Ansa-tris(allyl) complexes of alkali metals:tripodal analogues of

cyclopentadienyl and ansa-metallocene ligands

Richard A. Layfield,*^{,a} Felipe García,^b Julien Hannauer^b and Simon M. Humphrey^b

^aSchool of Chemistry, The University of Manchester,

Oxford Road, Manchester, M13 9PL, U.K.

^bDepartment of Chemistry, University of Cambridge,

Lensfield Road, Cambridge, CB2 1EW, U.K.

Electronic supplementary information – experimental and analytical details

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

General considerations. All syntheses were carried out using conventional Schlenk-type techniques involving rigorous exclusion of air and moisture. Solvents were pre-dried over sodium wire before being rigorously dried by refluxing over sodium/potassium alloy (hexane) or sodium benzophenone (thf). Anhydrous SnCl₂ was purchased from Lancaster and used as supplied, and 1,3-*bis*(trimethylsilyl)allyl potassium was prepared according to a literature procedure.¹ NMR spectra were recorded on a Bruker DRX 500 NMR spectrometer equipped with a CryoProbe. Crystallographic studies were carried out using a Nonius Kappa CCD diffractometer.

Synthesis of [1.thf]. A solution of 1,3-bis(trimethylsilyl)allyl potassium (0.67g, 3.0 mmol) in thf (10 ml) was added dropwise to a solution of SnCl₂ (0.19 g, 1.0 mmol) in thf (10ml) at -78°C. The reaction mixture was slowly warmed to room-temperature and then stirred for 2 hours to result in a bright vellow solution. The thf solvent was removed in vacuo to result in a sticky amber solid that was dissolved in hexane (10 ml) and filtered through Celite (P3). The hexane solution was reduced in volume to ca. 2 ml and stored at -15°C for 3 days, affording yellow, very-air sensitive crystals suitable for X-ray diffraction. Removal of the supernatant hexane solvent by syringe and drying in vacuo for ca. 30 minutes afforded 1.thf (0.34 g, 43% isolated yield), melts 103-105°C to an amber oil. Anal. Calcd. for C₃₁H₇₁OKSi₆Sn, C 47.36, H 9.10; found C 47.18, H 9.01 %. ¹¹⁹Sn NMR (δ ppm, 186.50 MHz, toluene- d_8 , 300.0 K, referenced to SnMe₄ in benzene- d_6): -132.87 (br s). ¹³C **NMR** (δ ppm, 125.75 MHz, toluene- d_8 , 300.0 K, J/Hz, atom labels refer to those assigned in Figure 1 of the Communication Main Text): 127.78, C2, ${}^{1}J$ (C2-H2) not observed; 112.78, C3, ${}^{1}J$ (C3-H3) = 277; 68.00, thf; 39.67, C1, ${}^{1}J({}^{13}C-{}^{119}Sn) = 1549.5$, ${}^{1}J({}^{13}C-{}^{117}Sn) = 1481.5$, ${}^{1}J({}^{13}C-{}^{1}H) = 195$; 25.67, thf; 0.84, Me₃Si; 0.07, Me₃Si. ¹H NMR (*S*/ppm, 500.05 MHz, toluene-*d*₈, 300.0 K, *J*/Hz): 6.43, dd, $3H, H2, {}^{3}J(H2-H3) = 18.0, {}^{3}J(H2-H1) = 14.1; 4.42, d, 3H, H3; 3.57, m, 4H, thf; 1.43, m, 4H, thf;$ 1.20 d, 3H, H1; 0.42, 27H, Me₃Si; 0.23, 27H, Me₃Si.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Synthesis of 2. A mixture of allyltrimethylsilane (43.6 ml, 274 mmol) and thf (100 ml) was cooled to -78°C and n-butyllithium (1.6 M, 171.5 ml, 274 mmol) was added dropwise over 1 hour. The reaction mixture was slowly warmed to room-temperature (approx. 293 K) and stirred for 16 hours. The resulting yellow solution of lithium allyltrimethylsilane was then cooled to -78°C and MeSiCl₃ (13.68 g, 91.5 mmol) added dropwise and the reaction mixture allowed to warm to room-temperature and stirred for 20 hours. Following removal of the thf solvent in vacuo, hexane (80 ml) was added and the resulting solution filtered (Celite, P3). The hexane solvent was then removed in vacuo and the resulting liquid distilled under reduced pressure to afford **2** as a colourless oil (27.3 g, 78%), bp 107-109°C/0.1 mm Hg. ¹³C NMR (δ ppm, 125.75 MHz, CDCl₃, 300.0 K) 142.6 CH=CH(SiMe₃); 129.2, CH=CH(SiMe₃); 24.7 MeSi-CH₂; -1.031, SiMe₃; -5.9, MeSi. ¹H NMR (δ ppm, 500.05 MHz, CDCl₃, 300.0 K, *J*/Hz): 5.99, dt, 3H, CH₂-CH=CH, ³*J* = 18.4 and 7.8; 5.47, dt, 3H, CH₂-CH=CH(SiMe₃), ³*J* = 18.4, ⁴*J* = 1.3; 1.66, dd, CH₂; 0.03, s, 27H, SiMe₃; -0.03, s, 3H, MeSi. Anal. Calcd. for C₁₉H₄₂Si₄, C 59.60, H 11.06; found C 59.45, H 11.05 %.

