Enantiopure vs. Racemic Metalloligands: Impact on Metal-Organic Framework Structure and Synthesis

Sergio J. Garibay,^a Jay R. Stork,^a Zhenqiang Wang,^a Seth M. Cohen,*^a and Shane G. Telfer^b

^{*a*} Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, U.S.A. Fax: 858-822-5598; Tel: 858-822-5596; E-mail: scohen@ucsd.edu

^b MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand. E-mail: s.telfer@massey.ac.nz

General

All starting materials were obtained from commercial suppliers and used without further purification. Elemental analysis was performed at NuMega Resonance Labs, San Diego, California. Powder X-ray diffraction (PXRD) data were collected on a Rigaku Miniflex II diffractometer at 30kV, 15mA for Cu K α ($\lambda = 1.5418$ Å), with a scan speed of 5°min⁻¹ and a step size of 0.005° in 3-40° 2 θ at room temperature. The experimental backgrounds were corrected using Jade 5.0. The simulated PXRD patterns were calculated from single-crystal diffraction data using Mercury 1.5. Thermogravimetric analysis (TGA) was performed at a scan speed of 5 °C min⁻¹ under nitrogen gas on a TA Instrument Q600 SDT.

I. Synthesis of [Co(4-cpdpm)₃]

2,3-dicyano-5,6-dichloro-parabenzoquinone (1.93 g, 8.5 mmol) was dissolved in 30 mL of THF and added drop-wise to a solution of (4-methoxycarbonylphenyl) dipyrromethane (1.98 g, 7.1 mmol) in CHCl₃ (200 mL) cooled under an ice bath. The solution was subsequently stirred under nitrogen gas for 2 h. The chloroform was

removed on a rotary evaporator producing a brown solid, which was used in the next step of the reaction.

 $Na_3Co(NO_2)_6$ (0.95 g, 2.4 mmol) was dissolved in a 3:7 acetonitrile:H₂O mixture and added to a solution of the crude dipyrromethene (see above) dissolved in acetonitrile (200 mL). An excess of triethylamine (10 mL) was added and the solution was refluxed at 80 °C under nitrogen gas overnight (~14 h). The solution was evaporated and dissolved with dichloromethane and a few drops of methanol. The product was chromatographed on SiO₂ using dichloromethane as an eluant. The isolated cobalt(III) complex was dried in a vacuum oven overnight. Yield: 1.15 g (1.3 mmol, 55%).

The cobalt(III) complex (1.15 g,1.3 mmol) was hydrolyzed in a 1:1 THF:4% KOH solution (75 mL). The solution was refluxed at 80 °C under nitrogen gas for 6 h. The solution was allowed to cool to room temperature and the product was precipitated using 6N HCl (~15 mL). The red solid was filtered onto a glass frit and washed several times with cold water. The product was dried in a vacuum oven overnight. Yield: 1.06 g (1.25 mmol, 97%). Spectroscopic data are consistent with those previously reported in the literature.^{1,2}

II. Resolution of [Co(4-cpdpm)₃]

Resolution was performed with (-)-cinchonidine by a previously reported procedure.² Racemic Δ , Λ -[Co(4-cpdpm)₃] (805 mg, 0.95 mmol) was dissolved in hot THF (~70 °C, 20 mL) and a solution of (-)-cinchonidine in hot THF (20 mL). The dark-orange solution was allowed to cool and stood covered overnight. An orange precipitate was filtered and chromatographed on SiO₂ with an ethyl acetate/trifuloroacetic acid (99.7/0.3) solution. The solution was evaporated and dried overnight in a vacuum oven resulting in Λ -[Co(4-cpdpm)₃], (443 mg, 0.52 mmol, 55% of starting racemic compound) with an ee of less than 70%. Another subsequent round of resolution of the enriched Λ -[Co(4-cpdpm)₃] was performed with (-)-cinchonidine (221 mg 0.75 mmol) was performed. The orange precipitate was filtered and washed with hot THF, CH₂Cl₂, and acetone. This precipitate was again purified by chromatography resulting in (286 mg, 0.33 mmol, 64%) of Λ -[Co(4-cpdpm)₃]) with an ee of 97% (as determined by chiral HPLC).²

III. Synthesis of MOF-Co/Zn-5a

Racemic Δ , Λ -[Co(4-cpdpm)₃] (2.1 mg, 2.48×10⁻⁶ mol) and Zn(NO₃)₂·4H₂O (6.5 mg, 2.47×10⁻⁵ mol) were dissolved in DEF/EtOH/H₂O (1/0.25/0.25 mL) in a 4 mL screw top vial. The mixture was heated to 90 °C at a rate of 2.0 °C min⁻¹ for 23 h and cooled to room temperature at 0.2°C min⁻¹. The resulting red-green, plate-like crystals were filtered, washed with DEF, and briefly dried in air.

IV. Synthesis of MOF-Co/Zn-5b

Racemic Δ , Λ -[Co(4-cpdpm)₃] (2.1 mg, 2.48×10⁻⁶ mol) and Zn(NO₃)₂·4H₂O (1.29 mg, 4.93×10⁻⁶ mol) were dissolved in DEF/EtOH (1/0.49 mL) in a 4 mL screw top vial. The mixture was heated to 90°C at a rate of 2.0°C min⁻¹ for 23 h and cooled to room temperature at 0.2°C min⁻¹. The resulting red, block-like crystals were filtered, washed with DEF, and briefly dried in air.

