New ligand platforms for developing the chemistry of the Ti=N-NR₂ functional group and insertion of alkynes into the N-N bond of a

Ti=N-NPh₂ ligand

Supporting information

Data for Ti{MeN(CH₂CH₂NSiMe₃)₂}(NNPh₂)(py) (2). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 8.68 (2 H, d, ³*J* = 6.4 Hz, *o*-NC₅H₅), 7.87 (4 H, d, ³*J* = 7.6 Hz, *o*-C₆H₅), 7.31 (4 H, app. t, ³*J* = 7.1 Hz and 7.6 Hz, *m*-C₆H₅), 6.91 (2 H, t, ³*J* = 7.1 Hz, *p*-C₆H₅), 6.68 (1 H, t, ³*J* = 7.6 Hz, *p*-NC₅H₅), 6.38 (2 H, app. t, ³*J* = 6.4 Hz and 7.6 Hz, *m*-NC₅H₅), 3.56, 3.39 (2 × 2 H, 2 × m, CH₂NSiMe₃), 2.74, 2.56 (2 × 2 H, 2 × m, CH₂NMe), 2.62 (3 H, s, NMe), 0.03 (18 H, s, SiMe₃). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 153.9 (*o*-NC₅H₅), 147.9 (*i*-C₆H₅), 138.7 (*p*-NC₅H₅), 129.3 (*m*-C₆H₅), 124.0 (*m*-NC₅H₅), 122.2 (*p*-C₆H₅), 119.1 (*o*-C₆H₅), 63.6 (CH₂NMe), 50.7 (NMe), 48.2 (CH₂NSiMe₃), 1.9 (SiMe₃). IR (NaCl plates, Nujol mull, cm⁻¹): v 1600 (m), 1586 (s), 1486 (s), 1445 (s), 1308 (w), 1298 (w), 1240 (s), 1211 (w), 1168 (w), 1078 (m), 1064 (m), 1041 (m), 1012 (w), 989 (w), 919 (s), 841 (s), 799 (m), 745 (s), 697 (s), 636 (w), 621 (w). EI-MS: *m/z* 489 [M-py]⁺ (16%), 168 [NPh₂]⁺ (73%). Anal. Found (calcd. for C₂₈H₄₄N₆Si₂Ti): C, 59.0 (59.1); H, 7.7 (7.8); N, 14.7 (14.8) %.

Data for Ti{(2-C₅H₄N)CH₂N(CH₂CH₂NSiMe₃)₂}(NNPh₂) (3). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 8.98 (1 H, d, ³*J* = 6.5 Hz, 6-NC₅H₄), 7.75 (4 H, d, ³*J* = 8.3 Hz, *o*-C₆H₅), 7.24 (4 H, app. t, ³*J* = 8.3 Hz and 7.6 Hz, *m*-C₆H₅), 6.87 (2 H, t, ³*J* = 7.6 Hz, *p*-C₆H₅), 6.61 (1 H, app. t, ³*J* = 7.6 Hz and 7.7 Hz, 4-NC₅H₄), 6.12 (1 H, app. t, ³*J* = 7.7 Hz, 5-NC₅H₄), 6.06 (1 H, d, ³*J* = 7.6 Hz, 3-NC₅H₄), 3.66 (2 H, m, CH₂NSiMe₃ inner protons), 3.46 (2 H, m, CH₂NSiMe₃ outer protons), 3.01 (2 H, s, CH₂NC₅H₄), 2.60 (2 H, m, CH₂NSiMe₃ inner protons), 2.08 (2 H, m, CH₂N outer protons), 0.45 (18 H, s, SiMe₃). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 159.3 (2-NC₅H₅), 154.5 (6-NC₅H₅), 147.8 (*i*-C₆H₅), 140.0 (4-NC₅H₅), 129.5 (*m*-C₆H₅), 127.8, 123.5 (3-NC₅H₅ and 5-NC₅H₅), 122.0 (*p*-C₆H₅), 120.5 (o-C₆H₅), 57.3 (CH₂NC₅H₅), 56.4 (NCH₂), 49.2 (CH₂NSiMe₃), 3.2 (SiMe₃). IR (NaCl plates, Nujol mull, cm⁻¹): v 1593 (m), 1583 (m), 1487 (s), 1312 (w), 1237 (m), 1168 (w), 1156 (w), 1086 (s), 1024 (m), 946 (m), 934 (m), 866 (m), 833 (s), 793 (m), 756 (w), 740 (m), 701 (w), 692 (w), 630 (w), 584 (w). EI-MS: *m/z* 168 [NPh₂]⁺ (88%), 73 [SiMe₃] (88 %). Anal. Found (calcd. for C₂₈H₄₂N₆Si₂Ti): C, 59.2 (59.3); H, 7.4 (7.5); N, 14.7 (14.8) %

