Supporting Information

Ligand-free Pd/C-catalyzed Suzuki-Miyaura Coupling Reaction for the Synthesis of Heterobiaryl Derivatives

Yoshiaki Kitamura, Satoko Sako, Takahiro Udzu, Azusa Tsutsui, Tomohiro Maegawa,

Yasunari Monguchi, Hironao Sajiki*

Laboratory of Medicinal Chemistry, Gifu Pharmaceutical University

5-6-1, Mitahora-higashi, Gifu, 502-8585, Japan

	page
Experimental Section	S2
References	S9
NMR spectra of new compounds	S10

Experimental Section

General. All reactions were carried out under an argon atmosphere, unless otherwise noted. Aryl bromides were purchased from Tokyo Chemical Industry Co., Ltd., Aldrich Chemical Co., Inc. or Wako Pure Chemical Industries, Ltd. Aryl boronic acid esters were purchased from Aldrich Chemical Co., Inc. or Tokyo Chemical Industry Co., Ltd. Pd/C was gifted by N. E. Chemcat Co. Bases and solvents were purchased from Nacalai Tasque, Inc. or Wako Pure Chemical Industries, Ltd. All these materials were used without further purification.

¹H and ¹³C NMR spectra were recorded on a JEOL JNM EX-400 or JEOL JNM AL-400 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). All NMR samples were prepared as CDCl₃ solutions. Chemical shifts (δ) are expressed in ppm and are internally referenced (0.00 ppm for TMS-CDCl₃ for ¹H NMR and 77.0 ppm for ¹³C NMR). EI Mass spectra were taken on a JEOL JMS-SX102A instrument. Elemental analyses were performed by YANACO MT-5 instrument. Flash column chromatography was performed using silica gel 60N [spherical neutral (63-210 µm)] from Kanto Chemical Co., Inc.

General Procedure of Suzuki-Miyaura Cross-Coupling Reaction

Method A: (eq 1; Table 1, entries 1-8; Table 2, entries 1-5, 7, 9 and 11):

To a test tube with a stir bar were added aryl bromide (250 µmol), arylboronic acid (375 µmol), Na₃PO₄·12H₂O (333 mg, 875 µmol), 10% Pd/C (9.3 mg, 8.75 µmol), H₂O (0.5 mL), and *i*-PrOH (0.5 mL) and the system was sealed with a septum. The air inside was replaced with argon (balloon) by three vacuum/argon cycles and the mixture was stirred at 80 °C. After a certain period, the mixture was diluted with H₂O (25 mL) and EtOAc (or Et₂O) (25 mL), and passed through a membrane filter (Millipore, Millex[®]–LH, 0.45 µm). The filtrate was separated into two layers and the aqueous layer was extracted with EtOAc (or Et₂O) (2 × 25 mL). The combined organic layers were washed with brine (25 mL), dried over Na₂SO₄ (or MgSO₄), and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to give the corresponding biaryl.

Method B (Table 2, entries 6,8,10 and 12):

To a test tube with a stir bar were added aryl bromide (250 µmol), arylboronic acid (375 µmol), Na₃PO₄ · 12H₂O (333 mg, 875 µmol), 10% Pd/C (9.3 mg, 8.75 µmol), *i*-PrOH (1.0 mL) and the system was sealed with a septum. The air inside was replaced with argon (balloon) by three vacuum/argon cycles and the mixture was stirred at 80 °C. After a certain period, the mixture was diluted with H₂O (25 mL) and Et₂O (25 mL), and passed through a membrane filter (Millipore, Millex[®]–LH, 0.45 µm). The filtrate was separated into two layers and the aqueous layer was extracted with Et₂O (2 × 25 mL). The combined organic layers were washed with brine (25 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to give the corresponding biaryl.

Method C (Table 3, entries 1-6):

To a test tube with a stir bar were added aryl bromide (500 µmol), arylboronic acid (750 µmol), Na₃PO₄ · 12H₂O (285 mg, 750 µmol), 10% Pd/C (8.0 mg, 7.50 µmol), *i*-PrOH (2.0 mL) and the system was sealed with a septum. The air inside was replaced with argon (balloon) by three vacuum/argon cycles and the mixture was stirred at 80 °C. After a certain period, the mixture was diluted with H₂O (50 mL) and EtOAc (50 mL), and passed through a membrane filter (Millipore, Millex[®]–LH, 0.45 µm). The filtrate was separated into two layers and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to give the corresponding biaryl.

