Supporting Information for:

Copper(I) Mediated Oligomerisation of a Phosphaalkyne

Ulf Vogel ${ }^{\mathrm{a}}$ John F. Nixon ${ }^{\mathrm{b}}$ and Manfred Scheer ${ }^{\mathrm{a}}$
${ }^{a}$ Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.
${ }^{\mathrm{b}}$ Chemistry Department, School of Life Sciences, University of Sussex, Falmer, Brighton, BN19QJ, U.K.

S1. Removal of the CuI matrix from 2

S2. ${ }^{31}$ P-NMR spectrum of the resulting mixture

S1. Removal of the CuI from 2

A solution of $\mathrm{NaCN}(800 \mathrm{mg}, 16.3 \mathrm{mmol})$ in $20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was layered with $7 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$ and the mixture was thoroughly degassed by bubbling dinitrogen through it for 30 minutes. Solid 2.x $\mathrm{CH}_{3} \mathrm{CN}$ ($100 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the mixture was vigorously stirred for 5 hours. After that time all the solid was dissolved and the $\mathrm{Et}_{2} \mathrm{O}$ phase showed a pale yellow colour. Separation of the organic phase and removal of all volatiles yielded a yellow, oily residue (ca. 30 mg , 70% based on $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{P}_{5}$) from which ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR data was recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ (see S2). On storage of the mixture at $-30^{\circ} \mathrm{C}$ for one month a few crystals of $\mathbf{6}$ were obtained, which were suitable for X-Ray crystallography (see S3). Yield: 30 mg (73\%)

S2. ${ }^{31}$ P-NMR spectrum of the resulting mixture

Fig. 1: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR data ($161 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6} ; \mathrm{H}_{3} \mathrm{PO}_{4}$) and assignment for the identified products

4
$\delta_{\mathrm{P}} 190.9\left(1 \mathrm{P}, \operatorname{ddd},{ }^{1} J\left(\mathrm{P}^{1}, \mathrm{P}^{4}\right)=109.8 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{1}, \mathrm{P}^{3}\right)=27.7 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{1}, \mathrm{P}^{2}\right)=11.9 \mathrm{~Hz}, \mathrm{P}^{1}\right), 176.0$ $\left(1 \mathrm{P}, \mathrm{dd},{ }^{2} J\left(\mathrm{P}^{5}, \mathrm{P}^{3}\right)=21.2 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{5}, \mathrm{P}^{4}\right)=10.8 \mathrm{~Hz}, \mathrm{P}^{5}\right), 162.7\left(1 \mathrm{P}, \mathrm{ddd},{ }^{1} J\left(\mathrm{P}^{2}, \mathrm{P}^{4}\right)=105.3 \mathrm{~Hz}\right.$, $\left.{ }^{2} J\left(\mathrm{P}^{2}, \mathrm{P}^{3}\right)=15.2 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{2}, \mathrm{P}^{1}\right)=11.9 \mathrm{~Hz}, \mathrm{P}^{2}\right), 118.1\left(1 \mathrm{P}, \operatorname{dddd},{ }^{2} J\left(\mathrm{P}^{3}, \mathrm{P}^{1}\right)=27.7 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{3}\right.\right.$, $\left.\left.\mathrm{P}^{4}\right)=22.2 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{3}, \mathrm{P}^{5}\right)=21.2 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{3}, \mathrm{P}^{2}\right)=15.3 \mathrm{~Hz}, \mathrm{P}^{3}\right),-32.7 \quad\left(1 \mathrm{P}\right.$, dddd, ${ }^{1} J\left(\mathrm{P}^{4}\right.$, $\left.\left.\mathrm{P}^{1}\right)=109.8 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}^{4}, \mathrm{P}^{2}\right)=105.3 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{4}, \mathrm{P}^{3}\right)=22.2 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{4}, \mathrm{P}^{5}\right)=10.8 \mathrm{~Hz}, \mathrm{P}^{4}\right)$.

