Supporting Information

General Remarks

Unless stated otherwise, chemicals were obtained from commercial sources and used without further purification. Solvents were purchased from Biosolve (Valkenswaard, The Netherlands). TLC was performed on Merck precoated Silica 60 plates. Spots were visualized by UV light and by 10% H₂SO₄ in MeOH. Microwave reactions were carried out in a dedicated microwave oven, i.e. the Biotage Initiator. The microwave power was limited by temperature control once the desired temperature was reached. A sealed vessel of 2 - 5 mLwas used. Analytical HPLC runs were performed on a Shimadzu automated HPLC system with a reversed phase column (Alltech, Adsorbosphere C8, 90 Å, 5µm, 250x4.6 mm) equipped with an evaporative light scattering detector (PL-ELS 1000, Polymer Laboratories) and a UV/VIS detector operating at 220 and 254 nm. Preparative HPLC runs were performed on a Applied Biosystems workstation. Elution was effected using a gradient of 5% MeCN and 0.1% TFA in H₂O to 5% H₂O and 0.1% TFA in MeCN. ¹H NMR (300 MHz) and ¹³C NMR (75.5 MHz) were performed on a Varian G-300 spectrometer. Exact masses were measured by nanoelectrospray time-of-flight mass spectrometry on a Micromass LC ToF mass spectrometer at a resolution of 5000 fwhm. Gold-coated capillaries were loaded with 1 µL of sample (concentration 2 µM) dissolved in a 1:1 (v/v) mixture of CH₃CN-H₂O with 0.1% formic acid. NaI or poly(ethylene glycol) (PEG) was added as internal standard. The capillary voltage was set between 1100 and 1350 V, and the cone voltage was set at 30 V. Matrix Assisted Laser Desorption Ionisation Time of Flight (MALDI ToF) MS were recorded on a Shimadzu Axima-CFR with α -cyano-4-hydroxycinnamic acid or sinapic acid as a matrix. Insulin and adrenocorticotropin fragment 18-39 (Acth) were used for calibration.

H-(OCH₂CH₂)₅-OTrityl (2)

To a solution of penta ethylene glycol **1** (6.35 mL, 30 mmol) in dry pyridine (100 mL) was added trityl chloride (2.79 g, 10 mmol) and the mixture was stirred for 70 h. The reaction mixture was concentrated to dryness at 60 °C, taken up in EtOAc (250 mL) and washed with H₂O (100 mL), NaOH (1M, 100 mL) and brine (100 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. Silica gel chromatography (EtOAc / MeOH, $1/0 \rightarrow 19/1$) yielded **3** as clear oil (3.45 g, 72 % based on trityl chloride). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.48 - 7.44$ and 7.31 - 7.18 (5 and 10H, 2 x m, CH_{arom}), 3.70 - 3.63 (16H, m, OCH₂), 3.58 - 7.48 - 7.44 and 7.31 - 7.18 (5 and 10H, 2 x m, CH_{arom}), 3.70 - 3.63 (16H, m, OCH₂), 3.58 - 7.48 - 7.44 and 7.31 - 7.18 (5 and 10H, 2 x m, CH_{arom}), 3.70 - 3.63 (16H, m, OCH₂), 3.58 - 7.48 - 7.44 and 7.31 - 7.18 (5 and 10H, 2 x m, CH_{arom}), 3.70 - 3.63 (16H, m, OCH₂), 3.58 - 7.48 - 7.44 and 7.31 - 7.18 (5 and 10H, 2 x m, CH_{arom}), 3.70 - 3.63 (16H, m, OCH₂), 3.58 - 7.48 - 7.44 and 7.31 - 7.18 (5 and 10H, 2 x m, CH_{arom}), 3.70 - 3.63 (16H, m, OCH₂), 3.58 - 7.48 - 7.44 and 7.31 - 7.18 (5 and 10H, 2 x m, CH_{arom}), 3.70 - 3.63 (16H, m, OCH₂), 3.58 - 7.48 - 7.44 and 7.31 - 7.18 (5 and 10H, 2 x m) (100 + 100

3.54 (2H, m, CH₂OH) and 3.23 (2H, t, CH₂OTrt, J = 5.4 Hz). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 144.0, 128.6, 127.6$ and 126.8 (C_{arom}), 86.4 (OCPh₃), 72.4, 70.5 and 70.2 (OCH₂), 63.2 (CH₂OTrt) and 61.6 (CH₂OH). HRMS for C₂₉H₃₆O₆ (M, 480.2512) M + Na found 503.3338, calcd. 503.2410.