4-(4'-Nitrophenyl)dibenzofuran

Yellow solid; mp 174–176 °C, ¹H NMR δ 8.34 (d, *J* = 8.8 Hz, 2H), 8.06 (d, *J* = 8.8 Hz, 2H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.49 (t, *J* = 8.2 Hz, 1H), 7.45 (t, *J* = 8.2 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H); ¹³C NMR δ 156.1, 153.1, 147.0, 142.9, 129.4, 127.7, 126.7, 125.4, 123.8, 123.7, 123.4, 123.3, 123.2, 121.3, 120.8, 111.8; MS (EI) *m*/*z* 289 (M⁺, 100%); HRMS (EI) Calcd for C₁₈H₁₁NO₃ (M⁺) 289.0739. Found 289.0744. Anal. Calcd for C₁₈H₁₁NO₃ · 1/3 H₂O: C, 73.21; H, 3.98; N, 4.74. Found: C, 73.25; H, 4.04; N, 4.63.

2-(4'-Nitrophenyl)benzofuran¹

Yellow solid; ¹H NMR δ 8.30 (d, J = 8.8 Hz, 2H), 7.99 (d, J = 8.8 Hz, 2H), 7.64 (d, J =

8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.30–7.23 (m, 2H); ¹³C NMR δ 155.4, 153.2, 147.3, 136.3, 128.6, 125.8, 125.2, 124.3, 123.5, 121.6, 111.5, 105.1; MS (EI) *m*/*z* 239 (M⁺, 100%); HRMS (EI) Calcd for C₁₄H₉NO₃ (M⁺) 239.0583. Found 239.0588.

2-(4'-Nitrophenyl)benzothiophene²

Yellow solid; ¹H NMR δ 8.27 (d, J = 8.8 Hz, 2H), 7.87–7.84 (m, 4H), 7.70 (s, 1H), 7.42–7.38 (m, 2H); ¹³C NMR δ 147.2, 141.2, 140.6, 140.3, 140.2, 126.8, 125.6, 125.1, 124.4, 124.3, 122.4, 122.4; MS (EI) *m/z* 255 (M⁺, 100%); HRMS (EI) Calcd for C₁₄H₉NO₂S (M⁺) 255.0354. Found 255.0360.

4-(4'-Acetylphenyl)dibenzofuran

Colorless solid; mp 109–111 °C, ¹H NMR δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H); ¹³C NMR δ 197.6, 156.1, 153.3, 141.1, 136.1, 128.8, 128.6, 127.4, 126.7, 125.1, 124.5, 123.9, 123.2, 122.9, 120.7, 120.5, 111.8, 26.6; MS (EI) *m/z* 286 (M⁺, 81%); HRMS (EI) Calcd for C₂₀H₁₄O₂ (M⁺) 286.0994. Found 286.0987. Anal. Calcd for C₂₀H₁₄O₂: C, 83.90; H, 4.93. Found: C, 83.75; H, 5.08.

2-(4'-Acetylphenyl)benzofuran

Colorless solid; mp 177–179 °C, ¹H NMR δ 8.00 (d, *J* = 8.6 Hz, 2H), 7.90 (d, *J* = 8.6 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.32 (t, *J* = 8.4 Hz, 1H), 7.22 (t, *J* = 8.4 Hz, 1H), 2.60 (s, 3H); ¹³C NMR δ 197.2, 155.2, 154.5, 136.5, 134.5, 128.9, 125.1, 124.7, 123.2, 121.3, 111.3, 103.6, 26.6; MS (EI) *m/z* 236 (M⁺, 90%); HRMS (EI) Calcd for C₁₆H₁₂O₂ (M⁺) 236.0837. Found 236.0830. Anal. Calcd for C₁₆H₁₂O₂ · 1/7 H₂O: C, 80.46; H, 5.18. Found: C, 80.85; H, 5.26.