Data for Ti(NNPh₂)(BnCalix) (4). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 8.23 (4 H, d, ³*J* = 8.8 Hz, *o*-NC₆H₅), 7.26 (4 H, app. t, ³*J* = 7.0 Hz and 8.8 Hz, *m*-NC₆H₅), 7.17 (4 H, s, OC₆<u>H</u>₂^tBu), 7.02 (10 H, m, CC₆H₅), 6.92 (2 H, t, ³*J* = 7.0 Hz, *p*-NC₆H₅), 6.79 (4 H, s, BnOC₆<u>H</u>₂^tBu), 5.63 (4 H, s, C<u>H</u>₂C₆H₃), 4.48 (4 H, d, ²*J* = 12.4 Hz, ArC<u>H</u>₂Ar proximal to Bn), 3.05 (4 H, d, ²*J* = 12.4 Hz, ArC<u>H</u>₂Ar distal to Bn), 1.43 (18 H, s, OC₆H₂^tBu), 0.68 (18 H, s, BnOC₆H₂^tBu). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 160.5 (*i*-OC₆H₂^tBu), 149.3 (*p*-BnOC₆H₂^tBu), 148.8 (*i*-BnOC₆H₅^tBu), 146.9 (*p*-NC₆H₅), 140.8 (*p*-BnOC₆H₂^tBu), 134.8 (*i*-CH₂C₆H₅), 127.1 (*m*-BnOC₆H₂^tBu), 124.9 (*m*-OC₆H₂^tBu), 123.1 (*m*-NC₆H₅), 118.2 (*o*-NC₆H₅), 89.1 (<u>C</u>H₂C₆H₅), 34.6 (Ar<u>C</u>H₂Ar), 34.5 (OC₆H₂C<u>M</u>₆), 34.1 (BnOC₆H₂C<u>M</u>₆), 32.6 (OC₆H₂C<u>M</u>₆), 31.0 (BnOC₆H₂C<u>M</u>₆). IR (NaCl plates, Nujol mull, cm⁻¹): v 1587 (m), 1479 (s, broad), 1393 (w), 1361 (m), 1325 (s), 1314 (s), 1273 (s), 1212 (s),1186 (m), 1168 (m), 677 (m), 627 (m), 612 (w), 573 (w). EI-MS: *m/z* 1056 [M⁺¹] (26 %). Anal. Found (calcd. for C₇₀H₇₆N₂O₄Ti): C, 75.6 (79.5); H, 7.3 (7.3); N, 2.5 (2.7) %.