Synthesis of [3-(tmeda)₃]. A mixture of 2 (0.38 g, 1.0 mmol) and hexane (10 ml) was cooled to -78°C and n-butyllithium (1.6M, 1.88 ml, 3.0 mmol) was added dropwise. The reaction mixture was warmed to room-temperature and stirred for 12 hours followed by the addition of tmeda (0.35 g, 3.0 mmol) and further stirring for 1 hour to afford a pale red solution. The solution was filtered (Celite, P3), reduced in volume to ca. 2 ml and stored at -15°C overnight to afford pink crystals of [3-(tmeda)₃] (0.24 g, 32% isolated yield) mp 125-128°C. ¹³C NMR (δ ppm, 125.75 MHz, CDCl₃, 300.0 K, atom labels refer to those assigned in Figure 4 of the Communication Main Text): 128.2, C9; 70.1, C10; 61.5, C8; 46, NMe₂, broad; 56.5, CH₂N, broad. ¹H NMR (δ ppm, 500.05 MHz, CDCl₃, 300.0 K, *J*/Hz): 7.18, dd, 1H, H9, ³*J*(H9-H10) = 16.8, ³*J*(H9-H8) = 10.9; 6.98, t, 1H, H3/3A, ³*J* = 15.4; 6.86, t, 1H, H3/H3A, ³*J* = 15.3; 3.58, d, 1H, ³*J* = 16.0; 3.44, d, 1H, ³*J* = 15.6; 3.35, d, 1H, H10, ³*J* = 16.9; 3.02, d, 1H, ³*J* = 14.7; 2.63, d, 1H, H8, ³*J* = 10.9; 2.52, d, 1H, ³*J* = 14.8; 2.35-2.09,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

broad, overlapping multiplets, 48H, $3 \times Me_2NCH_2CH_2NMe_2$); 0.54, (s, 3H, MeSi); 0.44, 0.43, 0.41

 $(3 \times s, 3 \times 9H, 3 \times Me_3Si)$. Anal. Calcd. for $C_{37}H_{87}Li_3N_6Si_4$, C 59.31, H 11.70, N 11.22; found C 58.91, H 11.20, N 11.38 %.

Crystallographic details for compounds 1.thf and [3. (tmeda)₃]

Crystals were mounted on thin glass fibres using perfluoropolyether oil and frozen in situ in a flow of cold nitrogen gas from a Cryostream instrument. Data were collected using an Enraf Nonius Kappa CCD diffractometer using monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). Cell refinement and data reduction was performed using the HKL SCALEPACK & DENZO² and COLLECT³ utilities. Absorption corrections were made based on ψ - and ω -scans using the SORTAV⁴ program. Structures were solved using direct methods and refined on F^2 using the program SIR-92⁵ and then refined using SHELXTL-97.⁶ All non-hydrogen atoms were refined anisotropically for all structures. For $[1 \cdot thf]$ and $[3 \cdot (tmeda)_3]$, the allylic hydrogen atoms were located directly in the electron peak difference maps and were allowed to refine freely. All other hydrogen atoms were fixed manually on idealized positions, with values of U_{iso} set to 1.5 times the carrier atom. In [1.thf], the thf solvent molecule was disordered about a 3-fold axis, with the coordinating O-atom located at [-1/3, +1/3, l]; hydrogen atoms were not assigned and compensatory alterations were made to the final structural formula, as required for a single C₄H₈O unit. In $[3\cdot(\text{tmeda})_3]$ the positions of carbon atoms in the tmeda backbone were found to be disordered over two positions (not shown in Figure 4). Due to the inherent disorder in the tmeda ligand containing C19 and C20, hydrogen atoms on these parent atoms have been removed from the structure and corrected for in the .cif file.