4-(4'-Methoxyphenyl)dibenzofuran

Collorless solid; mp 86–88 °C, ¹H NMR δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.89–7.85 (m, 3H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.07 (d, 2H); ¹³C NMR δ 159.3, 156.1, 153.3, 129.9, 128.8, 127.1, 126.4, 125.5, 124.8, 124.3, 123.1, 122.7, 120.6, 119.0, 114.1, 111.8, 55.3; MS (EI) *m*/*z* 289 (M⁺, 100%); HRMS (EI) Calcd for C₁₉H₁₄O₂ (M⁺) 274.0994. Found 274.0998. Anal. Calcd for C₁₉H₁₄O₂ · 1/6.5 H₂O: C, 82.36; H, 5.20. Found: C, 82.36; H, 5.21.

4-(2'-Tolyl)dibenzofuran

Collorless oil; ¹H NMR δ 7.97 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H) 7.50 (d, J = 7.8 Hz, 1H), 7.43–7.31 (m, 8H), 2.24 (s, 3H); ¹³C NMR δ 156.2, 153.6, 136.8, 136.4, 130.3, 130.2, 128.3, 128.1, 127.1, 126.3, 125.7, 124.3, 124.2, 122.7, 122.7, 120.7, 119.6, 111.8, 20.2; MS (EI) m/z 258 (M⁺, 100%); HRMS (EI) Calcd for C₁₉H₁₄O (M⁺) 258.1045. Found 258.1055. Anal. Calcd for C₁₉H₁₄O: C, 88.34; H, 5.46. Found: C, 88.10; H, 5.68.

2-Phenylpyridine³

Colorless oil; ¹H NMR δ 8.65–8.64 (m, 1H), 7.99–7.96 (m, 2H), 7.63–7.57 (m, 2H), 7.44–7.33 (m, 3H), 7.22–7.08 (m, 1H); ¹³C NMR δ 157.1, 149.4, 139.1, 136.4, 128.7, 128.5, 126.6, 121.8, 120.2; MS (EI) *m/z* 155 (M⁺, 100%); HRMS (EI) Calcd for C₁₁H₉N (M⁺) 155.0735. Found 155.07447.

2-(4'-Tolyl)pyridine³

Colorless oil; ¹H NMR δ 8.66 (d, J = 4.8 Hz, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.68–7.67 (m, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.18–7.14 (m, 1H), 2.38 (s, 3H); ¹³C NMR δ 157.4, 149.5, 138.8, 136.6, 136.5, 129.4, 126.7, 121.7, 120.1, 21.2; MS (EI) *m*/*z* 169 (M⁺, 100%); HRMS (EI) Calcd for C₁₂H₁₁N (M⁺) 169.0892. Found 169.0897.

2-(4'-Methoxyphenyl)pyridine³

Colorless solid; ¹H NMR δ 8.63 (d, J = 4.8 Hz, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.68–7.62(m, 2H), 7.15–7.11 (m, 1H), 7.02 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H); ¹³C NMR δ 160.4, 157.0, 149.4, 136.5, 131.9, 128.0, 121.3, 119.6, 114.0, 55.2; MS (EI) *m/z* 185 (M⁺, 100%); HRMS (EI) Calcd for C₁₁H₁₁NO (M⁺) 185.0841. Found 185.0838.

2-(3',4'-Methylenedioxy)pyridine

Colorless oil; ¹H NMR δ 8.63 (d, J = 4.8 Hz, 1H), 7.68 (t, J = 7.4 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.52 (s, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.16 (dd, J = 7.4 Hz, 4.8 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.00 (s, 2H); ¹³C NMR δ 156.8, 149.4, 148.4, 148.2, 136.6, 133.8, 121.6, 120.8, 119.9, 108.3, 107.3, 101.2; MS (EI) *m/z* 199 (M⁺, 100%); HRMS (EI) Calcd for C₁₂H₉NO₂ (M⁺) 199.0633. Found 199.0640. Anal. Calcd for C₁₂H₉NO₂ · 1/9 H₂O: C, 71.63; H, 4.62; N, 6.96. Found: C, 71.78; H, 4.59; N, 6.93.

2-(4'-Chlorophenyl)pyridine³

Colorless oil; ¹H NMR δ 8.69 (d, J = 4.0 Hz, 1H), 7.94 (d, J = 8.6 Hz, 2H), 7.75(t, J =

7.6 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.02 (dd, J = 7.6 Hz, 4.0 Hz, 1H); ¹³C NMR δ 156.9, 150.4, 138.5, 137.5, 135.8, 129.6, 128.8, 123.0, 121.0; MS (EI) *m/z* 189 (M⁺, 100%); HRMS (EI) Calcd for C₁₁H₈ClN (M⁺) 189.0345. Found 189.0347.