Data for Ti{MeN(CH₂CH₂NSiMe₃)₂}{NC(Me)C(Me)NPh₂}(py) (6). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 8.31 (2 H, d, ³*J* = 5.2 Hz, *o*-NC₅H₅), 7.60 (4 H, d, ³*J* = 8.2 Hz, *o*-C₆H₅), 7.27 (4 H, app. t, ³*J* = 8.2 Hz, *m*-C₆H₅), 6.89 (2 H, t, ³*J* = 8.2 Hz, *p*-C₆H₅), 6.74 (1 H, t, ³*J* = 7.6 Hz, *p*-NC₅H₅), 6.44 (2 H, app. t, ³*J* = 7.6 Hz, *m*-NC₅H₅), 3.47 (2 H, m, C<u>H</u>₂NSiMe₃ inner protons), 3.27 (2 H, m, C<u>H</u>₂NSiMe₃ outer protons), 2.69 (2 H, m, C<u>H</u>₂NMe inner protons), 2.50 (3 H, s, NMe), 2.32 (2 H, m, C<u>H</u>₂NMe outer protons), 2.16 (3 H, s, NC(<u>Me</u>)) 1.81 (3 H, s, C(<u>Me</u>)NPh₂), 0.07 (18 H, s, SiMe₃). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 153.2 (*o*-NC₅H₅), 152.4 (NCMe), 148.3 (*i*-NC₆H₅), 147.1 (*p*-NC₅H₅), 129.4 (*m*-NC₆H₅), 123.8 (*m*-NC₅H₅), 121.5 (*o*-NC₆H₅), 120.7 (*p*-NC₆H₅), 110.9 (C(NPh₂)Me), 62.5 (CH₂NMe), 48.2 (CH₂NSiMe₃), 48.0 (NMe), 24.1 (NCMe), 15.7 (C(NPh₂)Me), 2.0 (SiMe₃). IR (NaCl plates, Nujol mull, cm⁻¹): v 1679 (m), 1589 (s), 1491 (s), 1291 (m), 1247 (s), 926 (w), 837 (s), 750 (m), 699 (m). EI-MS: *m/z* 168 [NPh₂]⁺ (28%). Elemental analysis was not obtained for this complex, which degrades on handling.

Data for Ti{MeN(CH₂CH₂NSiMe₃)₂}{NC(Ph)C(Me)NPh₂}(py) (7). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 8.08 (2 H, d, ³*J* = 4.7 Hz, *o*-NC₅H₅), 7.69 (6 H, overlapping 2 × d, ³*J* = 7.6 Hz and 6.4 Hz, *o*-NC₆H₅ and *o*-CC₆H₅), 7.29 (6 H, overlapping 2 × app. t, ³*J* = 7.6 Hz, 7.1 Hz and 6.4 Hz, *m*-NC₆H₅ and *m*-CC₆H₅), 7.12 (1 H, t, ³*J* = 7.1 Hz, *p*-CC₆H₅), 6.92 (2 H, t, ³*J* = 7.1 Hz, *p*-NC₆H₅), 6.69 (1 H, t, ³*J* = 7.6 Hz, *n*-NC₅H₅), 6.39 (2 H, app. t, ³*J* = 4.7 Hz and 7.6 Hz, *m*-NC₅H₅), 3.34 (2 H, m, C<u>H</u>₂NSiMe₃ inner protons), 3.22 (2 H, m, C<u>H</u>₂NSiMe₃ outer protons), 2.64 (2 H, m, C<u>H</u>₂NMe inner protons), 2.13 (2 H, m, C<u>H</u>₂NMe outer protons), 2.08 (3 H, s, NMe), 1.69 (3 H, s, CH₃), 0.07 (18 H, s, SiMe₃). ¹³C-{¹H} NMR

 $(C_6D_6, 75.4 \text{ MHz}, 293 \text{ K}): \delta 158.3 (\underline{C}C_6H_5), 153.5 (o-NC_5H_5), 148.0 (i-NC_6H_5), 144.9 (i-CC_6H_5), 138.3 (p-NC_5H_5), 130.3 (o-CC_6H_5), 129.7 (m-NC_6H_5), 129.6 (m-CC_6H_5) 126.5 (p-CC_6H_5), 123.6 (m-NC_5H_5), 121.6 (o-NC_6H_5), 121.0 (p-NC_6H_5), 112.4 (\underline{C}Me), 61.4 (\underline{C}H_2NMe), 48.6 (\underline{C}H_2NSiMe_3), 47.0 (NMe), 16.2 (C\underline{M}e), 2.1 (SiMe_3). IR (NaCl plates, Nujol mull, cm⁻¹): v 1601 (m), 1585 (s), 1489 (s), 1459 (s), 1444 (s), 1324 (s), 1240 (s), 1205 (m), 1082 (m), 1066 (s), 1040 (m), 1013 (m), 993 (w), 943 (m), 923 (s), 832 (s), 803 (s), 748 (s), 703 (s), 694 (s), 637 (w), 601 (m). EI-MS: <math>m/z$ 168 [NPh₂]⁺ (26 %). Anal. Found (calcd. for $C_{37}H_{52}N_6Si_2Ti$): C,64.8 (64.9); H, 7.6 (7.7); N, 12.2 (12.3) %.