Table S1. Crystal data and structure refinement for 1.thf.

Empirical formula	$C_{31}H_{71}KOSi_6Sn$	C ₃₁ H ₇₁ KOSi ₆ Sn	
Formula weight	786.22		
Temperature	180(2) K		
Wavelength	0.71073 Å		
Crystal system	Rhombohedral		
Space group	R3c		
Unit cell dimensions	a = 17.4815(9) Å	$\alpha = 90^{\circ}$.	
	<i>b</i> = 17.4815(9) Å	$\beta = 90^{\circ}$.	
	c = 27.596(2) Å	$\gamma = 120^{\circ}$.	
Volume	7303.5(8) Å ³		
Ζ	6		
Density (calculated)	1.029 Mg/m ³		
Absorption coefficient	0.774 mm ⁻¹		
<i>F(</i> 000)	2388		
Crystal size	0.17 x 0.12 x 0.12 mm ³		
Theta range for data collection	3.64 to 20.59°.		
Index ranges	$-17 \le l \le 16, -17 \le k \le 17, -27 \le l \le 27$		
Reflections collected	7480		
Independent reflections	1622 [R(int) = 0.0517]		
Completeness to theta = 20.59°	99.2 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.986 and 0.854		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	1622 / 1 / 136		
Goodness-of-fit on F^2	1.089		
Final R indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0312, wR2 = 0.0698		
<i>R</i> indices (all data)	R1 = 0.0483, wR2 = 0.0789		
Absolute structure parameter	-0.03(4)		
Largest diff. peak and hole	0.204 and -0.143 e.Å ⁻³		
Dargest and peak and note	0.204 and -0.143 C.A		

Table S2. Crystal data and structure refinement for 3-(tmeda)₃

Empirical formula	$C_{37}H_{87}Li_3N_6Si_4$		
Formula weight	749.31		
Temperature	180(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	$P4_2/nmc$		
Unit cell dimensions	a = 33.6787(3) Å	$\alpha = 90^{\circ}$.	
	b = 33.6787(3) Å	$\beta = 90^{\circ}$.	
	c = 11.17300(10) Å	$\gamma = 90^{\circ}$.	
Volume	12673.0(2) Å ³		
Ζ	8		
Density (calculated)	0.798 Mg/m ³		
Absorption coefficient	0.117 mm ⁻¹		
<i>F</i> (000)	3376		
Crystal size	0.37 x 0.14 x 0.14 mm ³		
Theta range for data collection	3.53 to 25.00°.		
Index ranges	$-40 \le h \le 35, -29 \le k \le 40, -13 \le l \le 13$		
Reflections collected	54441		
Independent reflections	5735 [$R(int) = 0.0579$]		
Completeness to theta = 25.00°	98.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.977 and 0.855		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5735 / 0 / 268		
Goodness-of-fit on F^2	1.107		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0890, wR2 = 0.2242		
R indices (all data)	R1 = 0.1116, wR2 = 0.2374		
Largest diff. peak and hole	0.528 and -0.287 e.Å ⁻³		

References

- Fernández-Galán, R.; Hitchcock, P. B.; Lappert, M. F.; Antiñolo, A.; Rodríguez, A. M. J. Chem. Soc., Dalton Trans., 2000, 1743.
- Z. Otwinowski and W. Minor, HKL SCALEPACK, *Methods in Enzymology*, Vol 276, Macromolecular Crystallography, Part A, Eds. C. W. Carter Jr. and R. M. Sweet, New York: Academic Press, 1997, 307.
- 3. Nonius COLLECT, Nonius BV, Delft, The Netherlands.
- 4. R. H. Blessing, SORTAV, Acta. Cryst. 1995, A51, 33.
- A. Altamore, M. C. Burla, G. Camalli, G. Cascarano, C. Giacovazzo, A. Gualiardi and G. Polidori, *J. Appl. Cryst.* 1994, 27, 435.
- 6. G. M. Sheldrick, SHELXTL Version 6.10, Bruker AXS Inc, Madison, Wisconsin, 1997.