3-(4'-Methoxyphenyl)pyridine³

Colorless solid; ¹H NMR δ 8.83 (s, 1H), 8.55 (d, *J* = 4.7 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.32 (dd, *J* = 4.7 Hz, 7.7 Hz, 1H), 7.00 (d, *J* = 8.6 Hz, 2H), 3.84 (s, 3H); ¹³C NMR δ 159.7, 147.5, 147.4, 136.3, 133.9, 130.0, 128.1, 123.5, 114.5, 55.2; MS (EI) *m*/*z* 185 (M⁺, 100%); HRMS (EI) Calcd for C₁₂H₁₁NO (M⁺) 185.0841. Found 185.0832.

4-(4'-Methoxyphenyl)pyridine³

Colorless solid; ¹H NMR δ 8.62 (d, *J* = 5.8 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 5.8 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H); ¹³C NMR δ 160.5, 149.7, 147.9, 130.1, 128.0, 121.0, 114.5, 55.3; MS (EI) *m/z* 185 (M⁺, 100%); HRMS (EI) Calcd for C₁₂H₁₁NO (M⁺) 185.0841. Found 185.0831.

5-(4'-Methoxyphenyl)pyrimidine⁴

Colorless solid; ¹H NMR δ 9.16 (s, 1H), 8.92 (s, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H); ¹³C NMR δ 160.4, 156.7, 154.3, 133.8, 128.0, 126.4, 114.8, 55.3; MS (EI) *m*/*z* 186 (M⁺, 100%); HRMS (EI) Calcd for C₁₁H₁₀N₂O (M⁺) 186.0793. Found 186.0798.

2-(3'-Quinolyl)benzofuran

Collorless solid; mp 134–136 °C, ¹H NMR δ 9.31 (s, 1H), 8.50 (s, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.68 (t, J = 8.2 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.55–7.51 (m, 2H), 7.31 (t, J = 7.8 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.17 (s, 1H); ¹³C NMR δ 155.1, 153.1, 147.6, 147.5, 130.7, 129.7, 129.3, 128.8, 128.1, 127.7, 127.3, 125.0, 123.6, 123.3, 121.2, 111.2, 102.9; MS (EI) *m*/*z* 245 (M⁺, 100%); HRMS (EI) Calcd for C₁₇H₁₁NO (M⁺) 245.0841. Found 245.0835. Anal. Calcd for C₁₇H₁₁NO: C, 83.25; H, 4.52; N, 5.71. Found: C, 82.97; H, 4.77; N, 5.62.

4-(3'-Quinolyl)dibenzofuran

Collorless solid; mp 145–147 °C, ¹H NMR δ 9.46 (s, 1H), 8.59 (s, 1H), 8.18 (d, J = 8.8 Hz, 1H), 7.93 (t, J = 6.4 Hz, 2H), 7.88 (d, J = 8.0 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.66

(d, J = 8.0 Hz, 1H), 7.58–7.54 (m, 2H), 7.50–7.40 (m, 2H), 7.34 (t, J = 7.8 Hz, 1H); ¹³C NMR δ 156.0, 153.3, 150.6, 147.3, 135.0, 129.5, 129.2, 129.1, 128.0, 127.8, 127.3, 126.8, 126.5, 125.0, 123.8, 123.3, 122.8, 122.2, 120.6, 120.4, 111.7; MS (EI) *m/z* 295 (M⁺, 100%); HRMS (EI) Calcd for C₂₁H₁₃NO (M⁺) 295.0997. Found 295.0986. Anal. Calcd for C₂₁H₁₃NO · 1/11 H₂O: C, 84.93; H, 4.47; N, 4.72. Found: C, 84.98; H, 4.60; N, 4.71.

3-(2'-Thienyl)quinoline⁴

Collorless solid; ¹H NMR δ 9.17 (s, 1H), 8.21 (s, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.65 (t, J = 8.2 Hz, 1H), 7.51 (t, J = 8.2 Hz, 1H), 7.45 (d, J = 3.6 Hz, 1H), 7.35 (d, J = 5.2 Hz, 1H), 7.12 (dd, J = 5.2 Hz, 3.6 Hz, 1H); ¹³C NMR δ 148.6, 147.3, 140.8, 131.4, 129.3, 129.3, 128.4, 127.9, 127.8, 127.6, 127.3, 126.1, 124.4; MS (EI) *m/z* 211 (M⁺, 100%); HRMS (EI) Calcd for C₁₃H₉NS (M⁺) 211.0456. Found 211.0461.