Br-(C₁₁H₂₂)-(OCH₂CH₂)₅-OTrityl

A solution of (3) (3.45 g, 7.2 mmol) in dry DMF (25 mL) at 0 °C was treated with NaH (60% in oil, 400 mg, 21.6 mmol) and stirred for 30 min. This solution added in 15 min to a solution of 1,11-dibromoundecane in DMF (25 mL) at 0 °C. The final solution was slowly warmed to rt and stirred for 18 h. The reaction mixture was concentrated at 60 °C, taken up in EtOAc (200 mL) and washed with H₂O (100 mL) and brine (100 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. Silica gel chromatography (hex/EtOAc, 3/1 \rightarrow 1/1) yielded **4** as a clear oil (3.12 g, 61% based on X). ¹H NMR (300 MHz, CDCl₃): δ = 7.48 – 7.44 and 7.30 – 7.17 (5 and 10H, 2 x m, CH_{arom}), 3.68 - 3.60 (16H, m, OCH₂), 3.59 – 3.53 (2H, m, CH₂OC₁₁H₂₂Br), 3.43 (2H, t, OCH₂CH₂CH₂, *J* = 6.9 Hz), 3.36 (2H,t, CH₂Br, *J* = 6.9 Hz), 3.25 (2H, t, CH₂OTrt, *J* = 5.1 Hz), 1.87 – 1.78 (2H, m, CH₂CH₂Br), 1.59 – 1.54 (2H, m, OCH₂CH₂CH₂) and 1.27 (14H, s, C₇H₁₄). ¹³C NMR (75.5 MHz, CDCl₃): δ = 144.0, 128.5, 127.6 and 126.7 (C_{arom}), 86.3 (OCPh₃), 71.3, 70.4 and 69.9 (OCH₂), 63.2 (CH₂OTrt), 33.8, 32.6, 29.5, 29.3, 28.5, 28.0 and 25.9 (C₁₁H₂₂Br). HRMS for C₄₀H₅₇O₆Br (M, 712.3339) M + Na found 735.4650, calcd. 735.3237.

Br-(C₁₁H₂₂)-(OCH₂CH₂)₅-OH (3)

A solution of Br-(C₁₁H₂₂)-(OCH₂CH₂)₅-OTrityl (2.79 g, 3.9 mmol) and *p*-toluene sulphonic acid in MeOH (40 mL) was stirred for 18 h. The reaction mixture was neutralised with aqueous NaHCO₃ and concentrated. **3** was obtained after silica gel chromatography (CH₂Cl₂/MeOH, 1/0 \rightarrow 19/1) as clear oil (1.75 g, 95 %). ¹H NMR (300 MHz, CDCl₃): δ = 3.71 - 3.55 (16H, m, OCH₂), 3.46 – 3.38 (4H, m, OCH₂CH₂CH₂, CH₂Br,), 3.21 (1H, bs, CH₂OH), 1.87 – 1.80 (2H, m, CH₂CH₂Br), 1.59 – 1.54 (2H, m, OCH₂CH₂CH₂) and 1.27 (14H, s, C₇H₁₄). ¹³C NMR (75.5 MHz, CDCl₃): δ = 72.3, 71.1, 70.2, 69.9 and 69.7 (OCH₂), 61.2 (CH₂OH), 33.6, 32.4, 29.2, 28.4, 27.8 and 25.7 (C₁₁H₂₂). HRMS for C₂₁H₄₃O₆Br (M, 470.2243) M + Na found 493.3121, calcd. 493.2141.

