Supporting Information for:

Copper(I) Mediated Oligomerisation of a Phosphaalkyne

Ulf Vogel^a John F. Nixon^b and Manfred Scheer^a

^a Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.

^b Chemistry Department, School of Life Sciences, University of Sussex, Falmer, Brighton, BN19QJ, U.K.

S1. Removal of the CuI matrix from 2

S2. ³¹P-NMR spectrum of the resulting mixture

S1. Removal of the CuI from 2

A solution of NaCN (800 mg, 16.3 mmol) in 20 ml H₂O was layered with 7 ml Et₂O and the mixture was thoroughly degassed by bubbling dinitrogen through it for 30 minutes. Solid $2 \cdot x$ CH₃CN (100 mg, 0.1 mmol) was added and the mixture was vigorously stirred for 5 hours. After that time all the solid was dissolved and the Et₂O phase showed a pale yellow colour. Separation of the organic phase and removal of all volatiles yielded a yellow, oily residue (ca. 30 mg, 70 % based on C₂₀H₂₇P₅) from which ³¹P{¹H}-NMR data was recorded in C₆D₆ (see S2). On storage of the mixture at -30 °C for one month a few crystals of **6** were obtained, which were suitable for X-Ray crystallography (see S3). Yield: 30 mg (73%)

Fig. 1: ${}^{31}P{}^{1}H$ -NMR data (161 MHz; C₆D₆; H₃PO₄) and assignment for the identified products

 $\delta_{P} 190.9 (1P, ddd, {}^{1}J(P^{1}, P^{4}) = 109.8 \text{ Hz}, {}^{2}J(P^{1}, P^{3}) = 27.7 \text{ Hz}, {}^{2}J(P^{1}, P^{2}) = 11.9 \text{ Hz}, P^{1}), 176.0 (1 P, dd, {}^{2}J(P^{5}, P^{3}) = 21.2 \text{ Hz}, {}^{2}J(P^{5}, P^{4}) = 10.8 \text{ Hz}, P^{5}), 162.7 (1 P, ddd, {}^{1}J(P^{2}, P^{4}) = 105.3 \text{ Hz}, {}^{2}J(P^{2}, P^{3}) = 15.2 \text{ Hz}, {}^{2}J(P^{2}, P^{1}) = 11.9 \text{ Hz}, P^{2}), 118.1 (1 P, dddd, {}^{2}J(P^{3}, P^{1}) = 27.7 \text{ Hz}, {}^{2}J(P^{3}, P^{4}) = 22.2 \text{ Hz}, {}^{2}J(P^{3}, P^{5}) = 21.2 \text{ Hz}, {}^{2}J(P^{3}, P^{2}) = 15.3 \text{ Hz}, P^{3}), -32.7 (1 P, dddd, {}^{1}J(P^{4}, P^{4}) = 109.8 \text{ Hz}, {}^{1}J(P^{4}, P^{2}) = 105.3 \text{ Hz}, {}^{2}J(P^{4}, P^{3}) = 22.2 \text{ Hz}, {}^{2}J(P^{4}, P^{5}) = 10.8 \text{ Hz}, P^{4}).$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

 $\delta_{\rm P}$ 350.8 (1P, dd, ${}^{1}J({\rm P}^{1}, {\rm P}^{3}) = 186.2 \,{\rm Hz}, J({\rm P}^{1}, {\rm P}^{2}) = 3.4 \,{\rm Hz}, {\rm P}^{1}), -28.6$ (1 P, dd, $J({\rm P}^{2}, {\rm P}^{3}) = 89.7 \,{\rm Hz}, J({\rm P}^{2}, {\rm P}^{1}) = 3.4 \,{\rm Hz}, {\rm P}^{2}), -155.3$ (1 P, dd, ${}^{1}J({\rm P}^{3}, {\rm P}^{1}) = 186.2 \,{\rm Hz}, J({\rm P}^{3}, {\rm P}^{2}) = 89.7 \,{\rm Hz}, {\rm P}^{3}).$

See also: P. Binger, S. Leininger, K. Gather and U. Bergsträßer, Chem. Ber., 1997, 130, 1491.

 δ_{P} 219.8 (1P, dddd, ¹*J*(P¹, P²) = 20.8 Hz, ²*J*(P¹, P⁴) = 17.1 Hz, ²*J*(P¹, P⁵) = 16.3 Hz, ²*J*(P¹, P³) = 13.9 Hz, P¹), 216.9 (1 P, dddd, ²*J*(P², P⁵) = 41.4 Hz, ²*J*(P², P¹) = 20.8 Hz, ²*J*(P², P³) = 15.5 Hz, ²*J*(P², P⁴) = 9.9 Hz, P²), 164.6 (1 P, dddd, ²*J*(P³, P⁴) = 22.4 Hz, ²*J*(P³, P²) = 15.4 Hz, ²*J*(P³, P¹) = 13.9 Hz, ²*J*(P³, P⁵) = 2.7 Hz, P³), 42.1 (1 P, dddd, ¹*J*(P⁴, P⁵) = 202.9 Hz, ²*J*(P⁴, P³) = 22.4 Hz, ²*J*(P⁴, P¹) = 17.1 Hz, ²*J*(P⁴, P²) = 9.9 Hz, P⁴), 39.3 (1 P, dddd, ¹*J*(P⁵, P⁴) = 202.9 Hz, ²*J*(P⁵, P²) = 41.4 Hz, ²*J*(P⁵, P¹) = 16.3 Hz, ²*J*(P⁵, P³) = 2.7 Hz, P⁵). The signal for P⁵ splits into a doublet when measured without ¹H-decoupling (¹*J*(P⁵, H) = 177.0 Hz)