2-(5'-Pyrimidyl)benzofuran⁵

Collorless solid; ¹H NMR δ 9.15 (s, 1H), 9.10 (s, 1H), 7.57 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H), 7.32 (t, J = 7.8 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H); ¹³C NMR δ 157.6, 155.0, 152.4, 149.4, 128.0, 125.4, 124.6, 123.4, 121.2, 111.2, 103.9; MS (EI) *m/z* 196 (M⁺, 100%); HRMS (EI) Calcd for C₁₂H₈N₂O (M⁺) 196.0637. Found 196.0642.

2-[2'-(5'-Methyl)thienyl]benzofuran

Collorless solid; mp 85–87 °C, ¹H NMR δ 7.48 (d, *J* = 7.0 Hz, 1H), 7.45 (d, *J* = 7.0 Hz, 1H), 7.25 (d, *J* = 4.0 Hz, 1H), 7.23–7.18 (m, 2H), 6.73 (s, 1H), 6.72 (d, *J* = 4.0 Hz, 1H), 2.48 (s, 3H); ¹³C NMR δ 154.4, 151.5, 140.8, 130.9, 129.2, 126.1, 124.6, 123.9, 123.0, 120.5, 110.9, 100.2, 15.3; MS (EI) *m/z* 214 (M⁺, 100%); HRMS (EI) Calcd for C₁₃H₁₀OS (M⁺) 214.0452. Found 214.0444. Anal. Calcd for C₁₃H₁₀OS: C, 72.87; H, 4.70. Found: C, 72.92; H, 4.81.

2-(5'-Indoyl)benzofuran

Collorless solid; mp 156–158 °C, ¹H NMR δ 8.18 (s, 1H), 8.05 (brs, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 7.2 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.26–7.18 (m, 3H), 7.15 (t, J = 7.2 Hz, 1H), 6.93 (s, 1H), 6.60–6.59 (m, 1H); ¹³C NMR δ 157.6, 154.7, 135.9, 129.7, 128.1, 125.1, 123.5, 122.7, 122.6, 120.4, 119.7, 117.6, 111.4, 110.9, 103.3, 99.4; MS (EI) m/z 233 (M⁺, 100%); HRMS (EI) Calcd for C₁₆H₁₁NO (M⁺) 233.0841. Found 233.0835. Anal. Calcd for C₁₆H₁₁NO · 1/3 H₂O: C,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

80.32; H, 4.91; N, 5.85. Found: C, 80.46; H, 4.90, N, 5.82.

References

1) S. Akiyama, H. Akimoto, S. Nakatsuji and K. Nakashima, *Bull. Chem. Soc. Jpn.*, 1985, **58**, 2192–2196.

2) Y. S. Chang, J. M. Jeong, Y.-S. Lee, H. W. Kim, G. Rai B., Y. J. Kim, D. S. Lee, J.-K. Chung and M. C. Lee, *Nucl. Med. Biol.*, 2006, **33**, 811–820.

3) A. Núnez, A. Sánchez, C. Burgos and J. Alvarez-Builla, *Tetrahedron*, 2004, **60**, 6217–6224.

4) J.-H. Li, Q.-M. Zhu and Y.-X. Xie, Tetrahedron, 2006, 62, 10888–10895.

5) A. Arcadi, S. Cacchi, M. D. Rosario, G. Fabrizi and F. Marinelli, *J. Org. Chem.*, 1996, **61**, 9280–9288.

4-(4'-Nitrophenyl)dibenzofuran

2-(4'-Acetylphenyl)benzofuran

4-(4'-Acetylphenyl)dibenzofuran

4-(4'-Methoxyphenyl)dibenzofuran

4-(2'-Tolyl)dibenzofuran

2-(3',4'-Methylenedioxy)pyridine

2-(3'-Quinolyl)benzofuran

4-(3'-Quinolyl)dibenzofuran

2-[2'-(5'-Methyl)thienyl]benzofuran

2-(5'-Indoyl)benzofuran

