Enantiopure vs. Racemic Metalloligands: Impact on MetalOrganic Framework Structure and Synthesis

Sergio J. Garibay, ${ }^{a}$ Jay R. Stork, ${ }^{a}$ Zhenqiang Wang, ${ }^{a}$ Seth M. Cohen, ${ }^{a}$ and Shane G. Telfer ${ }^{b}$
${ }^{a}$ Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, U.S.A. Fax: 858-822-5598; Tel: 858-822-5596; E-mail: scohen@ucsd.edu
${ }^{b}$ MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.E-mail: s.telfer@massey.ac.nz

General

All starting materials were obtained from commercial suppliers and used without further purification. Elemental analysis was performed at NuMega Resonance Labs, San Diego, California. Powder X-ray diffraction (PXRD) data were collected on a Rigaku Miniflex II diffractometer at $30 \mathrm{kV}, 15 \mathrm{~mA}$ for $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.5418 \AA)$, with a scan speed of $5^{\circ} \mathrm{min}^{-1}$ and a step size of 0.005° in $3-40^{\circ} 2 \theta$ at room temperature. The experimental backgrounds were corrected using Jade 5.0. The simulated PXRD patterns were calculated from single-crystal diffraction data using Mercury 1.5. Thermogravimetric analysis (TGA) was performed at a scan speed of $5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen gas on a TA Instrument Q600 SDT.

I. Synthesis of $\left.[\mathbf{C o}(4-c p d p m))_{3}\right]$

2,3-dicyano-5,6-dichloro-parabenzoquinone ($1.93 \mathrm{~g}, 8.5 \mathrm{mmol}$) was dissolved in 30 mL of THF and added drop-wise to a solution of (4-methoxycarbonylphenyl) dipyrromethane $(1.98 \mathrm{~g}, 7.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$ cooled under an ice bath. The solution was subsequently stirred under nitrogen gas for 2 h . The chloroform was
removed on a rotary evaporator producing a brown solid, which was used in the next step of the reaction.
$\mathrm{Na}_{3} \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}(0.95 \mathrm{~g}, 2.4 \mathrm{mmol})$ was dissolved in a $3: 7$ acetonitrile: $\mathrm{H}_{2} \mathrm{O}$ mixture and added to a solution of the crude dipyrromethene (see above) dissolved in acetonitrile $(200 \mathrm{~mL})$. An excess of triethylamine $(10 \mathrm{~mL})$ was added and the solution was refluxed at $80^{\circ} \mathrm{C}$ under nitrogen gas overnight ($\sim 14 \mathrm{~h}$). The solution was evaporated and dissolved with dichloromethane and a few drops of methanol. The product was chromatographed on SiO_{2} using dichloromethane as an eluant. The isolated cobalt(III) complex was dried in a vacuum oven overnight. Yield: $1.15 \mathrm{~g}(1.3 \mathrm{mmol}, 55 \%)$.

The cobalt(III) complex ($1.15 \mathrm{~g}, 1.3 \mathrm{mmol}$) was hydrolyzed in a 1:1 THF:4\% KOH solution (75 mL). The solution was refluxed at $80^{\circ} \mathrm{C}$ under nitrogen gas for 6 h . The solution was allowed to cool to room temperature and the product was precipitated using $6 \mathrm{~N} \mathrm{HCl}(\sim 15 \mathrm{~mL})$. The red solid was filtered onto a glass frit and washed several times with cold water. The product was dried in a vacuum oven overnight. Yield: 1.06 g ($1.25 \mathrm{mmol}, 97 \%$). Spectroscopic data are consistent with those previously reported in the literature. ${ }^{1,2}$