Br-(C₁₁H₂₂)-(OCH₂CH₂)₅ 2,3,4,6-tri-O-acetyl-β-D-galactopyranoside

A solution of **3** (136 mg, 0.67 mmol) and 2,3,4,6-tri-O-acetyl- α -D-galactosyl trichloro acetimidate **4** (492 mg, 1 mmol) in dry toluene (10 mL) was stirred at 0 °C under a N₂ flow for 15 min. BF₃.Et₂O (170 µL, 1.34 mmol) was added and the reaction was stirred at 0 °C for 1 h. After neutralisation with Et₃N the mixture was concentrated and subjected to silica gel chromatography (hex/EtOAc, $1/3 \rightarrow 0/1$). The product was obtained as clear oil (236 mg, 44%). ¹H NMR (300 MHz, CDCl₃): $\delta = {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 5.39$ (1H, d, H-4, $J_{3,4} = 3.6$ Hz), 5.20 (1H, dd, H-2, $J_{1,2} = 7.8$ Hz, $J_{2,3} = 10.2$ Hz), 5.02 (1H, dd, H-3, $J_{2,3} = 10.5$ Hz, $J_{3,4} = 3.6$ Hz), 4.58 (1H, d, H-1, $J_{1,2} = 8.1$ Hz), 4.15 (2H, dd, H-6ab, J = 2.4 Hz, J = 6.6 Hz), 3.98 – 3.90 (2H, m, CH*H*O_{Gal} and H-5), 3.78 – 3.72 (1H, m, CH*H*O_{Gal}), 3.65 - 3.56 (18H, m, OCH₂), 3.48 – 3.39 (4H, m, OCH₂CH₂CH₂, CH₂Br), 2.15, 2.06, 2.05 and 1.98 (4 x 3H, 4 x s, C(O)CH₃), 1.88 – 1.80 (2H, m, CH₂CH₂Br), 1.59 – 1.54 (2H, m, OCH₂CH₂CH₂) and 1.28 (14H, s, C₇H₁₄). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 170.3$, 170.0 and 169.4 (*C*(O)CH₃), 101.2 (C-1), 71.0, 68.6, 67.1 and 66.8 (C-2, C-3, C-4, C-5), 71.4, 70.5, 69.9 and 69.0 (OCH₂), 61.2 (C-6), 34.0, 32.7, 29.4, 28.6, 28.1 and 26.0 (C₁₁H₂₂) and 20.7 (C(O)CH₃). HRMS for C₃₅H₆₁O₁₅Br (M, 800.3194) M + H found 801.4191, calcd. 801.3272.

azido-(C11H22)-(OCH2CH2)5 2,3,4,6-tri-O-acetyl-β-D-galactopyranoside

A solution of Br-(C₁₁H₂₂)-(OCH₂CH₂)₅ 2,3,4,6-tri-O-acetyl-β-D-galactopyranoside (264 mg, 0.33 mmol) and NaN₃ (107 mg, 1.65 mmol) was stirred in dry DMF at 100 °C for 20 h. The solution was concentrated at 60 °C, taken up in CH₂Cl₂ and filtered. Silica gel chromatography (hex/EtOAc, $1/7 \rightarrow 0/1$) yielded the azide (211 mg, 84%). ¹H NMR (300 MHz, CDCl₃): $\delta = {}^{1}$ H NMR (300 MHz, CDCl₃): $\delta = 5.39$ (1H, d, H-4, $J_{3,4} = 3.3$ Hz), 5.20 (1H, dd, H-2, $J_{1,2} = 8.1$ Hz, $J_{2,3} = 10.5$ Hz), .02 (1H, dd, H-3, $J_{2,3} = 10.5$ Hz, $J_{3,4} = 3.6$ Hz), 4.59 (1H, d, H-1, $J_{1,2} = 8.1$ Hz), 4.16 (2H, dd, H-6ab, J = 2.4 Hz, J = 6.9 Hz), 3.98 – 3.90 (2H, m, CHHO_{Gal} and H-5), 3.79 – 3.73 (1H, m, CHHO_{Gal}), 3.66 - 3.57 (18H, m, OCH₂), 3.46 (2H, t, OCH₂CH₂CH₂, J = 6.9 Hz), 3.27 (2H, t, CH₂N₃, J = 6.9 Hz), 2.15, 2.06, 2.05 and 1.98 (4 x 3H, 4 x s, C(O)CH₃), 1.62 – 1.55 (2H, m, OCH₂CH₂CH₂) and 1.28 (14H, s, C₈H₁₆). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 170.1$, 170.0, 169.9 and 169.3 (*C*(O)CH₃), 101.1 (C-1), 70.9, 68.5, 67.0 and 66.7 (C-2, C-3, C-4, C-5), 71.3, 70.4, 69.9 and 68.9 (OCH₂), 61.1 (C-6), 51.3