Data for PhC(NH₂)C(Me)NPh₂ (8). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.31 (2 H, dd, ³*J* = 7.7 ⁴*J* = 1.7 Hz, *o*-CC₆H₅), 7.23 (4 H, d, ³*J* = 7.6 Hz, *o*-NC₆H₅), 7.16-7.05 (7 H, overlapping peaks, *m*-NC₆H₅, *m*-CC₆H₅), 6.83 (2 H, tt, ³*J* = 7.1 Hz, ⁴*J* = 1.2, *p*-NC₆H₅), 2.99 (2 H, s, NH₂), 1.73 (3H, s, CH₃). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 146.4 (*i*-NC₆H₅), 140.0 (*i*-CC₆H₅), 139.2 (<u>C</u>C₆H₅), 130.0 *m*-NC₆H₅), 129.4 (*o*-CC₆H₅), 128.7 (*m*-CC₆H₅), 128.2 (*p*-CC₆H₅), 122.0 (*p*-NC₆H₅), 121.0 (*o*-NC₆H₅), 111.9 (<u>C</u>CH₃), 16.3 (C<u>C</u>H₃). IR (NaCl plates, Nujol mull, cm⁻¹): v 3365 (s, br), 2331 (w, br), 1935 (w), 1653 (m), 1588 (s), 1491 (s), 1307 (m), 1300 (m), 1284 (m), 1150 (s, br), 983 (m), 749 (s), 693 (s). EI-MS: *m/z* 300 [M⁺] (100%).

Data for Cp*Ti{MeC(NⁱPr)₂}(NNPh₂) (9). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.22 (4 H, d, ³*J* = 8.8 Hz, *o*-C₆H₅), 7.13 (4 H, dd, ³*J* = 7.5 and 8.8 Hz, *m*-C₆H₅), 6.81 (2 H, t, ³*J* = 7.5 Hz, *p*-C₆H₅), 3.60 (2 H, sept., ³*J* = 6.3 Hz, NC<u>H</u>MeMe), 1.99 (15 H, s, C₅Me₅), 1.65 (3 H, s, MeCN₂), 1.04 (6 H, d, ³*J* = 6.3 Hz, NCH<u>Me</u>Me), 1.03 (6 H, d, ³*J* = 6.3 Hz, NCHMe<u>Me</u>). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 160.7 (CN₂), 147.1 (*i*-C₆H₅), 129.1 (*m*-C₆H₅), 122.0 (*p*-C₆H₅), 120.6 (*o*-C₆H₅), 120.0 (<u>C</u>₅Me₅), 49.5 (N<u>C</u>HMeMe), 26.8 (NCH<u>Me</u>Me), 25.8 (NCHMe<u>Me</u>), 12.7 (C₅<u>Me₅</u>), 12.3 (<u>Me</u>CN₂). IR (NaCl plates, Nujol mull, cm⁻¹): v 2609 (w), 1656 (w), 1595 (s), 1586(s), 1488 (s), 1466 (s), 1378 (s), 1339 (m), 1333 (m), 1319 (m), 1311 (m), 1295 (w), 1277 (w), 1254 (m), 1215 (m), 1169 (m), 1160 (w), 1148 (w), 1119 (w), 1071 (w), 1026 (w), 992 (w), 919 (w), 875 (w), 838 (w), 812 (m), 791 (w), 751 (s), 741 (s), 723 (w), 700 (s), 693 (s), 631 (m). EI-MS: *m/z* 506 [M⁺] (70 %), 168 [NPh₂⁺] (100 %), 77 [Ph⁺] (68 %). Anal. found (calcd. for C₃₀H₄N₄Ti): C, 71.0 (71.1); H, 8.3 (8.4); N, 11.0 (11.1) %.

Data for Cp*Ti{MeC(NⁱPr)₂}(NNMe₂) (10).

¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.22 (4 H, d, ³*J* = 8.8 Hz, *o*-C₆H₅), 7.13 (4 H, dd, ³*J* = 7.5 and 8.8 Hz, *m*-C₆H₅), 6.81 (2 H, t, ³*J* = 7.5 Hz, *p*-C₆H₅), 3.60 (2 H, sept., ³*J* = 6.3 Hz, NC<u>H</u>MeMe), 1.99 (15 H, s, C₅Me₅), 1.65 (3 H, s, MeCN₂), 1.04 (6 H, d, ³*J* = 6.3 Hz, NCH<u>Me</u>Me), 1.03 (6 H, d, ³*J* = 6.3 Hz, NCHMe<u>Me</u>). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 160.6 (CN₂), 118.9 (<u>C</u>₅Me₅), 49.1

(N<u>C</u>HMeMe), 48.3 (NMe), 26.8 (NCH<u>Me</u>Me), 26.1 (NCHMe<u>Me</u>), 12.6 (C₅<u>Me</u>₅), 11.9 (<u>Me</u>CN₂). Anal. found (calcd. for C₂₁H₄₁N₄Ti): C, 63.0 (62.8); H, 9.8 (10.0); N, 14.5 (14.7) %.

Data for Cp*Ti(NNPh₂)Cl(py) (11). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 8.36 (2 H, d, ³*J* = 5.3 Hz, *o*-NC₅H₅), 7.49 (4 H, d, ³*J* = 8.8 Hz, *o*-C₆H₅), 7.21 (4 H, app. t, ³*J* = 7.1 and 8.8 Hz, *m*-C₆H₅), 6.87 (2 H, t, ³*J* = 7.4 Hz, *p*-C₆H₅), 6.75 (1 H, t, ³*J* = 7.6 Hz, *p*-NC₅H₅), 6.44 (2 H, app. t, ³*J* = 6.5 and 7.1 Hz, *m*-NC₅H₅), 1.88 (15 H, s, C₅Me₅). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 150.8 (*o*-NC₅H₅), 146.7 (*i*-C₆H₅), 138.4 (*p*-NC₅H₅), 129.5 (*m*-C₆H₅), 124.6 (*m*-NC₅H₅), 122.9 (*p*-C₆H₅), 120.4 (*o*-NC₅H₅), 118.5 (C₅Me₅), 12.0 (C₅Me₅). IR (NaCl plates, Nujol mull, cm⁻¹): v 1603 (m), 1593 (s) 1584 (s) 1486 (s) 1444 (s) 1310 (s) 1281 (m) 1239 (s) 1214 (w) 1169 (m) 1152 (m) 1069 (m) 1014 (m) 989 (m) 875 (w) 746 (s) 692 (s) 640 (w) 518 (s). EI-MS: *m/z* 183 [NNPh₂]⁺ (100), 168 [NPh₂]⁺ (95 %), 77 [C₆H₅]⁺ (85 %). Anal. found (calcd. for C₂₇H₃₁ClN₃Ti): C, 67.5 (67.4); H, 6.3 (6.5); N, 8.7 (8.7) %.

Data for Cp₂Ti(NNPh₂)(py) (12). ¹H NMR data (C₆D₆, 299.9 MHz, 293 K): 8.39 (2H, d, ³J = 6.5 Hz, o-NC₅H₅), 7.25 (4H, d, ³J = 8.8 Hz, o-C₆H₅), 7.15 (8H, app. t, ³J = 7.7 and 8.8 Hz, m-C₆H₅, 6.88 (2H, t, ³J = 7.7, p-C₆H₅), 6.66 (1H, t, ³J = 7.6 Hz, p-NC₅H₅), 6.23 (2H, app. t, ³J = 6.5 and 7.6 Hz, m-NC₅H₅), 5.88 (10H, s, C₅H₅). ¹³C-{¹H} NMR data (C₆D₆, 75.4 MHz, 293 K): 155.0 (o-NC₅H₅), 146.5 (i-C₆H₅), 137.0 (p-NC₅H₅), 129.9 (m-C₆H₅), 123.8 (m-NC₅H₅), 123.3 (p-C₆H₅), 120.8 (o-C₆H₅), 110.0 (C₅H₅). IR (NaCl plates, Nujol mull, cm⁻¹): v 1597 (m), 1592 (m), 1584 (m), 1575 (w), 1486 (m), 1440 (s), 1291 (w), 1214 (w), 1151 (w), 1096 (s), 1069 (s), 812 (s), 795 (s), 783 (s), 760 (w), 702 (w), 694 (s), 628 (m). EI-MS: m/z 168 [NPh₂]⁺ (52 %), 77 [C₆H₅]⁺ (10 %), 65 [C₅H₅]⁺ (70 %). Anal. Found (Calc.) for C₂₇H₂₅N₃Ti: C, 73.8 (73.8); H, 5.6 (5.7); N, 9.5 (9.6).