II. Resolution of $[\mathbf{C o}(4-c p d p m) ~ 3]$

Resolution was performed with (-)-cinchonidine by a previously reported procedure. ${ }^{2}$ Racemic $\Delta, \Lambda-\left[\mathrm{Co}(4-\mathrm{cpdpm})_{3}\right](805 \mathrm{mg}, 0.95 \mathrm{mmol})$ was dissolved in hot THF $\left(\sim 70^{\circ} \mathrm{C}\right.$, $20 \mathrm{~mL})$ and a solution of (-)-cinchonidine in hot THF (20 mL). The dark-orange solution was allowed to cool and stood covered overnight. An orange precipitate was filtered and chromatographed on SiO_{2} with an ethyl acetate/trifuloroacetic acid (99.7/0.3) solution. The solution was evaporated and dried overnight in a vacuum oven resulting in $\Lambda-[\operatorname{Co}(4-$ cpdpm $)_{3}$], ($443 \mathrm{mg}, 0.52 \mathrm{mmol}, 55 \%$ of starting racemic compound) with an ee of less than 70%. Another subsequent round of resolution of the enriched Λ-[$\left.\operatorname{Co}(4-\mathrm{cpdpm})_{3}\right]$ was performed with (-)-cinchonidine (221 mg 0.75 mmol) was performed. The orange precipitate obtained was filtered and washed with hot THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and acetone. This precipitate was again purified by chromatography resulting in ($286 \mathrm{mg}, 0.33 \mathrm{mmol}, 64 \%$) of $\left.\Lambda-\left[\mathrm{Co}(4-\mathrm{cpdpm})_{3}\right]\right)$ with an ee of 97% (as determined by chiral HPLC). ${ }^{2}$

III. Synthesis of MOF-Co/Zn-5a

Racemic $\Delta, \Lambda-\left[\mathrm{Co}(4-\mathrm{cpdpm})_{3}\right]\left(2.1 \mathrm{mg}, 2.48 \times 10^{-6} \mathrm{~mol}\right)$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(6.5 \mathrm{mg}$, $\left.2.47 \times 10^{-5} \mathrm{~mol}\right)$ were dissolved in $\mathrm{DEF} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1 / 0.25 / 0.25 \mathrm{~mL})$ in a 4 mL screw top vial. The mixture was heated to $90^{\circ} \mathrm{C}$ at a rate of $2.0^{\circ} \mathrm{C} \mathrm{min}^{-1}$ for 23 h and cooled to room temperature at $0.2^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The resulting red-green, plate-like crystals were filtered, washed with DEF, and briefly dried in air.

IV. Synthesis of MOF-Co/Zn-5b

 Racemic $\Delta, \Lambda-\left[\mathrm{Co}(4-\mathrm{cpdpm})_{3}\right]\left(2.1 \mathrm{mg}, 2.48 \times 10^{-6} \mathrm{~mol}\right)$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1.29 \mathrm{mg}$, $\left.4.93 \times 10^{-6} \mathrm{~mol}\right)$ were dissolved in $\mathrm{DEF} / \mathrm{EtOH}(1 / 0.49 \mathrm{~mL})$ in a 4 mL screw top vial. The mixture was heated to $90^{\circ} \mathrm{C}$ at a rate of $2.0^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ for 23 h and cooled to room temperature at $0.2^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The resulting red, block-like crystals were filtered, washed with DEF, and briefly dried in air.X-ray Crystallographic Analysis. Single crystals of each compound suitable for X-ray diffraction structural determination were mounted on nylon loops by using Paratone oil and were cooled in a nitrogen stream on the diffractometer. Data were collected at 100 K on a Bruker APEX diffractometer using an area detector.

Crystallographic Data for MOF-Co/Zn-5

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color and habit
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed reflections ($\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$)
Completeness to theta $=25.00^{\circ}$
Max. and min. transmission
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

C53 H41.5 Co N7 O9.5 Zn2
1118.10

100(2) K
$0.71073 \AA$
Monoclinic
$\mathrm{P}_{1} / \mathrm{n}$
$a=15.229(4) \AA \quad \alpha=90^{\circ}$.
$b=8.796(2) \AA \quad \beta=89.977(5)^{\circ}$.
$c=38.650(11) \AA \quad \gamma=90^{\circ}$.
5177(2) \AA^{3}
4
$1.434 \mathrm{Mg} / \mathrm{m}^{3}$
$1.299 \mathrm{~mm}^{-1}$
2286
$0.27 \times 0.23 \times 0.04 \mathrm{~mm}^{3}$
red plate
1.34 to 26.37°.
$-19<=\mathrm{h}<=19,-10<=\mathrm{k}<=10,-48<=1<=48$
43650
$10531[\mathrm{R}($ int $)=0.0841]$
7689
99.8 \%
0.96078 and 0.74449