(CH₂N₃), 29.2, 28.9, 28.7, 26.5 and 25.9 (C₁₁H₂₂) and 20.5 (C(O)CH₃). HRMS for $C_{35}H_{61}O_{15}N_3$ (M, 763.4103) M + H found 786.5811, calcd. 764.8779.

azido-(C₁₁H₂₂)-(OCH₂CH₂)₅ β-D-galactopyranoside (1)

A solution of azido-(C₁₁H₂₂)-(OCH₂CH₂)₅ 2,3,4,6-tri-O-acetyl-β-D-galactopyranoside (200 mg, 0.26 mmol) in MeOH was treated with NaOMe (30% wt in MeOH, 50 µL). After 2 h the solution was neutralised with Dowex-H⁺, filtered, concentrated and silica gel chromatography (CH₂Cl₂/MeOH, 9/1 \rightarrow 4/1) was used as final purification to yield **5a** was clear oil (119 mg, 72%). ¹H NMR (300 MHz, CDCl₃): δ = ¹H NMR (300 MHz, CDCl₃): δ = 4.52 (bs, 1H), 4.22 (1H, bd, H-1, *J*_{1,2} = 7.2 Hz), 3.95 (1H, bs), 3.73 – 3.63 (2H, m), 3.58 - 3.46 (18H, m, OCH₂), 3.37 (2H, t, OCH₂CH₂CH₂, *J* = 6.9 Hz), 3.19 (2H, t, CH₂N₃, *J* = 7.2 Hz), 1.55 – 1.29 (2H, m, OCH₂CH₂CH₂) and 1.21 (14H, s, C₈H₁₆). ¹³C NMR (75.5 MHz, CDCl₃): δ = 103.4 (C-1), 74.5, 73.4, 71.0 and 68.6 (C-2, C-3, C-4, C-5), 71.4, 70.3 and 68.4 (OCH₂), 61.1 (C-6), 51.3 (CH₂N₃), 29.3, 29.0, 28.7, 26.6 and 25.9 (C₁₁H₂₂). HRMS for C₂₇H₅₃N₃O₁₁ (M, 595.3680) M + Na found 618.3063, calcd. 618.3578.

Divalent galactose dendrimer (6b)