5
$\delta_{\mathrm{P}} 350.8\left(1 \mathrm{P}, \mathrm{dd},{ }^{1} J\left(\mathrm{P}^{1}, \mathrm{P}^{3}\right)=186.2 \mathrm{~Hz}, J\left(\mathrm{P}^{1}, \mathrm{P}^{2}\right)=3.4 \mathrm{~Hz}, \mathrm{P}^{1}\right),-28.6\left(1 \mathrm{P}, \mathrm{dd}, J\left(\mathrm{P}^{2}\right.\right.$, $\left.\left.\mathrm{P}^{3}\right)=89.7 \mathrm{~Hz}, \quad J\left(\mathrm{P}^{2}, \quad \mathrm{P}^{1}\right)=3.4 \mathrm{~Hz}, \quad \mathrm{P}^{2}\right), \quad-155.3 \quad\left(1 \mathrm{P}, \quad \mathrm{dd}, \quad{ }^{1} J\left(\mathrm{P}^{3}, \quad \mathrm{P}^{1}\right)=186.2 \mathrm{~Hz}, \quad J\left(\mathrm{P}^{3}\right.\right.$, $\left.\left.P^{2}\right)=89.7 \mathrm{~Hz}, \mathrm{P}^{3}\right)$.

See also: P. Binger, S. Leininger, K. Gather and U. Bergsträßer, Chem. Ber., 1997, 130, 1491.

6
$\delta_{\mathrm{P}} 219.8\left(1 \mathrm{P}\right.$, dddd, ${ }^{1} J\left(\mathrm{P}^{1}, \mathrm{P}^{2}\right)=20.8 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{1}, \mathrm{P}^{4}\right)=17.1 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{1}, \mathrm{P}^{5}\right)=16.3 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{1}\right.$, $\left.\left.\mathrm{P}^{3}\right)=13.9 \mathrm{~Hz}, \mathrm{P}^{1}\right), 216.9\left(1 \mathrm{P}\right.$, dddd, ${ }^{2} J\left(\mathrm{P}^{2}, \mathrm{P}^{5}\right)=41.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{2}, \mathrm{P}^{1}\right)=20.8 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{2}\right.$, $\left.\left.\mathrm{P}^{3}\right)=15.5 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{2}, \mathrm{P}^{4}\right)=9.9 \mathrm{~Hz}, \mathrm{P}^{2}\right), 164.6\left(1 \mathrm{P}, \quad\right.$ dddd, ${ }^{2} J\left(\mathrm{P}^{3}, \mathrm{P}^{4}\right)=22.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{3}\right.$, $\left.\left.\mathrm{P}^{2}\right)=15.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{3}, \mathrm{P}^{1}\right)=13.9 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{3}, \mathrm{P}^{5}\right)=2.7 \mathrm{~Hz}, \mathrm{P}^{3}\right), 42.1\left(1 \mathrm{P}, \operatorname{dddd},{ }^{1} J\left(\mathrm{P}^{4}\right.\right.$, $\left.\left.\mathrm{P}^{5}\right)=202.9 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{4}, \mathrm{P}^{3}\right)=22.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{4}, \mathrm{P}^{1}\right)=17.1 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{4}, \mathrm{P}^{2}\right)=9.9 \mathrm{~Hz}, \mathrm{P}^{4}\right), 39.3(1 \mathrm{P}$, dddd, $\left.{ }^{1} J\left(\mathrm{P}^{5}, \mathrm{P}^{4}\right)=202.9 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{5}, \mathrm{P}^{2}\right)=41.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{5}, \mathrm{P}^{1}\right)=16.3 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}^{5}, \mathrm{P}^{3}\right)=2.7 \mathrm{~Hz}, \mathrm{P}^{5}\right)$. The signal for P^{5} splits into a doublet when measured without ${ }^{1} \mathrm{H}$-decoupling (${ }^{1} J\left(\mathrm{P}^{5}\right.$, $\mathrm{H})=177.0 \mathrm{~Hz})$