Data for Cp*Ti(NNPh₂)(NHNPh₂)(py) (13). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): δ 7.85 (2 H, d, ³*J* = 6.5 Hz, *o*-NC₅H₅), 7.34 (4 H, d, ³*J* = 8.8 Hz, *o*-NNC₆H₅), 7.23 (4 H, d, ³*J* = 8.8 Hz, *o*-NHNC₆H₅), 7.08 (4 H, app. t, ³*J* = 7.1 and 8.8 Hz, *m*-NNC₆H₅), 7.02 (4 H, app. t, ³*J* = 7.1 and 8.8 Hz, *m*-NHNC₆H₅), 6.96 (1 H, s, NHNPh₂), 6.84 (2 H, t, ³*J* = 7.1 Hz, *p*-NNC₆H₅), 6.74 (2 H, t, ³*J* = 7.5 Hz, *p*-NHNC₆H₅), 6.66 (1 H, t, ³*J* = 7.7 Hz, *p*-NC₅H₅), 6.24 (2 H, dd, ³*J* = 7.7 and 6.5 Hz, *m*-NC₅H₅), 1.88 (15 H, s, C₅Me₅). ¹³C-{¹H} NMR (C₆D₆, 75.4 MHz, 293 K): δ 152.1 (*o*-NC₅H₅), 150.9 (*i*-NHNC₆H₅), 147.1 (*i*-NNC₆H₅), 137.4 (*p*-NC₅H₅), 129.2 (*m*-NNC₆H₅), 128.9 *m*-NHNC₆H₅, 123.6 (*m*-NC₅H₅), 122.0 (*p*-NNC₆H₅), 121.0 (*p*-NHNC₆H₅), 120.3 (*o*-NC₅H₅), 116.2 (C₅Me₅), 11.9 (C₅Me₅). IR (NaCl plates, Nujol mull, cm⁻¹): v 2361 (s), 2338 (s), 1942 (w), 1869 (w), 1844 (w), 1829 (w), 1792 (w), 1772 (w), 1750 (w), 1734 (m), 1717 (m), 1700 (m), 1684 (m), 1670 (w), 1663 (s), 1653 (m), 1647 (m), 1636 (w), 1616 (s), 1594 (s), 1586 (s), 1559 (s), 1541 (s), 1507 (s), 1490 (s), 1444 (s), 1419 (m), 1395 (w), 1376 (s), 1328 (s), 1312 (s), 1277 (m), 1252 (m), 1213 (w), 1167 (m), 1158 (m), 1069 (m), 1044 (m), 1025 (m), 988 (m), 927

(w), 838 (), 791 (s), 744 (s), 697 (m), 640 (w). EI-MS: *m/z* 100 (88 %) [NPh₂]⁺, 77 [Ph]⁺ (58 %). Anal. found (calcd. for C₃₉H₄₁N₅Ti): C 74.5 (74.6), H 6.8 (6.6), N 11.1 (11.2) %

Computational details. All the calculations have been performed with the Gaussian03 package¹ at the B3PW91 level.^{2, 3} The titanium atom was represented by the relativistic effective core potential (RECP) from the Stuttgart group (12 valence electrons) and its associated basis set,⁴ augmented by an f polarization function ($\alpha = 0.869$).⁵ The remaining atoms (C, H, N) were represented by a 6-31G(d,p) basis set.⁶ Full optimizations of geometry without any constraint were performed, followed by analytical computation of the Hessian matrix to confirm the nature of the located extrema as minima on the potential energy surface.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery, J. A., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, in 'Gaussian 03, Revision C.02', Wallingford CT, 2004.
- (2) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- (3) J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244.
- (4) D. Andrae, U. Haussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, 77, 123.
- (5) A. W. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A. Hollwarth, V. Jonas, K. F. Kohler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 111.
- (6) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213.