A solution of **6a** (30 mg, 29 µmol), **5a** (51 mg, 86 µmol), CuSO₄.5H₂O (7.1 mg, 29 µmol) and sodium ascorbate (5.6 mg, 29 µmol) was heated in DMF/H₂O (1/1, v/v, 5 mL) under microwave irradiation at 80 °C for 20 min. The reaction mixture was concentrated at 60 °C and subjected to HPLC purification. Divalent dendrimer **6b** was obtained as oil (44.5 mg, 70%). ¹H NMR (H₂O/D₂O, 9/1, v/v, 500 MHz): δ = 8.51 (2H, bt, C(O)NH), 8.30 (2H, bt, C(O)NH), 7.97 (2H, bt, C(O)NH), 7.79 (2H, s, CH_{triazole}), 7.11 (2H, s, CH_{arom}-2,6), 6.77 (1H, s, CH_{arom}-4), 4.42 (2H, d, H-1, *J*_{1,2} = 6.0 Hz), 4.33 (4H, t, OC*H*₂C₁₀H₂₀), 4.12 and 4.07 (2 x 4H, 2 x s, OCH₂C(O)), 3.94 – 3.50 (50H, m), 3.45 (4H, t, CH₂NHC(O)), 3.40 (4H, t, CH₂NHC(O)), 3.30 (4H, bd, CH₂N_{triazole}), 3.18 (4H, t, CH₂NHC(O)), 2.99 and 2.58 (2 x 4H, 2 x t, CH₂CH₂C_{triazole}), 1.77 (8H, m, OCH₂CH₂CH₂NH), 1.66 (4H, t, OCH₂CH₂C₂H₁₈), 1.51 (4H, t, C₉H₁₈CH₂CH₂N_{triazole}) and 1.25 - 1.10 (28H, m, C₇H₁₄). ¹³C NMR (D₂O, 75.5 MHz): δ = 174.9, 172.3 and 171.8 (C(O)NH), 168.4 (C(O)OCH₃), 160.4 (C_{arom}-3,5), 146.9 (C_{triazole}-4), 132.2 (C_{arom}-1), 123.7 (C_{triazole}-5), 109.2 (CH_{arom}-2,6), 107.3 (CH_{arom}-4), 103.8 (C-1), 76.0 73.6 71.6 (C-2, C-3, C-4, C-5), 71.9, 70.5, 69.4 and 69.2 (OCH₂), 67.5 (OCH₂CH₂NH), 61.8 (C-6), 51.0 (C(O)OCH₃), 39.2 and 37.1 (OCH₂CH₂NH and CH₂NHC(O)) 36.0

 $(CH_2CH_2C_{triazole})$, 29.7, 29.3, 28.5, 26.7 and 26.3 $(CH_2CH_2CH_2)$ and 22.0 $(CH_2CH_2C_{triazole})$. MALDI ToF for $C_{104}H_{184}N_{12}O_{40}$ (M, 2241.2733) M + Na found 2265.16, calcd 2265.6199.

Tetravalent galactose dendrimer (7b)

A solution of 7a (20 mg, 9 µmol), 5a (31 mg, 52 µmol), CuSO₄.5H₂O (4.4 mg, 17 µmol) and sodium ascorbate (3.5 mg, 17 µmol) was heated in DMF/H₂O (1/1, v/v, 3 mL) under microwave irradiation at 80 °C for 20 min. The reaction mixture was concentrated at 60 °C and subjected to HPLC purification. Tetravalent dendrimer 7b was obtained as oil (31.7 mg, 78%). ¹H NMR (H₂O/D₂O, 9/1, v/v, 500 MHz): δ = 8.68 (2H, t, C(O)NH), 8.50 (4H, t, C(O)NH), 8.30 (4H, t, C(O)NH), 7.97 (4H, t, C(O)NH), 7.76 (4H, s, CH_{triazole}), 7.03 (2H, s, CH_{arom} -2,6), 7.00 (4H, s, CH_{arom} -2',6'), 6.67 (3H, bs, CH_{arom} -4, 4'), 4.42 (4H, d, H-1, $J_{1,2}$ = 6.0 Hz), 4.28 (8H,bs t, OCH₂C₁₀H₂₀), 4.10 and 4.06 (2 x 4H, 2 x s, OCH₂C(O)), 3.94 - 3.73 (16H, m), 3.72 - 3.61 (44H, m), 3.60 - 3.52 (32H, m), $3.50 (8H, bs, CH_2N_{triazole})$, 3.46 - 3.36(12H, m CH₂NHC(O)), 3.28 (8H, bs, CH₂NHC(O)), 3.18 (8H, bd, CH₂NHC(O)), 2.97 and 2.57 (2 x 8H, bs and bt, CH₂CH₂Ctriazole), 1.78 – 1.70 (16H, m, OCH₂CH₂CH₂NH), 1.66 (8H, t, OCH₂CH₂C₉H₁₈), 1.48 (8H, t, C₉H₁₈CH₂CH₂N_{triazole}) and 1.20 – 1.05 (56H, m, C₇H₁₄). ¹³C NMR (D₂O, 75.5 MHz): $\delta = 174.7$, 172.1 and 171.6 (C(O)NH), 169.0 (C(O)OCH₃), 160.5 (Carom-3',5'), 146.9 (Ctriazole-4), 118.2 (CHarom) 103.8 (C-1), 76.0, 73.6, 71.6 and 69.5 (C-2, C-3, C-4 and C-5), 71.9, 70.5 and 69.4 (OCH₂), 67.4 (OCH₂CH₂NH), 61.8 (C-6), 51.1 (C(O)OCH₃), 39.2 and 37.2 (OCH₂CH₂NH and CH₂NHC(O)) 36.0 (CH₂CH₂CH₂Ctriazole), 29.9, 29.4, 28.5, 26.8 and 26.4 (CH₂CH₂CH₂) and 22.0 (CH₂CH₂C_{triazole}). MALDI ToF for $C_{218}H_{378}N_{26}O_{82}$ (M, 4672.6208) M + Na found 4698.12, calcd 4698.45.