X-ray Crystallographic Analysis. Single crystals of each compound suitable for X-ray diffraction structural determination were mounted on nylon loops by using Paratone oil and were cooled in a nitrogen stream on the diffractometer. Data were collected at 100 K on a Bruker APEX diffractometer using an area detector.

Empirical formula	C53 H41.5 Co N7 O9.5 Zn2		
Formula weight	1118.10		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_{1}/n$		
Unit cell dimensions	a = 15.229(4) Å	α= 90°.	
	b = 8.796(2) Å	β= 89.977(5)°.	
	c = 38.650(11) Å	$\gamma = 90^{\circ}$.	
Volume	5177(2) Å ³		
Z	4		
Density (calculated)	1.434 Mg/m ³		
Absorption coefficient	1.299 mm ⁻¹		
F(000)	2286		
Crystal size	0.27 x 0.23 x 0.04 mm ³		
Crystal color and habit	red plate		
Theta range for data collection	1.34 to 26.37°.		
Index ranges	-19<=h<=19, -10<=k<=10, -48<=l<=48		
Reflections collected	43650		
Independent reflections	10531 [R(int) = 0.0841]		
Observed reflections $(I > 2sigma(I))$	7689		
Completeness to theta = 25.00°	99.8 %		
Max. and min. transmission	0.96078 and 0.74449		
Data / restraints / parameters	10531 / 0 / 690		
Goodness-of-fit on F ²	1.042		
Final R indices [I>2sigma(I)]	R1 = 0.0787, wR2 = 0.2051		
R indices (all data)	R1 = 0.1109, wR2 = 0.2285		
Largest diff. peak and hole	1.369 and -0.634 e.Å ⁻³		

Crystallographic Data for MOF-Co/Zn-5

Crystallographic Data for MOF-Co/Zn-5b

Empirical formula	C55.5 H46 Co N7.5	C55.5 H46 Co N7.5 O7.5 Zn1.5	
Formula weight	1094.98	1094.98	
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 13.626(3) Å	$\alpha = 81.062(4)^{\circ}.$	
	b = 14.766(3) Å	$\beta = 81.660(4)^{\circ}.$	
	c = 17.357(4) Å	$\gamma = 75.534(4)^{\circ}.$	
Volume	3319.8(12) Å ³		
Z	2		
Density (calculated)	1.095 Mg/m ³		
Absorption coefficient	0.835 mm ⁻¹	0.835 mm ⁻¹	
F(000)	1127		
Crystal size	0.15 x 0.15 x 0.05 m	0.15 x 0.15 x 0.05 mm ³	
Theta range for data collection	1.19 to 26.37°.	1.19 to 26.37°.	
Index ranges	-16<=h<=17, -18<=h	-16<=h<=17, -18<=k<=18, -21<=l<=21	
Reflections collected	36922	36922	
Independent reflections	13380 [R(int) = 0.08	13380 [R(int) = 0.0800]	
Completeness to theta = 25.00°	98.9 %	98.9 %	
Max. and min. transmission	0.9594 and 0.8850	0.9594 and 0.8850	
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²	
Data / restraints / parameters	13380 / 0 / 736	13380 / 0 / 736	
Goodness-of-fit on F ²	0.906	0.906	
Final R indices [I>2sigma(I)]	R1 = 0.0605, wR2 =	R1 = 0.0605, wR2 = 0.1507	
R indices (all data)	R1 = 0.0905, wR2 =	R1 = 0.0905, wR2 = 0.1642	
Largest diff. peak and hole	0.811 and -0.413 e.Å	0.811 and -0.413 e.Å ⁻³	

Fig. S1 Packing diagram of MOF-Co/Zn-5a. Solvent molecules and hydrogen atoms omitted for clarity.

Fig. S2 Packing diagram of MOF-Co/Zn-5b. Solvent molecules and hydrogen atoms omitted for clarity.

Fig. S3 Two perspectives on the trinuclear SBU in MOF-Co/Zn-5b. Hydrogen atoms and solvent molecules have been omitted (or partially omitted) for clarity. Cobalt (green), tetrahedral zinc (pink), octahedral zinc (cyan), oxygen (red), and carbon (gray).

Fig. S4 Simulated (red) and experimental (black) PXRD pattern for MOF-Co/Zn-5b. The pattern obtained from the reaction product using Λ -[Co(4-cpdpm)₃] is shown in blue, indicating an amorphous material. Differences in the experimental and simulated patterns suggest a phase change in the crystal.

Fig. S5 TGA traces of MOF-Co/Zn-5a (black) and MOF-Co/Zn-5b (blue). TGA traces of the amorphous products obtained with Λ -[Co(4-cpdpm)₃] and Zn(NO₃)₂·4H₂O under identical conditions used to prepare MOF-Co/Zn-5a (green) and MOF-Co/Zn-5b (red).

Fig. S6 An alternative interpretation of the topology of MOF-Co/Zn-5a. The iSBUs are simplified as 6-fold helices (top left), which are cross-linked by the trigonal metalloligands (top right), giving rise to a binodal 3-connected net (bottom). This new topology has been identified by the EPINET database as sqc946 (http://epinet.anu.edu.au/). Some topological parameters for this net include: $(6.6.12_2)(6.12_2.12_2)$ (vertex symbols); 3, 6, 10, 18, 32, 52, 73, 98, 125, 156 and 3, 6, 11, 18, 31, 52, 73, 98, 125, 156 (coordination sequences).

References

- 1) C. Brückner, Y. Zhang, S. J. Rettig and D. Dolphin, Inorg. Chim. Acta, 1997, 263,
- 279-286.
- 2) S. G. Telfer, and J. Wuest, Chem. Commun, 2007, 3166-3168.