂₄Sn₆: C 29.93, H 5.02; found: C 29.84, H 4.83.

Compound 5b

A mixture of *n*-butyl stannonic acid (1.71 g, 8.19 mmol) and **5a** (1.00 g, 8.19 mmol) in benzene (200 mL) was refluxed for 12 h. The water formed in the reaction was removed by using a Dean-Stark apparatus. The solution was filtered and evaporated to dryness to yield **5b** (2.35 g, 84 %) as a colourless solid (m.p. > 280°C). ¹H NMR (500 MHz, CD₂Cl₂, 293 K): δ = 0.95 (t, *J* = 7 Hz, 18 H), 1.50 (m, 24 H), 1.91 (m, 12 H), 7.42 (t, *J* = 7 Hz, 12 H), 7.52 (t, *J* = 7 Hz, 6 H), 8.11 (d, *J* = 7 Hz, 12 H) ppm; ¹³C NMR (125.8 MHz, CD₂Cl₂, 293 K): δ = 13.4, 26.3, 27.1, 27.5, 128.0, 130.0, 132.5, 133.2, 172.8 ppm; ¹¹⁹Sn NMR (186.5 MHz, CD₂Cl₂,

293 K): δ = 482.3 ppm; Anal. calcd. for C₆₆H₈₄O₁₈Sn₆.1/2C₆H₆: C 43.24, H 4.58 ; found: C 43.16, H 4.29.

General Comments

It is worth noting that the ¹¹⁹Sn NMR spectra of the starting stannonic acid and of partially reacted compounds, including dimeric intermediates, are significantly different from the one observed for the final compounds.¹ All of our reactions were monitored by ¹¹⁹Sn NMR spectroscopy and several signals were observed as long as the self-assembly process was not finished. Chandrasekhar and co-workers have reported several X-ray crystal structures of hexameric organostannoxane derivatives obtained from substituted benzoic acids.⁴ The ¹¹⁹Sn NMR spectra of all these derivatives show a single peak around –480 ppm.

SEM Image of Gelator 5b

FEGSEM image of gelator **5b** as xerogel from bromonaphthalene.

References

- V. Chandrasekhar, C. G. Schmid, S. D. Burton, J. M. Holmes, R. O. Day and R. R. Holmes, *Inorg. Chem.* 1987, 26, 1050.
- 2. J.-F. Nierengarten, J.-F. Eckert, Y. Rio, M. P. Carreon, J.-L. Gallani and D. Guillon, J. *Am. Chem. Soc.* 2001, **123**, 9743.
- 3. Characterization of compound **1b** by ¹¹⁹Sn NMR was attempted. However due to gelation during the experiment, the spectrum was always broad and poorly resolved.

4. V. Chandrasekhar, K. Gopal, S. Nagendran, A. Steiner, S. Zacchini, *Cryst. Growth Des.* 2006, *6*, 267.