Octavalent Galactose dendrimer (8b)

A solution of **8a** (20 mg, 4 µmol), **5a** (30 mg, 50 µmol), CuSO₄.5H₂O (4.2 mg, 17 µmol) and sodium ascorbate (3.3 mg, 17 µmol) was heated in DMF/H₂O (1/1, v/v, 3 mL) under microwave irradiation at 80 °C for 20 min. The reaction mixture was concentrated at 60 °C and subjected to HPLC purification. Octavalent dendrimer **8b** was obtained as oil (31 mg, 77%). ¹H NMR (H₂O/D₂O, 9/1, v/v, 500 MHz): δ = 8.66 (4H, bs, C(O)NH), 8.49 (8H, bs, C(O)NH), 8.30 (8H, bs, C(O)NH), 8.06 (2H, bs, C(O)NH), 7.97 (8H, bs, C(O)NH), 7.75 (8H, s, CH_{triazole}), 6.96 (14H, bs, CH_{arom}-2,6, 2',6', 2'',6''), 6.64 (7H, bs, CH_{arom}-4, 4', 4''), 4.42

(8H, d, H-1, $J_{1,2}$ = 6.0 Hz), 4.27 (16H,bs, OC $H_2C_{10}H_{20}$), 4.12 and 4.02 (16H, m, OCH₂C(O)), 3.93 – 3.72 (16H, m), 3.72 – 3.61 (82H, m), 3.61 – 3.50 (60H, m), 3.48 (16H, bs, CH₂N_{triazole}), 3.46 – 3.36 (28H, m C H_2 NHC(O)), 3.26 (16H, bs, C H_2 NHC(O)), 3.16 (8H, bs, C H_2 NHC(O)), 2.96 and 2.56 (2 x 8H, 2 x bs, CH₂CH₂C_{triazole}), 1.74 (32H, bs, OCH₂C H_2 CH₂NH), 1.64 (16H, bt, OCH₂C H_2 C₉H₁₈), 1.46 (16H, bs, C₉H₁₈C H_2 CH₂N_{triazole}) and 1.20 – 1.05 (112H, m, C₇H₁₄). ¹³C NMR (D₂O, 75.5 MHz): δ = 174.4, 171.9 and 171.4 (C(O)NH), 168.4 (C(O)OCH₃), 160.3 (C_{arom}-3^{**},5^{**}), 103.6 (C-1), 75.8 73.4 and 71.4 (C-2, C-3, C-4, C-5), 71.7, 70.3, 69.2 and 69.1 (OCH₂), 61.6 (C-6), 50.8 (CH₂N_{triazole}), 37.0 (CH₂NHC(O)) 29.7, 29.2, 26.8 and 26.3 (CH₂CH₂CH₂CH₂) and 21.9 (CH₂CH₂C_{triazole}). MALDI ToF for C₄₄₆H₇₆₆N₅₄O₁₆₆ (M, 9558.3056) M + Na found 9561.58, calcd 9562.11.