10531 / 0 / 690
1.042
$\mathrm{R} 1=0.0787, \mathrm{wR} 2=0.2051$
R1 $=0.1109$, wR2 $=0.2285$
1.369 and -0.634 e. \AA^{-3}

Crystallographic Data for MOF-Co/Zn-5b

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

C55.5 H46 Co N7.5 O7.5 Zn1.5
1094.98

100(2) K
$0.71073 \AA$

Triclinic

P-1
$a=13.626(3) \AA \quad \alpha=81.062(4)^{\circ}$.
$\mathrm{b}=14.766(3) \AA \quad \beta=81.660(4)^{\circ}$.
$\mathrm{c}=17.357(4) \AA \quad \gamma=75.534(4)^{\circ}$.
Volume
$3319.8(12) \AA^{3}$
2
$1.095 \mathrm{Mg} / \mathrm{m}^{3}$
Density (calculated)
$0.835 \mathrm{~mm}^{-1}$
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

1127
$0.15 \times 0.15 \times 0.05 \mathrm{~mm}^{3}$
1.19 to 26.37°.
$-16<=\mathrm{h}<=17,-18<=\mathrm{k}<=18,-21<=1<=21$
36922
$13380[\mathrm{R}($ int $)=0.0800]$
98.9 \%
0.9594 and 0.8850

Full-matrix least-squares on F^{2}
13380 / 0 / 736
0.906
$\mathrm{R} 1=0.0605, \mathrm{wR} 2=0.1507$
$\mathrm{R} 1=0.0905, \mathrm{wR} 2=0.1642$
0.811 and -0.413 e. \AA^{-3}

Fig. S1 Packing diagram of MOF-Co/Zn-5a. Solvent molecules and hydrogen atoms omitted for clarity.

Fig. S2 Packing diagram of MOF-Co/Zn-5b. Solvent molecules and hydrogen atoms omitted for clarity.

Fig. S3 Two perspectives on the trinuclear SBU in MOF-Co/Zn-5b. Hydrogen atoms and solvent molecules have been omitted (or partially omitted) for clarity. Cobalt (green), tetrahedral zinc (pink), octahedral zinc (cyan), oxygen (red), and carbon (gray).

Fig. S4 Simulated (red) and experimental (black) PXRD pattern for MOF-Co/Zn-5b. The pattern obtained from the reaction product using Λ - $\left[\mathrm{Co}(4-\mathrm{cpdpm})_{3}\right]$ is shown in blue, indicating an amorphous material. Differences in the experimental and simulated patterns suggest a phase change in the crystal.

Fig. S5 TGA traces of MOF-Co/Zn-5a (black) and MOF-Co/Zn-5b (blue). TGA traces of the amorphous products obtained with Λ - $\left[\mathrm{Co}(4-\mathrm{cpdpm})_{3}\right]$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ under identical conditions used to prepare MOF-Co/ $\mathrm{Zn}-5 \mathrm{a}$ (green) and MOF-Co/ $\mathrm{Zn}-5 \mathrm{~b}$ (red).

Fig. S6 An alternative interpretation of the topology of MOF-Co/Zn-5a. The iSBUs are simplified as 6 -fold helices (top left), which are cross-linked by the trigonal metalloligands (top right), giving rise to a binodal 3-connected net (bottom). This new topology has been identified by the EPINET database as sqc946 (http://epinet.anu.edu.au/). Some topological parameters for this net include: $\left(6 \cdot 6 \cdot 12_{2}\right)\left(6 \cdot 12_{2} \cdot 12_{2}\right)$ (vertex symbols); $3,6,10,18,32,52,73,98,125,156$ and $3,6,11$, $18,31,52,73,98,125,156$ (coordination sequences).

References

1) C. Brückner, Y. Zhang, S. J. Rettig and D. Dolphin, Inorg. Chim. Acta, 1997, 263, 279-286.
2) S. G. Telfer, and J. Wuest, Chem. Commun, 2007, 3166-3168.