Monovalent Galactose reference (5b)

A solution of 1,2,3,4,6-penta-O-acetyl-β-D-galactopyranoside (3.90 g, 10.0 mmol) and tetraethylene glycol (6.91 mL, 40 mmol) in dry CH₂Cl₂ (50 mL) was cooled to 0 °C and BF₃.Et₂O (6.34 mL, 50 mmol) was added in 2 min. The mixture was stirred overnight, neutralized with Et₃N, diluted with CH₂Cl₂ (200 mL), washed with aqueous NaHCO₃ (5%, 125 mL), H₂O (125 mL) and brine (125 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated. Silica gel chromatography (CH₂Cl₂/MeOH, 19/1) of the residue gave the desired compound a slightly yellow syrup (3.24 g, 62%). ¹H NMR (300 MHz, CDCl₃): δ = 5.39 (1H, dd, H-4, $J_{3,4}$ = 3.6 Hz, $J_{4,5}$ = 1.2 Hz), 5.20 (1H, dd, H-2, $J_{1,2}$ = 7.8 Hz, $J_{2,3} = 10.5$ Hz), 5.03 (1H, dd, H-3, $J_{2,3} = 10.5$ Hz, $J_{3,4} = 3.3$ Hz), 4.59 (1H, d, H-1, $J_{1,2} = 7.8$ Hz), 4.16 (2H, dd, H-6ab, J = 3.6 Hz, J = 6.9 Hz), 3.98 - 3.91 (2H, m, CHHO_{Gal} and H-5), 3.79 – 3.60 (15H, m, CHHO_{Gal}, OCH₂), 2.80 (1H, bs, OH), 2.15, 2.07, 2.05 and 1.98 (4 x 3H, 4 x s, C(O)CH₃). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 170.2$, 170.1, 170.0 and 169.3 (C(O)CH₃), 101.1 (C-1), 70.7, 68.7 and 66.9 (C-2, C-3, C-4, C-5), 72.3, 70.5, 70.4, 70.1, 68.8 and 63.4 (OCH₂), 61.5 (CH₂OH), 61.1 (C-6), 20.6 and 20.5 (C(O)CH₃). HRMS for C₂₂H₃₆O₁₄ (M, 524.2105) M + Na found 547.1472, calcd. 547.2003. Obtained galactoside (1.05 g, 2.0 mmol) was stirred in MeOH (10 mL) and NaOMe (50 µL, 30% wt in MeOH) was added. After 1 h the reaction mixture was neutralized with Dowex-H⁺, filtered and concentrated. Small impurities were removed by silica gel chromatography (EtOAc/MeOH/H2O, 5/2/1) to give 12 (531 mg, 75%). ¹H NMR (300 MHz, CD₃OD): $\delta = 4.26$ (1H, d, H-1, $J_{1,2} = 6.9$ Hz), 4.05 - 3.98 (1H, m), 3.83 (1H, s, H-4), 3.79 - 3.60 (15H, m, OCH₂) and 3.58 - 3.50 (5H, m). ¹³C NMR (75.5 MHz, CD₃OD): δ = 105.1 (C-1), 76.7, 74.9, 72.6 and 70.3 (C-2, C-3, C-4, C-

5), 73.7, 71.5 and 69.7 (OCH₂), 62.6 and 62.3 (CH₂OH, C-6). HRMS for $C_{14}H_{28}O_{10}$ (M, 356.1682) M + Na found 379.1194, calcd. 379.1580.

HPLC of **6b**, UV and ELSD detection

HPLC of **7b**, UV and ELSD detection

HPLC of 8b, UV and ELSD detection

